
Chapter 8
Computational Methods for Text
Analysis and Text Classification

In this chapter the differences between rule-based systems and machine learning-
based systems along with their respective pros and cons will be explained. The
principles of machine learning-based systems such as Conditional Random Fields
(CRF), Support Vector Machines (SVM) and the Weka toolkit supporting sev-
eral machine learning algorithms and evaluation packages will be presented. For
machine learning feature extraction for improving the machine learning results will
be described, feature extraction such as POS-tagging, stemming and lemmatisation,
as well as statistical calculations based on tf–idf to filter out relevant words. Active
learning is used for selecting the optimal data to be annotated. Different machine
learning approaches such as topic modelling, distributional semantics and clustering
will be presented. Text is preprocessed into different knowledge representations
such as vector space model and word space model etc. These representations are
adapted for different computational methods. The results produced from both rule-
based and machine learning-based systems will be explained. Ready computational
linguistic modules for English clinical text mining, such as MedLEE and cTakes
will also be presented, as well as some basic tools such as NLTK and GATE, which
need to be adapted to clinical text mining.

8.1 Rule-Based Methods

The rule-based method is the classical programming paradigm. A human program-
mer or software engineer writes rules to mimic the required behavior of a program.
The programmer studies a flow chart of how the program should react depending on
the, input data to the program. The programmer may also study the input data and
the required output data and try to implement this in the program. The rules can be
any type of format, a grammar for parsing text, regular expressions to extract parts of

© The Author(s) 2018
H. Dalianis, Clinical Text Mining, https://doi.org/10.1007/978-3-319-78503-5_8

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78503-5_8&domain=pdf
https://doi.org/10.1007/978-3-319-78503-5_8

84 8 Computational Methods for Text Analysis and Text Classification

grep -o -P -e "(\d{6}|\d{8}) (-|)\d{4}(\W|$)" personnummer.txt

Fig. 8.1 An example of a regular expression that would find a Swedish personal identity number,
\d matches digits, six or eight in a row with a hyphen or not (-|) and finally a group of four digits.
At the end of the regular expression there is a check for a non-word character W and end of the line
$. The grep command in the Bash shell script of the Linux operating system print lines matching
a regular expression applied to a file called “personnummer.txt”. This regular expression can be
more elaborate by adding features for the century e.g. 1900 and 2000, as well as for 12 months and
31 days, and also checksum for the last four digits

strings, or a number of regular expressions to perform stemming or lemmatisation of
words. Rule-based methods are time consuming and require hands-on programming
and understanding of the problem to be solved. Rule-based methods are perfect for
handling specific problems, but not for processing unexpected input data. See also
Sect. 7.4.2 on writing grammars to parse input text and produce output data from a
syntax tree. Usually rule-based method obtains high precision and lower recall.

8.1.1 Regular Expressions

Included in rule-based methods are the regular expressions also called regex or
regexp.1 Regexp are very powerful search and string matching techniques to make
an exact match on text, words, characters, numerical expressions, non-alphanumeric
expressions and parts of them. Regular expressions are available in the Linux
operating systems as well as in most programming languages. Regexp are usually
used to find, and sometimes replace parts or whole expressions in a text.

An example of using RegExp to find the format of a Swedish personal identity
number that contains a six-digit birth date part and four control digits: YYMMDD-
NNNN, follows here. A personal identity number is sometimes written in full with
four year digits: YYYYMMDD-NNNN, but it can also be the case that it is written
without a hyphen: YYMMDDNNNN. Examples of personal identity numbers are
690401-9304, 19690401-9304 or 196904019304. Therefore, to find all Swedish
personal identity numbers in a file called “personnummer.txt” you have to type the
following command in Bash shell script of the Linux operating system. Grep in the
shell script print lines matching regular expression pattern, see Fig. 8.1.

Of course this can be elaborated, allowing only a maximum 12 months and 31
days, the last four digits are control numbers and these can be also checked.

Regular expressions can be used to find and replace personal identity numbers,
telephone numbers and email addresses that are regular and easy to identify for
example for de-identification purposes, see Sect. 9.4.

1Regular expressions, https://en.wikipedia.org/wiki/Regular_expression. Accessed 2018-01-11.

https://en.wikipedia.org/wiki/Regular_expression

8.2 Machine Learning-Based Methods 85

8.2 Machine Learning-Based Methods

Machine learning is a set of methods that uses previous patterns of behaviour and
can generalise a set of rules or behavior from this. Machine learning methods
learn from previous patterns. Within machine learning methods we can distinguish
between unsupervised methods and supervised methods.

Unsupervised methods utilise training data that is not annotated or preprocessed
manually by any human. These unsupervised methods can be different clustering
methods, distributional semantics as random indexing or Hidden Markov Models.

Supervised methods use training data that is manually annotated with labels,
consequently it is very expensive in terms of human effort and time to produce
annotated data for supervised methods. Hence, some supervised methods will first
be described, such as Conditional Random Field (CRF) and Support Vector Machine
(SVM), and then some unsupervised methods to find semantic relations, such as
Latent Semantic Analysis (LSA), Latent Semantic Indexing and Random Indexing
as well as text clustering.

Conditional Random Field (CRF) is an efficient machine learning algorithm
for detecting named entities in a sequence of data. CRF is related to Hidden
Markov Models (HMM) and is a supervised algorithm that needs annotated data.
CRF can predict sequences of labels after training. For a thorough description on
CRF see Lafferty et al. (2001). There are several implementations of CRF such as
CRF++, Stanford NER, and CRF Mallet, to mention some. Stanford NER is a well
performing system with an elaborate graphical interface, see Fig. 8.2.

Fig. 8.2 The interface of Stanford NERa implementing CRF. aStanford NER,
http://www.linguisticsweb.org/doku.php?id=linguisticsweb:tutorials:linguistics_tutorials:
automaticannotation:stanford_ner. Accessed 2018-01-11

http://www.linguisticsweb.org/doku.php?id=linguisticsweb:tutorials:linguistics_tutorials:automaticannotation:stanford_ner
http://www.linguisticsweb.org/doku.php?id=linguisticsweb:tutorials:linguistics_tutorials:automaticannotation:stanford_ner

86 8 Computational Methods for Text Analysis and Text Classification

Fig. 8.3 The interface of the Weka toolkit. In this example classifying patient records for
healthcare associated infections taken from Ehrentraut et al. (2014). Reprinted with the permission
of the authors in Ehrentraut et al. (2014)

Support Vector Machines (SVM) is one of the most effective and popular machine
learning algorithms for classification problems. SVM is a supervised algorithm
and needs annotated data. SVM can, after training, decide if a concept or a whole
document belongs to one class or another.

The Weka toolkit2 contains several implemented machine learning algorithms
including SVM as well as evaluation packages and an elaborated graphical interface,
see Fig. 8.3.

Several researchers use the R programming language3 with its libraries or
the Scikit-learn environment4 which is also based on the programming language
Python, both are suitable for performing machine learning-based approaches.

Yet Another Multipurpose CHunk Annotator (YamCha)5 is an implementation of
the SVM algorithm and uses the CoNLL format (which is a standard format for

2Weka toolkit, http://www.cs.waikato.ac.nz/ml/weka/. Accessed 2018-01-11.
3R Project, https://www.r-project.org. Accessed 2018-01-11.
4Scikit-learn, http://scikit-learn.org. Accessed 2018-01-11.
5YamCha, http://chasen.org/~taku/software/yamcha/. Accessed 2018-01-11.

http://www.cs.waikato.ac.nz/ml/weka/
https://www.r-project.org
http://scikit-learn.org
http://chasen.org/~taku/software/yamcha/

8.2 Machine Learning-Based Methods 87

NLP training and testing) and is therefore suitable to combine with experiments
using CRF++ that also use the CoNLL format.

Machine learning-based methods do not need so much programming effort but
time to prepare the data in the right format, in other words, to find the optimal
knowledge representation and the most efficient features in the data to be used.
Supervised methods require time consuming manual annotation of the data to be
used for training (and evaluation).

Machine learning-based methods generally obtain high recall and lower preci-
sion. For more details on machine learning see Alpaydin (2014).

8.2.1 Features and Feature Selection

Features represent certain aspects of the training data and are used as input to the
machine learning tools. Features are usually produced by different preprocessing
tools such as taggers.

Each word’s POS-tag such as determiner, subject, predicate, adjective, adverb,
preposition etc. may be used as a feature, but also features such as if the word
contain an initial capital letter, the length of the word, if it is numerical token, the
surrounding word’s features, etc., for more details see Dalianis and Boström (2012).

Stemmers produce stems and lemmatisers lemmas that may be used as features,
for more details see Dalianis and Boström (2012).

Dictionary matching means to select the words and arbitrary features of tokens
that have a match with some known dictionary, such as ICD-10, SNOMED-CT,
MeSH etc., for more details see Skeppstedt et al. (2014).

Statistical calculations such as the term frequency–inverse document frequency
(tf–idf) of tokens in the document collection may be used as features, for more
details see Ehrentraut et al. (2014).

Stop word filtering means to remove the most common (non-significant) words
from the document collections, which account around 40% of all tokens.

Other methods to produce features is to use distributional semantics applied
on large unsupervised corpora to extract features from the corpora and apply the
features on a smaller subset of annotated text, for more details see Henriksson et al.
(2014).

The Weka toolkit has both a built-in feature extraction mechanism as well as
feature selection and feature optimisation algorithms.

Term Frequency–Inverse Document Frequency, tf–idf

To find the statistically most significant word in a document collection there is a
statistical calculation called term frequency–inverse document frequency, tf–idf , it
comprises of two separate calculations: term frequency (tf) of a word in a particular

88 8 Computational Methods for Text Analysis and Text Classification

document multiplied with the inverse document frequency (idf) of the same word
over the document collection. The product gives the tf–idf weight of a specific word
meaning the significance of this word within a particular document. Here follows
the definitions of the used terms to calculate tf–idf:

• The term frequency (tf) corresponds to the number of times a word occurs in a
particular document.

• The document frequency (df) corresponds to the number of documents that
contains a specific word at least once.

• The number of documents (N) corresponds to the number of documents in a
document collection.

• The inverse document frequency (idf) of a word calculates how unique or
common a word is across a document collection. A unique word has a high
idf, while a common term has a low idf. Idf for a specific word is calculated
by dividing the number of documents (N) with the document frequency (df)
for a specific word in the document collection. The logarithmic function is
applied on the result to scale the quote for the length of the documents. Hence,
normalising the result and avoiding that words in long documents will obtain
high idf. Words in long documents tend to be repeated and consequently obtain
high term frequency. For the formula on idf see (8.1) and for the formula on tf–idf
see (8.2).

idf = log

(
N

df

)
(8.1)

tf –idf = tf × idf (8.2)

Words with a high tf–idf weight are more significant than words with a lower
tf–idf weight. For further details regarding tf–idf see Van Rijsbergen (1979) and
Manning et al. (2008).

One preprocessing method is therefore to filter out words with a high tf–idf
weight that are words with high significance, to be used as training data in a machine
learning algorithm, while words with a low tf–idf weight usually coincide with stop
words, meaning words with low significance.

Vector Space Model

Another similarity measurement between documents apart of tf–idf is the vector
space model that considers each word in a document to be a vector. All the
word vectors summarised gives a measurement for the document. Comparing two
documents in the vector space model is carried out by comparing the angle between
the two document vectors, if there is a small angle between the two vectors, the

8.2 Machine Learning-Based Methods 89

corresponding documents are considered to be closely related. The vector space
model is used in information retrieval where one of the vectors is the query vector.

The vector space model can be used both for measuring the similarity between
two documents, where the document vector consists of the sum of all word vectors
and also for measuring the similarity of two words by comparing the corresponding
word vectors.

Cosine similarity is a measurement sprung from the vector space model,
indicating the closeness of two vectors by calculating the dot product between them.
If the number is 1 or close to 1 then the cosine similarity also shows similarity
between the document vectors. If words are compared for similarity, then the word
vectors are compared, or more precisely the angle between the word vectors, the
smaller angle between the word vectors the more similar words.

8.2.2 Active Learning

Various active learning methods for machine learning have been developed. The
aim of active learning is to reduce the amount of manual annotation effort needed
to obtain training data. Active learning helps to select the most information dense
and variated training data to be annotated which contributes to the best and optimal
training examples. The process of active learning is often iterative. Optimal data is
data not seen or used by the algorithm previously. This optimal data can be selected
by a machine or by a human (Settles 2009).

Olsson (2009) has also written a nice overview of active learning within
natural language processing. In his PhD thesis Olsson (2008) proposes his method
BootMark that includes three steps:

(a) Manual annotation of a set of documents;
(b) Bootstrapping—active machine learning for the purpose of selecting which

document to annotate next; and
(c) Mark up of the remaining unannotated documents of the original corpus using

pre-tagging with revision.

The BootMark method is proved to require fewer manually annotated documents
for the training of a named entity recogniser, and is better than training on randomly
selected documents.

Boström and Dalianis (2012) used active learning for a de-identification annota-
tion experiment, and found that both random selection and selecting the most certain
examples outperformed the standard active learning strategy of selecting the most
uncertain examples. The reason for this can be a skewed class distribution when
selecting the most uncertain examples.

Kholghi et al. (2015) used three different active learning algorithms to decide on
which unlabeled instances to annotate next. The studied algorithms were: supervised
approach (Sup), information density (ID) and least confidence (LC). The LC

90 8 Computational Methods for Text Analysis and Text Classification

algorithm gave the best results. The study reports on a range from 77% to 46%
of savings for sequences, tokens, and concepts.

8.2.3 Pre-Annotation with Revision or Machine Assisted
Annotation

Pre-annotation with revision6 is related to active learning. A small set of annotated
data is used to start the machine learning process. The presented learned data is
reviewed and corrected by a human, and the new annotated data is entered again
into the machine learning system to improve the system. This is an iterative process
(Olsson 2008).

Pre-annotation7 means to machine-annotate text before the human annotator
receives it to support him or her in the manual annotation process. The pre-
annotations are manually corrected and missing annotations are added. The pre-
annotations may also be corrected by the human annotator if the pre-annotations are
wrong. The corrected annotated text is entered into the machine learning system and
the performance of the system is hopefully improved.

A study on pre-annotation and revision is presented in Hanauer et al. (2013). The
authors use the MITRE Identification Scrubber Toolkit (MIST) for de-identification.
They use ten clinical notes for an initial annotation for de-identification and
then training the system, then they pre-annotate another ten notes, correct the
annotations, train the system, pre-annotate another ten notes, and do that 21 times.
At the end they increase the sample with 20 and 40 notes so in total 220 notes were
annotated. For each round the annotation time decreased, and the F-score increased
to 0.95 from 0.89 with the initial ten notes. In total 8 h annotation time was used for
21 rounds, the initial ten note round took 33 min with the last round just needing
15 min.

Lingren et al. (2014) showed that pre-annotation of clinical trial announcements
(documents) made a time saving for annotation in the range of 13.85–21.5%
per entity. The annotators annotated 9002 medical named entities, mainly dis-
ease/disorder and sign/symptom entities.

Skeppstedt (2013) suggested one approach in pre-annotation inspired by Olsson
(2008). Skeppstedt used the CRF system for pre-annotating unlabelled data. Instead
of using the standard method of presenting one pre-annotation, the annotator is
presented with two possible pre-annotations. The annotator, therefore, always has to
make an active choice between two options, which has the potential to reduce bias.
The two possible pre-annotations presented are the ones considered as most likely
by the trained CRF model. They are, however, presented in a random order, to avoid
a bias towards the most likely pre-annotation, see Fig. 8.4. This approach has not

6In this book pre-tagging is called pre-annotation.
7Pre-annotation is also called machine assisted annotation.

8.2 Machine Learning-Based Methods 91

Fig. 8.4 A simple program for choosing between two alternative annotations, one pre-annotated
and one manually annotated. The example is a constructed example in English (Figure taken
from Figure 1 in Skeppstedt 2013. © 2013 Reprinted with the permission of ACL and the author.
Published in Skeppstedt 2013)

yet been evaluated, but the results from Olsson (2008) indicate that pre-annotation
is the right way to go.

One other possibility would be to present the annotator’s previous annotation
and the one the machine proposes to the annotator, without of course informing
them which one is human-made or machine generated, and then the annotator can
choose which is the correct one, thereby obtaining the optimal annotation.

Skeppstedt et al. (2017) have developed their method of pre-annotation and active
learning in a prototype called PAL, Pre-annotation and Active Learning. Where the
annotator only is receiving the most optimal data to annotate for each annotation
round. PAL is fully integrated with the BRAT annotation tool and is freely available
to download from GitHub.8

8.2.4 Clustering

Clustering of documents is in contrast to categorisation (or classification) not
predefined. Categorisation means to assign documents in predefined categories
according to some manual or rule-based process. Clustering, on the other hand,
is a completely unsupervised method for grouping documents, that contain similar
meaning bearing words, or are similar in some way in the same cluster. Clustering
is an indeterministic process not (always) knowing the number of final clusters
and their content beforehand. The process is deterministic in the way that the
results will be the same each time the clustering starts. Clustering can also produce
overlapping clusters, meaning that a document can be assigned in two or more
clusters. Clustering needs a similarity measure between documents, the cosine
similarity is often used as a measure but also the tf–idf scheme.

There are two main algorithms for clustering: partitioning and hierarchical
algorithms. One well-known partitioning algorithm is the K-means algorithm. The

8PAL, https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning.
Accessed 2018-01-11.

https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning

92 8 Computational Methods for Text Analysis and Text Classification

K-means algorithm is given k random words as seeds to start the clustering process,
then calculate cluster centroids (centre of gravity) try to fit them into nearest initial
cluster, check for a stopping condition, regroup clusters, one per cluster centroid,
let each document belong to the cluster with the most similar centroid, until some
final clusterings are selected and a stopping condition is valid as for example the
centroids stop moving.

Since the initial partitions are random the final clustering results are also non-
deterministic, using the same data but different random k seed words.

Hierarchical algorithms are on the other hand deterministic and create a cluster-
ing hierarchy. The hierarchical algorithms can work top-down or bottom-up. One
hierarchical algorithm is the agglomerative clustering algorithm, which begins by
putting each document in its own cluster. The n clusters that are most similar to each
other are then merged into one new cluster and the worst cluster is split into n new
clusters, the splitting process repeats until a stopping condition is valid. Usually n is
equal to 2. For a nice overview of the area see Rosell (2009).

For an open source search results clustering engine see Carrot2.9

8.2.5 Topic Modelling

Topic modelling is, in contrary to clustering, focused on finding topics in one or
more documents and then building a model of topics. Of course longer documents
may contain more than one topic. Topic modelling is an unsupervised method. The
method assumes that words originate from different topics and are used in a mixed
way in a document or corpus. The topic modelling algorithm tries to gather all words
that encompass one topic and group them in that topic. The process is iterative and
continues until a likely distribution of words is put in each topic. One document or
corpus can hence contain several topics. There will of course be more words than
topics, since each topic contain several words. Topic modelling and clustering are
related in such way that the same topics from different documents can be clustered
and hence their corresponding documents. One algorithm often used to perform
topic modelling is the Latent Dirichlet Allocation (LDA). For a nice overview of
topic modelling see Blei (2012).

8.2.6 Distributional Semantics

The basis of the distributional hypothesis is that a word is described by its context.
Two words are synonyms or more exactly associonyms if they are used in the same
or similar context several times in different documents, which is what creates the

9Carrot2, https://project.carrot2.org. Accessed 2018-01-11.

https://project.carrot2.org

8.2 Machine Learning-Based Methods 93

distributional semantics. The semantics of words are described by their context, or
their distribution in the corpus. For each unique word in the corpus a context vector
is constructed and a word space model is constructed. A word space model is a
mathematical model of the corpus that contains information about the distribution
of the different words. A distribution describes each word’s context in form of other
words. This method or the result of the method is also called word embeddings.

The first theoretical approach for distributional semantics was latent semantic
analysis and it was first implemented in latent semantic indexing; however, the
method was difficult to scale, so a faster method was later implemented called
Random Indexing (RI) that reduced the dimensionality for the indexing and hence
improved performance, see Sahlgren (2006).

An implementation of random indexing by Martin Duneld, can be found
online,10 another possibility is to use the popular word2vec implementation of
distributional semantics11 (Mikolov et al. 2013).

8.2.7 Association Rules

One method to reduce the complexity of big data for text mining (and data mining)
is to use association rules, which is a method developed by Agrawal and Srikant
(1994). Association rules use statistics to find patterns in large amounts of data and
replace the data with rules that generalise or associate. The method was used in
clinical text mining by Boytcheva et al. (2017a) for 300,000 outpatient records and
1425 health forum postings, both in Bulgarian. The authors tried through association
rules to find attribute-value pairs. An example of an attribute is cardiovascular
system and a value is for example rhythmic norm frequent heartrate.

This method generates a great number of rules by performing post processing,
the rules with the highest statistical significance are selected. This method identified
relations even when the attribute-value pairs were from apart from each other in the
text. First as a preprocessing step the authors performed stemming on the text before
generating the association rules. The authors used a ready program package called
SPMP12 for the association rules generation. The result is evaluated with something
called Lift value, which is a measure on how well these rules manage to associate;
the authors obtained a Lift value on 12.21, which is very good, as a Lift value of
over 1.1 is considered good.

10JavaSDM: A Java Package for Random Indexing, http://www.csc.kth.se/tcs/humanlang/tools.
html. Accessed 2018-01-11.
11word2vec, https://code.google.com/p/word2vec/. Accessed 2018-01-11.
12SPMP, http://www.philippe-fournier-viger.com/spmf/index.php?link=download.ph. Accessed
2018-01-11.

http://www.csc.kth.se/tcs/humanlang/tools.html
http://www.csc.kth.se/tcs/humanlang/tools.html
https://code.google.com/p/word2vec/
http://www.philippe-fournier-viger.com/spmf/index.php?link=download.ph

94 8 Computational Methods for Text Analysis and Text Classification

8.3 Explaining and Understanding the Results Produced

Humans trust results if they are explained and if they can be validated. This was the
case with the traditional rule-based expert systems of the 1980s.

Generally, rule-based systems or logic-based systems are comprehensible since
they are constructed by humans. The programmer can, for each step, explain to the
user why something happened and for what reason, while machine learning systems
in contrast analyse several thousands examples mathematically or statistically, and
then produces a number of rules or behaviours, which in turn give a result. For
example, some specific input data give some specific output data.

Machine learning systems are not very good in general of giving explanations or
feedback to the user, however some machine learning algorithms such as decision
trees can give some explanation of how they reached a result; linear additive systems
can also give some abstract explanation, systems such as Naïve-Bayes, logistic
regression and linear Support Vector Machines. These algorithms can demonstrate
how the weight for each feature impacted the results (Stumpf et al. 2009).

8.4 Computational Linguistic Modules for Clinical Text
Processing

There are two off-the-shelf systems that are mentioned in the research literature, one
is the Medical Language Extraction and Encoding System (MedLEE), by Friedman
et al. (1995) the other one is clinical Text Analysis and Knowledge Extraction System
(cTAKES)13 by Savova et al. (2010). Both systems are ready to use with integrated
clinical dictionaries, terminologies and classifications (in English).

cTAKES is an open source NLP toolkit based on UIMA and on the Apache
OpenNLP toolkit.14 It has all the basic NLP processing functionalities for English,
such as a tokeniser, a POS-tagger, a named entity recogniser, negation detection,
machine learning functionality etc. cTakes is currently used at the Mayo Clinic in
Rochester, Minnesota, USA.

MedLEE contains a preprocessor, a rule-based parser, a composer and an
encoder. The encoder matches entities in the text with entities in UMLS or
SNOMED, or other vocabularies. MedLEE was developed academically but is now
a commercial tool. MedLEE is in daily use for clinical decision support at the New
York—Presbyterian Hospital (Friedman 2005).

A newer off-the-shelf system is Clinical Language Annotation, Modelling and
Processing Toolkit (CLAMP).15 CLAMP is a Java, and Eclipse based annotation

13cTakes, https://en.wikipedia.org/wiki/CTAKES. Accessed 2018-01-11.
14Apache, OpenNLP , https://en.wikipedia.org/wiki/OpenNLP. Accessed 2018-01-11.
15CLAMP, http://clamp.uth.edu. Accessed 2018-01-11.

https://en.wikipedia.org/wiki/CTAKES
https://en.wikipedia.org/wiki/OpenNLP
http://clamp.uth.edu

8.6 Summary of Computational Methods for Text Analysis and Text. . . 95

and NLP toolkit for clinical text. CLAMP has built-in modules for the standard
NLP processing steps for English text. CLAMP also has a built-in UMLS encoder.

8.5 NLP Tools: UIMA, GATE, NLTK etc

Here follow a presentation of various ready to use NLP tools. One standard
is Unstructured Information Management Architecture (UIMA)16 from IBM for
content analytics. It was developed to process unstructured information such as
natural language text, speech, images or videos. Another standard that is well-
used is General Architecture for Text Engineering (GATE)17 written in Java. GATE
was originally developed at the University of Sheffield. Today GATE can process
the following languages: English, Chinese, Arabic, Bulgarian, French, German,
Hindi, Italian, Cebuano, Romanian, Russian, Danish and Welsh. Another well-
known toolkit is the Natural Language Toolkit (NLTK),18 which was developed in
the programming language Python, see Bank and Schierle (2012). Some Java-based
NLP tools are:

• LingPipe, http://alias-i.com/lingpipe/
• Stanford CoreNLP, http://stanfordnlp.github.io/CoreNLP/
• OpenNLP Apache, http://opennlp.apache.org/
• Freeling, http://nlp.lsi.upc.edu/freeling/

(All links accessed 2018-01-11.)

8.6 Summary of Computational Methods for Text Analysis
and Text Classification

This chapter presented rule-based methods and continued with machine learning
methods such as CRF, SVM and Random Forest, their differences, weaknesses and
strengths were compared and explained along with when to use them. For machine
learning preprocessing of training data was described, including feature selection.
Various knowledge representations of text were presented. Tools as the Stanford
NER for CRF and the Weka toolkit supporting a large number of machine learning
algorithms were presented. Within machine learning, active learning was discussed,
a method for selecting the most optimal data for annotation, continuing with pre-
tagging with revision, a method for improving the manual annotation work, with
respect to time and quality. Clustering, topic modelling and distributional semantics

16UIMA Wikipedia, https://en.wikipedia.org/wiki/UIMA. Accessed 2018-01-11.
17GATE, https://gate.ac.uk. Accessed 2018-01-11.
18NLTK 3.0 documentation, http://www.nltk.org. Accessed 2018-01-11.

http://alias-i.com/lingpipe/
http://stanfordnlp.github.io/CoreNLP/
http://opennlp.apache.org/
http://nlp.lsi.upc.edu/freeling/
https://en.wikipedia.org/wiki/UIMA
https://gate.ac.uk
http://www.nltk.org

96 8 Computational Methods for Text Analysis and Text Classification

were also explained. Machine learnings algorithms that can explain their results
were presented. Various open tools for clinical text mining such as cTakes, NLTK,
GATE and Stanford Core NLP were mentioned.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	8 Computational Methods for Text Analysis and Text Classification
	8.1 Rule-Based Methods
	8.1.1 Regular Expressions

	8.2 Machine Learning-Based Methods
	8.2.1 Features and Feature Selection
	Term Frequency–Inverse Document Frequency, tf–idf
	Vector Space Model
	8.2.2 Active Learning
	8.2.3 Pre-Annotation with Revision or Machine Assisted Annotation
	8.2.4 Clustering
	8.2.5 Topic Modelling
	8.2.6 Distributional Semantics
	8.2.7 Association Rules

	8.3 Explaining and Understanding the Results Produced
	8.4 Computational Linguistic Modules for Clinical Text Processing
	8.5 NLP Tools: UIMA, GATE, NLTK etc
	8.6 Summary of Computational Methods for Text Analysis and Text Classification

