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Abstract. In anonymous identity-based encryption (IBE), ciphertexts
not only hide their corresponding messages, but also their target identity.
We construct an anonymous IBE scheme based on the Computational
Diffie-Hellman (CDH) assumption in general groups (and thus, as a spe-
cial case, based on the hardness of factoring Blum integers).

Our approach extends and refines the recent tree-based approach
of Cho et al. (CRYPTO ’17) and Döttling and Garg (CRYPTO ’17).
Whereas the tools underlying their approach do not seem to provide any
form of anonymity, we introduce two new building blocks which we uti-
lize for achieving anonymity: blind garbled circuits (which we construct
based on any one-way function), and blind batch encryption (which we
construct based on CDH).

We then further demonstrate the applicability of our newly-developed
tools by showing that batch encryption implies a public-key encryption
scheme that is both resilient to leakage of a (1−o(1))-fraction of its secret
key, and KDM secure (or circular secure) with respect to all linear func-
tions of its secret key (which, in turn, is known to imply KDM security
for bounded-size circuits). These yield the first high-rate leakage-resilient
encryption scheme and the first KDM-secure encryption scheme based
on the CDH or Factoring assumptions.

Finally, relying on our techniques we also construct a batch encryption
scheme based on the hardness of the Learning Parity with Noise (LPN)
problem, albeit with very small noise rate Ω(log2(n)/n). Although this
batch encryption scheme is not blind, we show that it still implies stan-
dard (i.e., non-anonymous) IBE, leakage resilience and KDM security.
IBE and high-rate leakage resilience were not previously known from
LPN, even with extremely low noise.

1 Introduction

Identity Based Encryption (IBE) is a form of public key encryption where a user’s
public key is just his name. Specifically, an authority holding a master secret key
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msk can generate individual secret keys for users skid according to their identity
id, and encryption is performed using a master public key (mpk) and the identity
of the recipient. The notion of IBE was proposed by Shamir [Sha84] but first
realized only over 15 years later [BF03,Coc01]. Aside from the obvious utility
of using IBE for the purpose for which it was intended, it has also proved to
be a useful building block to achieve other cryptographic tasks (e.g. chosen-
ciphertext secure encryption [BCHK07]) as well as an inspiration for defining
more expressive forms of encryption schemes with access control. Most generally,
the latter refers to schemes where multiple secret keys can be generated, but
each key can only recover encrypted information if some predefined condition
holds. The most natural generalization is to attribute based encryption (ABE)
[SW05,GPSW06] where secret keys skf correspond to policies f , and encryptions
are with respect to attributes x, so that the message is decryptable only if
f(x) = 1. IBE is a special case where f is a point function (i.e. fa(x) = 1 if and
only if x = a).

Very recently, a beautiful work of Döttling and Garg [DG17a] proposed a
new tree based approach for IBE and showed that it implies a candidate IBE
scheme from the computational Diffie-Hellman assumption (CDH), which was
previously unknown. Their main building blocks were garbled circuits and a
special form of encryption called Chameleon Encryption. In a follow-up work
[DG17b] they showed that tree based constructions can also be used to amplify
the properties of IBE schemes.

An important variant of IBE is one where it is also required that a cipher-
text for recipient id does not expose id to an unauthorized decryptor. This
property is called anonymity. Anonymous IBE is quite useful, e.g. for search-
able encryption [BCOP04], and analogously to the connection between IBE and
ABE, anonymous IBE is a special case of attribute hiding ABE (e.g., as in
[KSW08]). The latter has raised much interest recently in the cryptographic lit-
erature due to its connection to functional encryption schemes. Anonymous IBE
schemes can be constructed from pairings [BCOP04,ABC+08,BW06,Gen06],
lattices [GPV08,ABB10,CHKP12] and quadratic residuosity [BGH07] (the last
one in the random oracle model).

The [DG17a,DG17b] constructions are not anonymous for a fundamental
reason. Their construction is based on an implicit exponential-size prefix tree
representing the entire space of identities. The encryption operation considers a
path from the root to the leaf representing the target id and constructs a sequence
of garbled circuits, each respective to a node along this path. At decryption
time, the garbled circuits are evaluated from root to leaf, where the output of
each garbled circuit is used to generate the input labels for the next garbled
circuit along the path. Therefore, if one tries to decrypt a ciphertext intended
for id using a key for id′, the decryption process will succeed up to the node
of divergence between sk and sk′, at which point the skid′ decryptor will not be
able to decode the labels that correspond to the next garbled circuit. Thus, this
process necessarily reveals the common prefix of id and (a known) id′.
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1.1 Our Results

In this work, we present new primitives and techniques showing how to get signif-
icantly more mileage out of the tree-based approach. First and most importantly,
we build on the tree-based approach using new tools that we call blind batch
encryption and blind garbled circuits to construct anonymous IBE schemes. Sec-
ondly, we show that our building blocks can be constructed from assumptions
not previously known to imply IBE at all, in particular, the learning parity
with noise (LPN) assumption with extremely small noise. Finally, we show that
our building blocks can be used to achieve cryptographic capabilities that are
apparently unrelated to IBE, namely leakage resilience and KDM security. We
elaborate on all of these contributions below.

Batch Encryption and New Constructions of IBE. The recent work of Döttling
and Garg [DG17b] show an amplification between notions of identity based
encryption. Namely, they show how to go from any selective IBE scheme to
a fully secure IBE scheme. We notice that their construction can be repur-
posed to do something very different. Namely, we show how to start from an
IBE scheme which only supports polynomially many identities but with short
master public key, and construct a full-fledged IBE scheme. In particular, the
scheme should support T = T (λ) identities with a master public key of size
S = S(λ) = T 1−ε · poly(λ) for some constant ε > 0 and a fixed polynomial
poly; we call this a weakly compact IBE scheme. We remind the reader that
non-compact IBE schemes, namely ones that support T identities and have a
master public key that grows linearly with T , in fact follow quite easily from any
public-key encryption scheme (see, e.g., [DKXY02]).

Weakly compact IBE turns out to be easier to construct using the tech-
niques of [DG17a], and in particular it does not require the full power of their
Chameleon Encryption. We show that it is sufficient to start from a building
block that we call batch encryption. In particular, whereas Chameleon Encryp-
tion is required to have a trapdoor, a batch encryption scheme has no trapdoors.
Indeed, looking ahead, we remark that this feature of requiring no trapdoors is
what enables our IBE construction from the extremely-low-noise LPN assump-
tion. The batch encryption definition takes after the laconic oblivious transfer
primitive presented by Cho, Döttling, Garg, Gupta, Miao and Polychroniadou
[CDG+17] (a definition that preceded Chameleon Encryption).

A batch encryption scheme is a public key encryption scheme in which key
generation is a projection (i.e. the key generation algorithm takes the secret key
as input and outputs a shorter string as the public key). For secret keys of length
n, a batch encryption scheme encrypts an array of n × 2 messages at a time.
At decryption, only one out of each pair of messages is recovered, depending on
the value of the respective secret key bit. We require that we can instantiate
the scheme for any n without increasing the length of the public key. Indeed,
batch encryption is very similar to laconic oblivious transfer [CDG+17] and the
two are essentially existentially equivalent. The formal definition varies slightly
in that laconic OT can more efficiently handle situations where only a subset of
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the n message pairs are encrypted. Another formal difference is that the laconic
OT formulation allows for a randomized receiver message, however since receiver
privacy is not a requirement for this primitive this is not actually needed and
therefore the analogous component in batch encryption is deterministic. The
formulation of batch encryption is more useful for our applications, but our
constructions can be seen as simply constructing laconic OT.

We show that batch encryption implies weakly compact IBE (as defined
above) and that weakly compact IBE can be bootstrapped to a full-fledged IBE
scheme.

Batch Encryption from CDH and Extremely-Low-Noise LPN. Batch encryption
can be constructed from CDH, using the methods of [DG17a]; it can also be con-
structed from the Learning with Errors (LWE) assumption in a straightforward
manner without using lattice trapdoors. Thus we observe that LWE-based IBE
does not require lattice trapdoors, even though they are used by all previous
constructions. We note that the resulting IBE scheme is greatly inefficient, quite
probably much less efficient than a trapdoor based construction, however the
conceptual difference here could be of interest.

We take an additional step forward and show that even the learning par-
ity with noise (LPN) assumption is sufficient to instantiate batch encryption,
although we must rely on LPN with very extreme parameters. The LPN assump-
tion with a constant noise rate implies one-way functions; with a noise rate
of 1/

√
n (where n is the dimension of the LPN secret), it implies public-key

encryption [Ale11]; and with the extremely low noise rate of log2 n/n, it implies
collision-resistant hash functions [BLVW17,YZW+17]. The latter parameter set-
ting is insecure against quasi-polynomial adversaries, but given the state of the
art in algorithms for LPN, presumably secure against polynomial-time adver-
saries. Indeed, it is ill advised to base cryptographic hardness on the gap between
polynomial time adversaries and quasi-polynomial time hardness and we see this
result mainly as proof of concept showing that batch encryption can be based
on structures that were not considered to imply IBE so far.

The Blinding Technique and Anonymous IBE. Our main contribution is a con-
struction of anonymous IBE from the CDH assumption.

To construct anonymous IBE we present techniques that allow us to walk down
the identity-space tree at decryption time blindly. Namely, in a way that does not
reveal to the decryptor whether they are on the correct path until the very end
of the process. This allows us to overcome the aforementioned basic obstacle. We
present a variety of blind primitives that help us in achieving this goal.

The first building block we introduce is blind garbled circuits. Recall that
a standard circuit garbling scheme takes a circuit C as input, and outputs a
garbled version of the circuit ̂C together with pairs of labels labi,b for the input
wires. Given ̂C, labi,xi

, the value C(x) can be computed. For security, there
is a simulator that takes y = C(x) and produces a garbled circuit and a set
of input labels that are indistinguishable from the original. We augment this
definition with a blindness property, requiring that the simulated garbled circuit
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and labels are completely uniform when starting with a completely uniform y
that is unknown to the distinguisher (indeed, the latter condition is necessary
since an attempt to evaluate the simulated garbled circuit should output y). We
show that blind garbled circuits can be constructed by properly instantiating
the “point-and-permute” construction [BMR90,Rog91], based on any one way
function. Interestingly, as far as we know, the point-and-permute construction
has been used to achieve more efficient garbled circuits, but has never been used
to achieve stronger security properties.

We then introduce blind batch encryption, which is the blind version of the
aforementioned batch encryption primitive. The use of batch encryption in IBE
constructions is as a way to encrypt labels for a garbled circuit so that only
one label per input wire can be decrypted (i.e. the one corresponding to the
batch encryption secret key). Blind batch encryption is a “blindness preserving”
counterpart for blind garbled circuits as follows. We require that if a random
message is encrypted using a blind batch encryption scheme, then the resulting
ciphertext is completely random as well.1 This combines very naturally with
a blind garbling scheme: if we batch encrypt labels to a blind garbled circuit
with a random output, then by simulation security this is indistinguishable from
encrypting random labels that are independent of the garbled circuit. Therefore,
we are guaranteed that the batch ciphertext itself is random as well. At a very
high level, this will allow us to propagate the randomness (blindness) property
along the leaf-root path in the tree, and avoid revealing any information via
partial decryption.

We show that blind batch encryption can be constructed based on CDH by
introducing a modification to the CDH based Chameleon Encryption construc-
tion from [DG17a]. Unfortunately, our construction based on extremely low noise
LPN is not blind.

We apply these building blocks to anonymize the aforementioned IBE con-
struction from batch encryption. We present a blindness property for IBE that is
analogous to the one for batch encryption, requiring that an encryption of ran-
dom message is indistinguishable from random even to a user who is permitted
to decrypt it. We show that this notion implies anonymous IBE, and further-
more, the construction of full-fledged IBE from a weakly compact scheme, and
a construction of the weakly compact scheme from a batch encryption scheme
both preserve blindness (if we use blind garbled circuits). In fact, formally, to
avoid redundancy we only present the reduction in the blind setting, and the
non-blind variant follows as a special case.

We find it intriguing that even though we only require anonymous IBE at
the end, we have to go through the (apparently stronger) primitive of blind IBE.
Roughly speaking, the difference is that anonymous IBE only requires hiding of
the identities in settings where the adversary cannot decrypt (namely, he only
obtains secret keys for identities id different from either of the challenge identi-
ties id0 and id1) while blind IBE requires hiding of the identities even in settings
where the adversary can decrypt. Morally, we think of this as the difference

1 We actually allow a slight relaxation of this condition.
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between weak attribute-hiding and strong attribute-hiding in predicate encryp-
tion (although the details are somewhat different). We also note that weakly
compact anonymous IBE can be constructed generically from any weakly com-
pact IBE scheme. Thus, had we been able to bootstrap from a weakly compact
anonymous IBE scheme into a full-fledged anonymous IBE, we would have a
generic construction of anonymous IBE scheme from any IBE scheme.

Batch Encryption Implies Leakage Resilience and KDM Security. We show
that the utility of batch encryption schemes go beyond IBE, thus expand-
ing [CDG+17] who showed a variety of applications of laconic OT, mostly
in the context of multi-party computation. We show that batch encryption
naturally gives rise to a public key encryption scheme with desirable prop-
erties such as resilience to high rate (1 − o(1)) key leakage [AGV09,NS12]
and security for key dependent messages [BRS02] (KDM, also known as cir-
cular security). This allows us to present constructions from assumptions such
as CDH, Factoring and extremely-low-noise LPN that were not known before
[AGV09,NS12,BHHO08,ACPS09,BG10,HLWW16]. Note that from [CDG+17]
it was not even clear that the (nearly) equivalent notion of laconic OT even
implies plain public key encryption (without assuming “receiver privacy”; with
receiver privacy, we know that any 2 message OT implies PKE). This further
strengthens our impression that batch encryption is a notion worthy of further
exploration.

The basic idea is quite straightforward. Recall that a batch encryption scheme
encrypts an array of n × 2 bits, and decryption only recovers one out of two
pairs. Therefore, if the secret key is x ∈ {0, 1}n and the encrypted message
is M ∈ {0, 1}n×2, then the decrypted message is equal to m =

∑

i(Mi,0(1 ⊕
xi) ⊕ Mi,1xi) =

∑

i Mi,0 ⊕ ∑

i(Mi,1 ⊕ Mi,0)xi. Denote α0 =
∑

i Mi,0, αi =
Mi,1 ⊕ Mi,0. Note that it is sufficient that one out of each pair Mi,0,Mi,1 is
random to make all {αi}i>0 completely random, this property will be useful for
us. To encrypt, we will n-out-of-n secret share our message m =

∑

i μi and set
Mi,0 = Mi,1 = μi. Decryption follows by decrypting the batch ciphertext and
reconstructing m. For security, we notice that the batch security means that we
can convert one out of each pair Mi,0,Mi,1 to random (this will be unnoticed even
to a distinguisher who has the key x). At this point, we recall that x is in fact
information theoretically unknown to the adversary who only sees the projected
public key (recall that the projection key generation function is shrinking). Thus
the value

∑

i αixi extracts from the remaining entropy in x and is statistically
close to uniform (indeed one has to prove that there is no additional usable
information in the ciphertext other than the output message m). This argument
naturally extends to leakage resilience, since we can allow additional leakage on x
so long as sufficient information remains to allow for extraction. It appears that
security against computationally (sub-exponentially) hard to invert unbounded
length leakage (“auxiliary input resilience” [DGK+10]) should follow in a similar
manner, however we do not provide a proof.

For KDM security, we notice that for any linear function of x of the form
α0 ⊕ ∑

i αixi the above shows how to simulate a ciphertext that decrypts to
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this message (in fact, how to sample a random such ciphertext). Indeed this
ciphertext is not honestly generated but we can show that it is indistinguish-
able from one. This is the basis for KDM security. We recall that as shown in
[BHHI10,App11], KDM security with respect to linear functions can be ampli-
fied to KDM security for bounded polynomial functions of the key. Interestingly,
this amplification approach also involves batch encrypting labels for a garbled
circuit. For lack of space, we refer the reader to our full version [BLSV17] for
the details on the leakage-resilience and KDM security constructions.

1.2 Concurrent Work

In concurrent and independent work, Döttling, Garg, Hajiabadi, and Masny
[DGHM18] construct (non-anonymous) IBE from a subexponential assumption
on constant-noise LPN (similar in spirit to our assumption). In another concur-
rent and independent work, Kitagawa and Tanaka [KT18] construct KDM-secure
IBE fromany IBEalongwith anyKDM-secure secret key encryption scheme. Since
we construct both IBE and KDM-secure PKE from Batch Encryption, combining
[KT18] with our work yields KDM-secure IBE from Batch Encryption (and hence
constructions from CDH/Factoring and from log2(n)/n-noise LPN).

1.3 Our Techniques

The rest of the paper is organized as follows. In Sect. 3, we define the notion of
(blind) batch encryption and construct it from the CDH assumption. We also
provide a construction of the (non-blind) batch encryption from the extremely
low noise LPN assumption. We then introduce the notion of blind garbled circuits
and construct it in Sect. 4. Then, in Sect. 5, we show how to use (blind) batch
encryption to construct a weakly compact (blind) IBE scheme. In Sect. 6, we
bootstrap the weakly compact (blind) IBE scheme into a full-fledged (blind)
IBE scheme. The applications to leakage resilience and KDM security, as well
as many details in the following sections, are deferred to the full version of our
paper [BLSV17].

We first provide an overview of the last step of our anonymous IBE construc-
tion, namely our bootstrapping theorem for blind IBE, and then the construction
of weakly compact IBE from batch encryption.

Bootstrapping Blind IBE. We start with bootstrapping a regular IBE scheme,
and then describe the additional techniques required to handle blindness.

Suppose we have a blind IBE scheme WIBE that supports T = T (λ) iden-
tities and has a master public key whose size is S = S(λ) = T 1−ε · p(λ) for
some absolute constant ε > 0 and a fixed polynomial p. To keep our exposi-
tion simple, assume that the ciphertexts in this scheme are truly pseudorandom.
We remark that without the restriction on the master public key length, there
are generic ways of constructing such schemes from any public-key encryption
scheme, resulting in master public key of length O(T · λ); see, e.g., [DKXY02].
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The key leverage we have in WIBE is that the master public key grows sublin-
early with the number of identities the scheme supports.

We will show how to construct another (blind) IBE scheme WIBE ′ that
supports 2T identities without growing the master public key at all. This will
not be enough by itself to prove the full bootstrapping theorem by induction
because the ciphertext and secret key sizes grow significantly in the transforma-
tion. Nevertheless, all of the necessary ideas for the full bootstrapping theorem
are in this toy example already.

We start by picking T to be sufficiently large so that the size of the master
public key T 1−ε ·p(λ) is at most T/4. The master public key of WIBE ′ is a single
master public key of WIBE ; we will denote it by mpk(ε) and associate it with
the root of a depth-2 tree with branching factor 2 in the first level and T in the
second. We will also pick two other master public keys mpk(0) and mpk(1), but
will not publish it as part of the WIBE ′ master public key. The master secret
key in WIBE ′ will, however, include msk(ε) as well as mpk(i),msk(i).

The two questions we address next is (a) how to encrypt a message m for an
identity id||id′ where id ∈ {0, 1} and id′ ∈ {0, . . . , T −1} and (b) how to generate
identity secret keys.

Let us address the question of secret keys first. The secret key for an identity
id||id′ where id ∈ {0, 1} and id′ ∈ {0, . . . , T − 1} will include as part of it sk

(id)
id′ ,

namely the secret key for the identity id′ generated with respect to the master
public key mpk(id). Thus, it makes sense to encrypt a message m under the
identity id||id′ by encrypting it with respect to the identity id′ under the master
public key mpk(id). If the encryptor could do this, decryption indeed works and
we are done! However, the big problem here is that the encryptor does not know
mpk(0) or mpk(1). How can the encryptor generate a ciphertext without knowing
the master public key?

It is here that we use the technique of deferred encryption similarly to
[GKW16] and the aforementioned [DG17a]. That is, instead of having to gen-
erate an encryption of m under an unknown master public key, the encryptor
simply constructs a circuit C[m, id′] which has the message m and the identity
id′ hardcoded. The circuit C[m, id′], on input an mpk, produces an encryption of
m under mpk with identity id′. (The circuit also has the encryption randomness
r hardcoded).

The encryptor now does two things. It first garbles this circuit to produce
̂C, the garbled circuit, together with 2S labels labi,b for i ∈ [S] and b ∈ {0, 1}.
It then encrypts each label labi,b using the identity (id, i, b) under the master
public key mpk(ε). It is here that we use compactness of WIBE in a crucial way:
since WIBE can support T > 4S identities, it can indeed be used to encrypt
these labels.

The identity secret key for id||id′ now contains two things. As before, it
contains the secret key for the identity id′ under the master public key mpk(id).
It also contains the secret keys for the S identities (id, i,mpk(id)[i]) under the
master public key mpk(ε).
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Decryption proceeds by first using the secret keys for the S identities to unlock
half the labels for the garbled circuit ̂C, namely, the labels corresponding to the
input mpk(id). It then decodes the garbled circuit to produce an encryption of m
with identity id′ under the master public key mpk(id). The first part of the secret
key is now precisely what is necessary to decrypt and obtain the message m.

We first argue semantic security (IND-ID-CPA security), then show the barri-
ers to achieving blindness/anonymity and how our new techniques overcome them.
Let the challenge identity be id||id′. A ciphertext of a message m under id||id′

contains the garbled circuit ̂C and encryptions of the labels Li,b under identities
(id, i, b) with respect to the master public key mpk(ε). Notice first that secret keys
for identities that begin with the bit (1 − id) are completely useless in unlocking
any of the labels of the garbled circuit. Only secret keys for identities that begin
with the bit id are useful. Even they can only ever unlock half the labels of the gar-
bled circuit. Indeed, this is crucial since otherwise we will not be able to invoke the
security of the garbled circuit at all!

The secret keys for identities that begin with the (matching) bit id unlock the
garbled labels corresponding to the input mpk(id). One now invokes the security of
the garbled circuit which says that the only thing revealed by these labels together
with the garbled circuit is the encryption of m under the identity id′ generated with
the master public key mpk(id). Now, since the adversary never obtains the secret
key for the challenge identity, she never gets the secret key for id′ under mpk(id).
Thus, the semantic security of WIBE tells us that the message m remains hidden.

As described in the introduction, this construction does not lead to an anony-
mous IBE scheme. Indeed, given a ciphertext with respect to the identity id1||id′

1

and a secret key for id2||id′
2 �= id1||id′

1, one can easily tell if id1 = id2 or not, simply
by seeing if the first decryption step succeeds. Worse, it is unclear if the anonymity
of the underlying WIBE scheme helps here at all. If id1 = id2, the secret keys are
authorized to decrypt half the encrypted labels (“first level ciphertexts”), and if
id1 �= id2, the secret keys do not decrypt any of them. Thus, it seems at first glance
that we are doomed: one can seemingly always recover the first bit of the identity
in any tree-based scheme.

Our key observation is that even in the “partly-authorized case”, the cipher-
texts are encryptions of fresh random labels. (In reality, these labels do appear
again in the garbled circuits; in the proof, this is handled by doing the hybrids in
the reverse order from the current presentation where pseudorandomness at the
leaves comes from the adversary not having the final secret key corresponding to
the target identity.) Thus, if the WIBE scheme is blind, the adversary can still not
tell the difference between whether she had an authorized key or not. In both cases,
the output of the decryption is a bunch of uniformly random strings! Our troubles,
unfortunately, do not stop there. The next line of defense, the garbled circuit, could
also help the adversary distinguish whether she obtained the right labels in the first
step or just random strings. Blindness again comes to the rescue: this time, we use
our blind garbled circuits in conjunction with the fact that the output of the circuit
we are garbling is actually pseudorandom.

This concludes a sketch of our toy construction and its security proof.
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Of course, there was no reason a-priori to have only one level of garbled circuits.
One can garble the “inner WIBE” encryptions and do so for every level in the tree.
The inputs to each such garbled circuit is a single master public key, so the input
labels to this new garbled circuit will be no larger than the previous level’s input
labels. We can thus build an IBE scheme corresponding to a tree of any poly(λ)
depth, allowing us to support exponentially many identities: a full IBE scheme. Of
course, we cannot generate exponentially many WIBE master public keys (one for
each node of the tree), but we can implicitly generate them using a PRF.

For full details on our bootstrapping theorem, see Sect. 6.

From Batch Encryption to Weakly Compact IBE. We now provide a high level
overview of how to construct weakly compact IBE from batch encryption. For-
mally, we construct a scheme that supports any polynomial number T of iden-
tities with public key size λ. We focus on the vanilla (non-blind) variant as the
blind one follows via a similar construction.Wenote that batch encryption schemes
go hand-in-hand with garbled circuits (a connection that is extensively used in
[CDG+17,DG17a]). Consider a batch encryption scheme with secret key x of
length n � λ and public key length λ. Then we can encrypt an array of n × 2 ele-
ments, specifically we can encrypt labels for an n-input garbled circuit. The holder
of the secret key will be able to evaluate said garbled circuit on the labels that cor-
respond to his secret key. In other words, batch encryption allows us to specify a
circuit C : {0, 1}n → {0, 1}m and generate a ciphertext that will reveal only C(x),
even to an adversary that holds the secret key.

Recall that the only requirement we want from the resulting IBE is short mas-
ter public key. All other parameters can depend polynomially on the size of the
identity space. We will therefore generate a sequence of T key pairs for a standard
public key encryption scheme (pke.pk1, pke.sk1), . . . , (pke.pkT , pke.skT ). For sim-
plicity assume |pke.pki| = λ. Thenwe instantiate the batch encryption schemewith
n = T ·λ and generate a batch public key, a projection ofx = pke.pk1‖ · · · ‖pke.pkT .
The batch public key will serve as mpk of the weakly compact IBE scheme, and
indeed its length is λ, independent of T .

To encrypt a ciphertext to target identity id ∈ [T ], we generate a garbled circuit
that expects as input a sequence of T public keys, and takes the id-th of them and
uses it to encrypt the message. The IBE secret key for identity id will contain the
entire sequence x = pke.pk1‖ · · · ‖pke.pkT , indeed in this case the batch encryp-
tion secret key is not secret at all! In addition, the IBE secret key for id will contain
pke.skid. Given a ciphertext, a decryptor will first use x to evaluate the garbled cir-
cuit and recover C(x), which in this case is just a public-key encryption ciphertext
with respect to pke.pkid. The next step is to just use pke.skid to decrypt this cipher-
text and recover the message.

Security follows from the security of batch encryption (which conveniently
applies also when the batch secret key x is known) and the security of the public
key encryption scheme.
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2 Preliminaries andDefinitions

2.1 (Anonymous) Identity-Based Encryption

Definition 1 (Identity Based Encryption). An identity based encryption
(IBE) scheme consists of five PPT algorithms (Params,Setup,Keygen,Enc,Dec)
with the following syntax.

1. Params(1λ, 1t) takes as input the security parameter 1λ and an identity length 1t.
It returns public parameters pp (which can be reused to generate multiple master
public key/master secret key pairs).

2. Setup(pp) takes as input public parameters pp and returns a master public key
mpk and master secret key msk.

3. Keygen(pp,msk, id) takes as input public parameters pp and themaster secret key
msk. It outputs a secret key skid associated to id.

4. Enc(pp,mpk, id,m) encrypts a message m to a specified identity id. It outputs a
ciphertext ct.

5. Dec(pp, sk, ct) decrypts a ciphertext ct with secret key sk, outputting a plaintext
message m′.

We require that an IBE scheme satisfy the following two properties.

– Correctness: with probability 1 over the randomness of (Params,Setup,
Keygen,Enc,Dec), we have that Dec(pp, skid,Enc(pp,mpk, id,m)) = m where
(mpk, msk) ← Setup(pp) and skid ← Keygen(msk, id).

– IND-ID-CPA Security: a PPT adversary A cannot win the following security
game with probability greater than 1

2 + negl(λ):
1. pp ← Params(1λ, 1t)
2. (mpk,msk) ← Setup(pp)
3. (id∗,m0,m1, st) ← AKeygen(pp,msk,·)(mpk)
4. b

$← {0, 1}
5. ct ← Enc(pp,mpk, id∗,mb)
6. b′ ← AKeygen(pp,msk,·)(st, ct)
7. A wins if and only if b′ = b and id∗ was never queried by A to its Keygen

oracle.

Definition 2 (Anonymous IBE).An anonymous IBE scheme also has the syn-
tax (Params, Setup, Keygen, Enc, Dec) of an IBE scheme. It satisfies the same cor-
rectness property as IBE, and has the following stronger notion of security:

– IND-ANON-ID-CPA Security: A PPT adversary A cannot with the following
security game with probability greater than 1

2 + negl(λ):
1. pp ← Params(1λ, 1t)
2. (mpk,msk) ← Setup(pp)
3. (id0, id1,m0,m1, st) ← AKeygen(pp,msk,·)(mpk)
4. b

$← {0, 1}
5. ct ← Enc(pp,mpk, idb,mb)
6. b′ ← AKeygen(pp,msk,·)(st, ct)
7. A wins if and only if b′ = b and id0, id1 were never queried byA to itsKeygen

oracle.
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2.2 Computational Diffie-Hellman (CDH)

Let g be an element of some group G. We say that q is a ε-randomizer for g if the
statistical distance between ga for a ← Zq and h ← 〈g〉 is at most ε. We note that
any q ≥ ord(g) · 
1/ε� is an ε-randomizer, so it is sufficient to have an upper bound
on the order of g in order to compute a randomizer for any ε.

A (possibly randomized) group sampler is a ppt algorithm G that on input the
security parameter outputs a tuple (G, g, q) ← G(1λ) which defines a G by provid-
ing a poly(λ)-bit representation for group elements, and a polynomial time algo-
rithm for computing the group operation and inversion (and thus also exponenti-
ation), together with an element g ∈ G and a negl(λ)-randomizer q for 〈g〉.

The Computational Diffie-Hellman (CDH) assumption with respect to G,
denoted CDHG , is that for every ppt algorithm A it holds that

AdvCDHG [A](λ) = Pr
(G,g,q)←G(1λ)

a1,a2←Zq

[A(1λ, (G, g, q), ga1 , ga2) = ga1a2 ] = negl(λ).

We sometimes omit the indication of G when it is clear from the context.
We note that there exists a randomized group sampler such that the hard-

ness of factoring Blum integers reduces to the hardness of the CDH problem
[Shm85,McC88,BBR99].

2.3 Learning Parity with Noise (LPN)

For alln ∈ N, rowvector s ∈ {0, 1}n and real value ε ∈ [0, 1/2], define a randomized
oracle As,ε to be s.t. for every call to As,ε, the oracle samples a ← {0, 1}n, e ←
Berε (where Ber is the Bernoulli distribution), and outputs (a, s · a + e) where
arithmetics are over the binary field. Note that As,1/2 outputs completely uniform
entries for every call.

The Learning Parity with Noise assumption LPNn,ε, for a polynomial function
n : N → N and a function ε : N → [0, 1/2] is that for every ppt oracle algorithm A
it holds that

AdvLPNn,ε
[A](λ) =

∣

∣

∣

∣

Pr
s←{0,1}n

[AAs,ε(1λ)] − Pr[AA0,1/2(1λ)]
∣

∣

∣

∣

= negl(λ),

where n = n(λ), ε = ε(λ).
We note that if ε = log n/n then LPN is solvable in polynomial time, but no

polynomial time algorithm is known for ε = Ω(log2 n/n).

The Collision Resistant Hash Family of [BLVW17]. It is shown in [BLVW17] how
to create Collision Resistant Hash functions based on the hardness of LPNn,ε for
any polynomial n, ε = Ω(log2 n/n). Since this construction is the basis for our
LPN-based batch encryption construction, let us elaborate a little on it here.

The key to the hash function is a random matrix A ∈ {0, 1}n×(2n2/ log n). To
apply the hash function on an input x ∈ {0, 1}2n, they first preprocess it as fol-
lows. Interpret x as a collection of 2n/ log n blocks, each containing log n bits.
Then interpret each block as a number in {1, . . . , n} using the usual mapping,
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so x ∈ [n]2n/ log n. Then define a vector x̂ ∈ {0, 1}2n2/ log n as a concatenation of
2n/ log n blocks of n-bits, such that each block is a {0, 1}n indicator vector of the
respective entry in x (i.e. have a single bit equal 1 in the location corresponding
to the value of the entry in x). Finally output Ax̂. This is shrinking from 2n to n
bits, and CRH follows since a collision implies a low norm vector v s.t. Av = 0.
The argument of security for our batch encryption scheme is similar to their proof
of security of CRH, however we do not use it as black box.

2.4 One-Time Encryption Using Goldreich-Levin Hard-Core Bit

We show the following one time encryption scheme based on the Goldreich-Levin
hard-core bit [GL89].

Definition 3. Define gl-enc(x, μ) as a randomized function that on input x ∈
{0, 1}�, μ ∈ {0, 1} samples α ∈ {0, 1}� and outputs (α, 〈α, x〉 ⊕ μ), where the inner
product is over the binary field. Define gl-dec(x, (α, σ)) be the function that takes
x ∈ {0, 1}� and (α, σ) ∈ {0, 1}�+1 and outputs σ ⊕ 〈α, x〉.

By definition, for all x, μ it holds that gl-dec(x, gl-enc(x, μ)) = μ with proba-
bility 1. Furthermore, the Goldreich-Levin Theorem asserts that given an ensem-
ble of joint distributions {(Xλ, Zλ)}λ s.t. for any polynomial time algorithm A,
Pr(x,z)←(X,Z),A[A(1λ, z) = x] = negl(λ), then (z, gl-enc(x, μ)) is computationally
indistinguishable from (z, U�+1) for any μ (possibly dependent on z). We further-
more note that if μ is random and unknown to the distinguisher then gl-enc(x, μ)
is uniformly random regardless of x.

3 Blind Batch Encryption and Instantiations

3.1 Defining Batch Encryption

A Batch Encryption scheme is an encryption scheme whose key generation is a pro-
jection function (or a hash function) taking as input a string x to be used as secret
key, and outputting a hash value h to be used as public key. The batch encryption
scheme is parameterized by a block size B. The aforementioned string x should be
parsed as x ∈ [B]n. Batch encryption uses the public key h to encrypt an n × B
matrix M such that a decryptor with secret key x can obtain exactly Mi,xi

for all
i ∈ [n]; that is, exactly one matrix element from each row of M. Note that when
B = 2 we can think of x as a bit vector x ∈ {0, 1}n with the natural translation
between {0, 1} and {1, 2}.

In more detail, the syntax of the batch encryption scheme is as follows, where
we think of the function B = B(λ, n) as a global parameter of the construction.

1. Setup(1λ, 1n). Takes as input the security parameter λ and key length n, and
outputs a common reference string crs.

2. Gen(crs, x). Using the common reference string, project the secret key x ∈ [B]n

to a public key h.
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3. Enc(crs, h,M). Takes as input a common reference string crs, the public key
h, and a matrix M ∈ {0, 1}n×B and outputs a ciphertext ct. For the purpose
of defining the blinding property below, the ciphertext ct can be written as a
concatenation of two parts ct = (subct1, subct2).

4. Dec(crs, x, ct). Given a ciphertext ct, output a message vector m.

Additionally, a batch encryption scheme supports two optional functions.

5. SingleEnc(crs, h, i,m). Takes as input a common reference string crs, the public
key h, an index i ∈ [n], and a message m ∈ {0, 1}B and outputs a ciphertext
ct. As above, the ciphertext ct can be written as a concatenation of two parts
ct = (subct1, subct2) for blindness purposes to be defined below.

6. SingleDec(crs, x, i, cti). Takes as input a common reference string crs, the secret
key x, an index i ∈ [n], and a ciphertext cti and outputs a message m ∈ {0, 1}.

Whenever SingleEnc and SingleDec are defined, we require that Enc(crs, h,M) =
(cti)i∈[n] for cti ← SingleEnc(crs, h, i,mi), where mi denotes the ith row of M.
Similarly, we require that for ct = (cti)i∈[n], the decryption algorithm computes
mi ← SingleDec(crs, x, i, cti) for all i ∈ [n] and outputs their concatenation.

Correctness of Batch Encryption. We define two notions of correctness of a batch
encryption scheme, the first stronger than the second.

Definition 4 (Batch Correctness). Letting crs = Setup(1λ, 1n), then for all
x,M, it holds that taking h = Gen(crs, x), ct = Enc(crs, h,M), m′ = Dec(crs,
x, ct), it holds that m′

i = Mi,xi
for all i with probability at least 1 − 2λ over the

randomness of Enc.

Definition 5 (δ-Pointwise-Correctness for SingleEnc). Letting crs =
Setup(1λ, 1n), then for all x, i,m, taking h = Gen(crs, x), cti = SingleEnc
(crs, h, i,m), m′ = SingleDec(crs, x, i, cti), it holds that m′ = mxi

with probabil-
ity at least 1/2 + δ over the randomness of SingleEnc.

Note that 1/poly(λ)-pointwise-correctness implies batch correctness via
repetition.

Succinctness of Batch Encryption

Definition 6. A batch encryption scheme is α-succinct if for crs = Setup(1λ, 1n)
and h = Gen(crs, x) for some x ∈ [B]n, it holds that |h| ≤ αn log B.

Definition 7. A batch encryption scheme is fully succinct if for crs =
Setup(1λ, 1n) and h = Gen(crs, x) for some x ∈ [B]n, it holds that |h| ≤ p(λ)
for some fixed polynomial p(λ).
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Semantic Security of Batch Encryption

Definition 8 (BatchEncryptionSecurity).The security of a batch encryption
scheme is defined using the following game between a challenger and adversary.

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n to the challenger.
2. The challenger generates crs = Setup(1λ, 1n) and sends crs to the adversary.
3. The adversary generates M(0),M(1) ∈ {0, 1}n×B such that M(0)

i,xi
= M(1)

i,xi
for

all i ∈ [n] and sends them to the challenger.
4. The challenger computes h = Gen(crs, x) and encrypts ct = Enc(crs, h,M (β))

for a random bit β ∈ {0, 1}. It sends ct to the adversary.
5. The adversary outputs a bit β′ and wins if β′ = β.

The batch encryption scheme is secure if no polynomial time adversary can win the
above game with probability ≥1/2 + 1/poly(λ).

By a standard hybrid argument, the above definition is implied by the following
security property for SingleEnc.

Definition 9 (SingleEncSecurity).We say that a batch encryption scheme satis-
fies SingleEnc-security if no polynomial time adversary can win the following game
with probability ≥1/2 + 1/poly(λ):

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n, i ∈ [n] to the challenger.
2. The challenger generates crs = Setup(1λ, 1n) and sends crs to the adversary.
3. The adversary generates m(0),m(1) ∈ {0, 1}B s.t. m(0)

xi = m(1)
xi and sends them

to the challenger.
4. The challenger computes h = Gen(crs, x) and encrypts ct = SingleEnc

(crs, h, i,m(β)) for a random bit β ∈ {0, 1}. It sends ct to the adversary.
5. The adversary outputs a bit β′ and it wins if β′ = β.

Relation to Chameleon Encryption and Laconic Oblivious Transfer. For readers
familiar with the notions of chameleon encryption [DG17a] and laconic oblivious
transfer [CDG+17], we compare the notion of batch encryption to these objects.

First, we note that the notion of batch encryption is a significant weakening of
the notion of a chameleon encryption scheme defined in [DG17a] in the following
two ways. Most significantly, we do not require a trapdoor which supports finding
collisions (namely, the “chameleon” part of chameleon encryption); this is crucial
because our construction from LPN does not seem to have an associated trapdoor.
Nevertheless, we show that batch encryption is sufficient to construct IBE. As well,
our security definition is selective in the input x rather than adaptive (that is, the
adversary picks x before seeing the crs), which means that batch encryption does
not obviously imply collision resistant hash functions (CRHF), but rather only
target collision-resistance. In contrast, the hash function implicit in chameleon
encryption is a CRHF).

On the other hand, batch encryption is essentially equivalent to laconic obliv-
ious transfer as defined in [CDG+17], as long as you restrict the first message of



550 Z. Brakerski et al.

the OT protocol to be a deterministic function of the crs and database D (however,
since receiver privacy is not required for laconic OT, any laconic OT scheme can
be modified to have this property). Our transformations show that batch encryp-
tion (or laconic OT) is the right primitive from which to bootstrap and obtain IBE.
Additionally, our new blindness property also has an interpretation in the language
of laconic OT.

3.2 Defining Blind Batch Encryption

Next, we define the additional blindness property of a batch encryption scheme,
which asserts that when encrypting a random message that is not known to the
distinguisher, the ciphertext is “essentially” indistinguishable from uniform. More
specifically, we allow a part of the ciphertext to not be indistinguishable from uni-
form so long as it does not reveal any information on h or on the encrypted message.

Definition 10 (Blindness). Let BBENC = (Setup,Gen,Enc,Dec) be a batch
encryption scheme. Furthermore, suppose that

Enc(crs, h,M; r) = E1(crs, h,M; r)||E2(crs, h,M; r)

is some decomposition of Enc(·) into two parts. We say that BBENC is blind if
(1) the function E1(crs, h,M; r) = E1(crs; r) does not depend on the public key
h or messageM, and (2) no polynomial time adversary can win the following game
with probability ≥ 1

2 + 1/poly(λ).

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n to the challenger.
2. The challenger generates crs = Setup(1λ, 1n) and computes h = Gen(crs, x). It

samples a random β ← {0, 1}, a random message matrix M ← {0, 1}n×B, and
encrypts (subct1, subct2) ← Enc(crs, h,M). It then generates ct as follows.
– If β = 0 then ct = (subct1, subct2).
– If β = 1 then sample a random bit string subct′2 of the same length as subct2.

Set ct = (subct1, subct′2).
The challenger sends crs, ct to the adversary (note thatM is not sent to the adver-
sary).

3. The adversary outputs a bit β′ and it wins if β′ = β.

Again, the above definition of blindness is implied by an analogous blindness
property for SingleEnc via a standard hybrid argument. If BBENC is a blind batch
encryption scheme, we call Enc = E1||E2 the blind decomposition of Enc and
adopt the notation that outputs of E1 are denoted by subct1 and outputs of E2

are denoted by subct2.

From Block Size B to Block Size 2. Although our construction of batch encryption
itself from LPN constructs a scheme with large block size, the lemma below shows
that we can work with block size 2, without loss of generality. The proof of the
lemma is in the full version [BLSV17].

Lemma 1. Suppose that there is an α-succinct (blind) batch encryption scheme
with block sizeB. Then, there is anα-succinct (blind) batch encryption scheme with
block size 2.
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From α-Succinct to Fully Succinct (Blind) Batch Encryption. We show that fully
succinct (blind) batch encryption can be built from 1/2-succinct (blind) batch
encryption. The construction and proof are similar to the laconic OT bootstrap-
ping theorem of Cho et al. [CDG+17]. However, to preserve blindness, we make
use of blind garbled circuits (defined in Sect. 4), similar to its use in Sects. 5 and 6.
We state the lemma below and provide the proof in the full version [BLSV17].

Lemma 2. Suppose that there is a 1/2-succinct (blind) batch encryption scheme
with block size B = 2 and a (blind) garbling scheme. Then, there is a fully succinct
(blind) batch encryption scheme with block size B = 2.

3.3 Blind Batch Encryption from CDH

In this section, we construct blind batch encryption from the CDH assumption.
The scheme has perfect correctness, is fully succinct, and has block size B = 2. This
construction is inspired by the Chameleon Encryption construction in [DG17a] but
does not require a trapdoor. Let G be a group sampler as described in Sect. 2.2.
Recall the Goldreich-Levin encoding/decoding procedure as per Sect. 2.4. The
blind batch encryption scheme is as follows.

1. CDH-BE.Setup(1λ, 1n). Sample (G, g, q) ← G(1λ). Sample αi,b ← Zq for i ∈ [n],
b ∈ {0, 1}. Define gi,b = gαi,b . Output crs = ((G, g, q), {gi,b}i,b).

2. CDH-BE.Gen(crs, x). Output h =
∏

i gi,xi
.

3. CDH-BE.SingleEnc(crs, h, i,m). Sample r ← Zq. For all j �= i and for all
b ∈ {0, 1} compute: ĝj,b = gr

j,b. Compute ĝi,b = hrg−r
i,b , and let μi,b =

gl-enc(ĝi,b,mb). Output

ct =
(

subct1 = {ĝj,b}j �=i,b∈{0,1}, subct2 = {μi,b}b∈{0,1}
)

.

4. CDH-BE.SingleDec(crs, x, i, ct). Given ct =
({ĝj,b}j �=i,b∈{0,1}, {μi,b}b∈{0,1}

)

.
Compute ĝi,xi

=
∏

j �=i = ĝi,xi
. Output m = gl-dec(ĝi,xi

, μi,xi
).

Correctness follows immediately by definition. Moreover, we note that this
scheme is fully succinct (see Definition 7; note that h ∈ G has a fixed poly(λ) size
representation by assumption).

Lemma 3. The scheme CDH-BE is secure under the CDHG assumption.

Proof. Consider the following game between a challenger and an adversary.

1. The adversary takes 1λ as input, and sends 1n, x ∈ {0, 1}n, i ∈ [n], to the chal-
lenger.

2. The challenger generates crs = CDH-BE.Setup(1λ, 1n), i.e. a group (G, g, q) and
collection of gj,b. It computes h = CDH-BE.Gen(x). It then samples r ← Zq and
computes ĝj,b = gr

j,b for all j �= i, b ∈ {0, 1}, as well as ĝi,xi
= hrg−r

i,xi
. It sends

crs and the computed ĝ values to the adversary.
3. The adversary returns g′.
4. The challenger declares that the adversary wins if g′ = hrg−r

i,1−xi
.
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We will prove that all polynomial time adversaries have negligible advantage in
the above game. By the Goldreich-Levin theorem (see Sect. 2.4), this implies the
security of the scheme as per Definition 9.

To see that the above holds, an adversary against the above game, and consider
an input to the CDHG problem consisting of (G, g, q), ga1 , ga2 . We will show how
to produce a challenger for the above game, so that when the adversary succeeds,
the value ga1a2 can be computed. The challenger, upon receiving 1n, x, i will do the
following. Generate αj,b ← Zq for all j �= i, b ∈ {0, 1}, and also αi,1−xi

. Concep-
tually, we will associate a1 with the value r to be generated by the challenger, and
a2 with the difference (αi,xi

− αi,1−xi
).2

Following this intuition, the challenger will generate gi,b = gαj,b for all j �= i,
b ∈ {0, 1} as well as for (j, b) = (i, 1 − xi). Then generate gi,xi

= gi,1−xi
· ga2 .

Generate ĝj,b = (ga1)αj,b for all j �= i, b ∈ {0, 1}. We are left with generating
ĝi,xi

= hrg−r
i,xi

=
∏

j �=i gr
j,xj

=
∏

j �=i ĝj,xj
, which can be derived from previously

computed values. Note that the computed values are within negligible statistical
distance of their distribution in the real experiment. If the adversary manages to
compute g′ = hrg−r

i,1−xi
=

(

∏

j �=i ĝj,xj

)

· (gi,xi
/gi,1−xi

)r =
(

∏

j �=i ĝj,xj

)

· ga1a2 ,
then the product

∏

j �=i ĝj,xj
canbe canceled out and a solution toCDHG is achieved.

Lemma 4. The scheme CDH-BE is blind under the CDHG assumption.

Proof. Consider the game in Definition 10. We first of all note that in our scheme,
subct1 is independent of h,m and therefore the marginal distribution of subct1 is
identical regardless of the value of β. From the properties of gl-enc (see Sect. 2.4),
if m is uniform then the μi,b values are uniformly distributed. It follows that any
adversary will have exactly 1/2 probability to win the blindness game.

3.4 Batch Encryption from LPN

In this section we present a candidate construction from LPN with noise rate
Ω(log2(n)/n). Specifically, we will show an LPN based construction which has δ-
pointwise correctness for δ = 1/poly(n), is 1

2 -succinct, and has block size B = n.
Our construction is based on a collision resistant hash function construction of
[BLVW17]. See Sect. 2.3 for details about the assumption and the CRH candidate.
Unfortunately, we are unable to prove blindness for this candidate. As explained
above, the δ point-wise correctness can be amplified, however this amplification
does not preserve the blindness property. Therefore, even though our δ-point-wise
correct candidate is blind, we cannot amplify it to have batch correctness without
giving up blindness.

We introduce the following notation. For any number j ∈ [B] we define ind(j) ∈
{0, 1}B to be the vector with 1 in the j-th coordinate and 0 in all other coordinates.
Note that for a matrix A ∈ {0, 1}k×B (for arbitrary k) it holds that A · ind(j) is
exactly the j-th column of A.
2 In fact, this correspondence only needs to hold in the exponent. Specifically, note that

both g(αi,xi
−αi,1−xi

) and ga2 are statistically indistinguishable from uniform in 〈g〉
and therefore from each other.
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1. LPN-BE.Setup(1λ, 1n). Recall that B = n, and assume w.l.o.g that λ ≤ n (oth-
erwise redefine n = λ and proceed with the new value, which only strengthens
the constructed object). We define ñ = n log B

2 = n log n
2 and a parameter ε =

log n/n = Ω(log2(ñ)/ñ) to be used below. Sample A1, . . . ,An ← {0, 1}ñ×B

(we will also denote A = [A1‖ · · · ‖An]). Output crs = {Ai}i∈[n].
2. LPN-BE.Gen(crs, x). Output h =

∑

i∈[n] Ai · ind(xi).
3. LPN-BE.SingleEnc(crs,h, i,m). Define A−i = [A1‖ · · · ‖Ai−1‖Ai+1‖ · · · ‖An].

For all j ∈ [B] sample s(j) ← {0, 1}ñ and e(j) ← Ber(n−1)B+1
ε . Compute

v(j) = s(j)[A−i‖Ai · ind(j) − h] + e(j) + [0, . . . , 0,mj ].

Output ct = subct2 = {v(j)}j∈[B].
4. LPN-BE.SingleDec(crs, x, i, ct). Given ct = {v(j)}j∈[B], define

x̂−i = [ind(x1)‖ · · · ‖ind(xi−1)‖ind(xi+1)‖ · · · ‖ind(xn)‖1]†,

where † represents vector transpose. Output m = v(xi) · x̂−i.

Lemma 5. The scheme LPN-BE is 1/poly(n)-pointwise correct.

Proof. Let crs, x, i, m be arbitrary, and consider computing h = Gen(crs, x), ct =
SingleEnc(crs, h, i,m) and m′ = SingleDec(crs, x, i, ct). Then, by definition

m′ =
(

s(j)[A−i‖Ai · ind(xi) − h] + e(xi) + [0, . . . , 0,mj ]
)

x̂−i

= mj + e(xi) · x̂−i,

but since e(xi) is Bernoulli with parameter ε, and the hamming weight of x̂−i is
exactly nby definition, then e(xi) ·x̂−i is Bernoulli with parameter ε′ ≤ 1/2−e−2εn.
Since we set ε = log n/n, pointwise correctness follows.

Lemma 6. The scheme LPN-BE is secure under the LPNñ,ε assumption (we recall
that ε = Ω(log2(ñ)/ñ)).

Proof. We consider the SingleEnc security game in Definition 9 (recall that this is
sufficient for full batch security). We will prove that the view of the adversary is
computationally indistinguishable from one where all v(j) are uniformly random
for all j �= xi. Security will follow.

Consider a challenger that receives an LPN challenge of the form A′
1, . . . ,A

′
n ∈

{0, 1}ñ×B , {bj,k}j∈[B]\{xi},k∈[n], wherebj,k are either all uniformor are of the form
bj,k = s(j)A′

k + ej,k. (Note that the challenge does not actually depend on xi, we
can just take j ∈ [B − 1] and map the values to [B] \ {xi} after the fact.)

Upon receivingx, i from the adversary, the challenger computesh =
∑

i∈[n] A
′
i·

ind(xi). Then, for all k �= i it sets Ak = A′
k, and then sets Ai as follows. Set

Ai ·ind(xi) = A′
i ·ind(xi) (recall that multiplying by ind(j) is equivalent to selecting

the j-th column), and for all j �= xi set Ai · ind(j) = A′
i · ind(j) + h. Note that

since Ai · ind(xi) = A′
i · ind(xi) it holds that h =

∑

i∈[n] Ai · ind(xi), and indeed
crs = {A1, . . . ,An},h, x, i are distributed identically to the original game.
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The challenger sends crs,h to the adversary and receives the message vectors. It
then samples s(xi), e(xi) itself and generates v(xi) properly. For all j �= xi generate

v(j) = [bj,[n]\{i}‖bj,i · ind(j)] + [0, . . . , 0,mj ] ,

where bj,[n]\{i} is the concatenation of all bj,k for k �= i in order. We notice that
if the vectors {bj,k} were generated from an LPN distribution, then v(j) has the
correct distribution. This is because we defined Ai · ind(j)−h = A′

i · ind(j). On the
other hand, if {bj,k} are uniform then all v(j), j �= xi are uniform. Security thus
follows.

4 BlindGarbled Circuits

In this section, we define the notion of a blind garbled circuit and show a construc-
tion assuming only one-way functions. Indeed, we observe that the widely used
“point-and-permute” garbled circuit construction [BMR90,Rog91] is in fact blind.
We start with the definition of standard garbled circuits and proceed to define and
construct blind garbled circuits.

Definition 11 (Garbled Circuits). A garbling scheme consists of three algo-
rithms (Garble,Eval,Sim) where:

1. Garble(1λ, 1n, 1m, C) is a PPT algorithm that takes as input the security param-
eter λ and a circuitC : {0, 1}n → {0, 1}m, and outputs a garbled circuit ̂C along
with input labels (labi,b)i∈[n],b∈{0,1} where each label labi,b ∈ {0, 1}λ.

2. Eval(1λ, ̂C, ̂L) is a deterministic algorithm that takes as input a garbled circuit
̂C along with a set of n labels ̂L = (labi)i∈[n], and outputs a string y ∈ {0, 1}m.

3. Sim(1λ, 1|C|, 1n, y) is aPPTalgorithm that takes as input the security parameter,
the description length of C, an input length n and a string y ∈ {0, 1}m, and
outputs a simulated garbled circuit ˜C and labels ˜L.

We often omit the first input to these algorithms (namely, 1λ) when it is clear from
the context. We require that the garbling scheme satisfies two properties:

1. Correctness: For all circuits C, inputs x, and all ( ̂C, (labi,b)i,b) ← Garble(C, x)
and ̂L = (labi,xi

)i∈[n], we have that Eval( ̂C, ̂L) = C(x).
2. Simulation Security: for all circuits C : {0, 1}n → {0, 1}m and all inputs x ∈

{0, 1}n, the following two distributions are computationally indistinguishable:
{

( ̂C, ̂L) : ( ̂C, labi,b)i,b ← Garble(C, x), ̂L = (labi,xi
)i∈[n]

}

≈c

{

( ˜C, ˜L) : ( ˜C, ˜L) ← Sim(1λ, 1|C|, 1n, C(x))
}

.

The traditional notion of security of a garbled circuit requires that the garbling
̂C of a circuitC and the garbled labels ̂L corresponding to an inputx together reveal
C(x) and nothing more (except the size of the circuit C and the input x). Formally,
this is captured by a simulation definition which requires that a simulator who is
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given only C(x) can faithfully simulate the joint distribution of ̂C and ̂L. Blindness
requires that the simulator’s output is uniformly random. Of course, this is simply
unachievable if the distinguisher is given the circuit C and the input x, or if the
distribution of C(x) is not uniformly random. However, blindness only refers to
the setting where the distribution of C(x) is uniformly random.

Definition 12 (Blind Garbled Circuits). A garbling scheme (Garble,Eval,
Sim) is called blind if the distribution Sim(1λ, 1c, 1n, Um), representing the output
of the simulator on a completely uniform output, is indistinguishable from a com-
pletely uniform bit string. (Note that the distinguisher must not know the random
output value that was used for the simulation.)

Using a construction essentially identical to the point-and-permute garbled cir-
cuits of [BMR90,Rog91], we prove the following result.

Lemma 7. Assuming the existence of one-way functions, there exists a blind gar-
bling scheme.

We refer the reader to the full version [BLSV17] for details.

5 Weakly Compact Blind IBE

5.1 Defining Weakly Compact Blind IBE

We nowbegin our construction of anonymous IBE fromblind batch encryption and
blind garbled circuits; along the way, we will also construct IBE from batch encryp-
tion. As noted earlier, we construct anonymous IBE as a consequence of building a
stronger object which we call blind IBE. Similar in nature to the blindness property
of batch encryption (Definition 10), we say that an IBE scheme is blind if, when
encrypting (under some identity id∗) a random message that is not known to the
distinguisher, the ciphertext is “essentially” indistinguishable from uniform, even
given any polynomial number of secret keys {skid} possibly including skid∗ .

Definition 13 (Blind IBE). An IBE scheme satisfies IND-BLIND-ID-CPA
security if (1) it satisfies IND-ID-CPA security and (2) the function
Enc(pp,mpk, id,m; r) can be expressed as a concatenation E1(pp; r)||E2

(pp,mpk, id,m; r) such that no PPT adversary A can win the following game with
probability greater than 1

2 + negl(λ):

1. pp ← Params(1λ||1t)
2. (mpk,msk) ← Setup(pp)
3. (id∗, st) ← AKeygen(pp,msk,·)(mpk)

4. m
$← M

5. (subct1, subct2) ← Enc(pp,mpk, id∗,m) = (E1(pp; r), E2(pp,mpk, id∗,m; r))

6. β
$← {0, 1}. If β = 1, subct2

$← {0, 1}|subct2|

7. β′ ← AKeygen(pp,msk,·)(st, (subct1, subct2))
8. A wins if and only if β′ = β.
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We call Enc = E1||E2 the blind decomposition of Enc.

Lemma 8. Any blind IBE scheme is also an anonymous IBE scheme.

Proof. Consider an adversary A playing the IND-ANON-ID-CPA security game;
A is eventually given a challenge ct ← Enc(pp,mpk, idb,mb) where (id0,m0) and
(id1,m1) are the challenge id-message pairs chosen by A. For each b ∈ {0, 1}, it
is certainly the case that A cannot distinguish whether it was given ctidb,mb

←
Enc(pp,mpk, idb,mb) or ctidb,m ← Enc(pp,mpk, idb,m) where m

$← M is a uni-
formly random message; this follows from ordinary IBE security. Additionally, by
blind IBE security, A also cannot distinguish whether it is given ctidb,m as above

or c̃tidb,m ← E1(pp; r)||C for C
$← {0, 1}|E2(pp,mpk,idb,m;r)|. But c̃tid0,m and c̃tid1,m

are drawn from identical distributions, so we conclude that A cannot distinguish
whether it was given ctid0,m0 or ctid1,m1 , as desired.

Our overall goal is to construct (blind) IBE from (blind) batch encryption; this
will be done in two steps. In this section, we construct what we call weakly compact
(blind) IBE, which is intuitively an IBE scheme for any T = poly(λ) identities
which is at least slightly more efficient than the trivial “IBE scheme” consisting of
T independent PKE schemes (one for each identity), which has |mpk| = T ·poly(λ).
Indeed, all we require is that |mpk| grows sublinearly with T . In Sect. 6, we show
that full (blind) IBE can be bootstrapped from weakly compact (blind) IBE.

Definition 14 (Weakly Compact IBE). A weakly compact IBE scheme con-
sists of five PPT algorithms (Params,Setup,Keygen,Enc,Dec)with the same syntax
as an IBE scheme.What distinguishes aweakly compact IBE scheme froma full IBE
scheme is the following weakened efficiency requirements:

– Params now takes as input 1λ||1T where T = 2t is the number of identi-
ties. This means that all five algorithms now run in time poly(T, λ) rather than
poly(log T, λ).3

– Weak Compactness: we require that |mpk| = O(T 1−εpoly(λ)) for some ε > 0.
– Security still holds with respect to adversaries running in time poly(λ), not

poly(λ, T ). /See Footnote 3/

Definition 15. A weakly compact blind IBE scheme is a weakly compact IBE
scheme satisfying IND-BLIND-ID-CPA security.

We will construct weakly compact (blind) IBE from the following building
blocks: (1) (blind) batch encryption, (2) (blind) garbled circuits, and (3) (blind)
public key encryption, where blind PKE is defined as follows.

Definition 16 (Blind Public Key Encryption). An blind public key
encryption scheme (with public parameters) is a public key encryption scheme

3 This is only a technical difference, since we only consider weakly compact IBE schemes
with T = poly(λ).
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(Params,Gen,Enc,Dec) which is IND-CPA secure and satisfies the following addi-
tional security property: the function Enc(pp, pk,m; r) can be expressed as a con-
catenation E1(pp; r)||E2(pp, pk,m; r) such that the distribution

{
pp ← Params(1λ), (pk, sk) ← Gen(pp), m

$← {0, 1}n : (pp, pk, sk,Enc(pp, pk, m))
}

is computationally indistinguishable from the distribution
{

pp ← Params(1λ), (pk, sk) ← Gen(pp),m $← M, L = |E2(pp, pk,m; r)|,

subct2
$← {0, 1}L : (pp, pk, sk, E1(pp; r)||subct2)

}

.

That is, encryptions of randommessages are pseudorandom (along with some func-
tion independent of the public key) even given the secret key.

We note here that blind public key encryption can be constructed generically
from blind batch encryption; indeed, blind batch encryption can be used to build
a blind PKE scheme satisfying stronger security notions such as leakage resilience
and key-dependent message (KDM) security.

5.2 The Construction

The construction of our weakly compact blind IBE scheme WBIBE uses three
ingredients:

– A blind public-key encryption scheme

BPKE = (BPKE.Params,BPKE.Gen,BPKE.Enc,BPKE.Dec)

where the encryption algorithm can be decomposed intoBPKE.E1||BPKE.E2 as
in Definition 16;

– A blind garbling scheme

BGBL = (BGC.Garble,BGC.Eval,BGC.Sim); and

– A blind batch encryption scheme

BBENC = (Batch.Setup,Batch.Gen,Batch.Enc,Batch.Dec)

where the encryption algorithm can be decomposed into Batch.E1||Batch.E2 as
in Definition 10. Moreover, we assume that BBENC is fully succinct.

The construction works as follows.

1. WBIBE.Params(1T ): Given a bound T on the number of identities, the param-
eter generation algorithm Params first obtains blind public-key encryption
parameters bpke.pp ← BPKE.Params(1λ). Letting n be the length of the pub-
lic keys generated by BPKE.Gen, it then obtains a common reference string
batch.crs ← Batch.Setup(1λ, 1nT ). The output is

wbibe.pp = (bpke.pp, batch.crs)
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2. WBIBE.Setup(wbibe.pp): On input the public parameters, the setup algorithm
first obtains T key pairs (bpke.pki, bpke.ski) ← BPKE.Gen(bpke.pp). Secondly,
it compresses the sequence of BPKE public keys into a BBENC public key:

h ← Batch.Gen(batch.crs, (bpke.pk0, bpke.pk1, . . . , bpke.pkT−1)).

The output is the pair (wbibe.mpk,wbibe.msk) where

wbibe.mpk = h and
wbibe.msk = (bpke.pk0, . . . , bpke.pkT−1, bpke.sk0, . . . , bpke.skT−1)

3. WBIBE.Keygen(wbibe.pp,wbibe.msk, id): On input the public parameters, the
master secret key and an identity id ∈ {0, 1, . . . , T − 1}, the key generation
algorithm outputs

wbibe.skid = (id, bpke.pk0, bpke.pk1, . . . , bpke.pkT−1, bpke.skid).

4. WBIBE.Enc(wbibe.pp,wbibe.mpk, id,m): On input the public parameters, a
master public key, an identity id and a message m, the encryption algorithm
does the following.

First, sample a uniformly random string r and compute

ct0 = BPKE.E1(bpke.pp; r).

Secondly, let C[bpke.pp,m, r] be a circuit with public parameters bpke.pp (con-
tained as part of wbibe.pp), the message m and the random string r hardcoded.
C takes as input a blind public key and outputs the encryption of m under the
public key using randomness r. That is,

C[bpke.pp,m, r](bpke.pk) = BPKE.E2(bpke.pp, bpke.pk,m; r)

Compute
(

̂C, lab
) ← BGC.Garble(1λ, 1n, 1�, C[bpke.pp,m, r])

where lab ∈ ({0, 1}λ)n×2 and 	 is defined to be the output length of C. Set
ct1 := ̂C.

Finally, let M ∈ ({0, 1}λ)nT×2 be a uniformly random nT -by-2 matrix and
then redefine M[id · n + j, b] = lab[j, b] for all 1 ≤ j ≤ n, b ∈ {0, 1}. Compute

(ct2, ct′2) ← Batch.Enc(batch.crs, h,M).

Output the ciphertext wbibe.ct = (ct0, ct1, ct2, ct′2).
5. WBIBE.Dec(wbibe.pp,wbibe.sk,wbibe.ct): On input the public parameters, a

secret key and a ciphertext, the decryption algorithm parses the secret key as
wbibe.sk = (id, bpke.pk0, . . . , bpke.pkT−1, bpke.skid), and parses the ciphertext
as wbibe.ct = (ct0, ct1, ct2, ct′2). It then does three things.
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First, it computes

m ← Batch.Dec(batch.crs, (bpke.pk0, bpke.pk1, . . . , bpke.pkT−1), ct2||ct′2),

Secondly, it defines ̂L = (Lj)j∈[n] ∈ ({0, 1}λ)n by Lj = m[id · n + j] and
computes ct′0 ← BGC.Eval(ct1, ̂L). Finally, it computes and outputs

m ← BPKE.Dec(bpke.pp, bpke.skid, ct0||ct′0).

We show that this scheme is a weakly compact blind IBE scheme.

Theorem 1. Suppose BPKE is a blind public-key encryption scheme, BBENC is
a blind batched encryption scheme, and BGBL is a blind garbling scheme. Then,
WBIBE is a weakly compact blind IBE scheme.

We defer the reader to the full version [BLSV17] for details.

6 Bootstrapping (Blind) IBE

Our bootstrapping theorem converting a weakly compact (blind) IBE scheme into
a full-fledged (blind) IBE scheme follows the ideas of [DG17a,DG17b] and is essen-
tially a way to achieve domain extension of the space of identities. The boot-
strapping scheme is described in Sect. 6.1 and analyzed in the full version of our
paper [BLSV17]. Recall that a high level overview was provided in the introduc-
tion (Sect. 1.3).

6.1 The Bootstrapping Theorem

Let WBIBE denote a weakly compact blind IBE scheme supporting T = T (λ)
identities with a master public key of size S = S(λ) bits. By compactness, we may
choose T = poly(λ) large enough so that S < T/4. Additionally, let BGBL =
(BGC.Garble,BGC.Eval,BGC.Sim) denote a blind garbling scheme. We construct a
full-fledged blind IBE scheme BIBE as follows.

– BIBE.Params(1λ, 1n): On input the length n of the identities supported by the
system, the parameter generation algorithm generates parameter wbibe.pp ←
WBIBE.Params(1λ, 1T ) and outputs bibe.pp = (1n,wbibe.pp).

– BIBE.Setup(bibe.pp): On input the public parameters, the setup algorithm
chooses a seed s for a PRF family fs : {0, 1}≤n → {0, 1}r where r is the number
of random bits used by the Setup algorithm of WBIBE .BIBE.Setup then obtains

(wbibe.mpk(ε),wbibe.msk(ε)) ← WBIBE.Setup(wbibe.pp; fs(ε))

where ε denotes the empty string. The output is

bibe.mpk = wbibe.mpk(ε) and bibe.msk = s.
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– BIBE.Keygen(bibe.pp, bibe.msk, id): On input the public parameters, the master
secret key and an n-bit identity id = id1||id2||...idn, the key generation algorithm
does the following.

First, for eachprefix id[≤ i] = id1||id2|| . . . ||idi ∈ {0, 1}i, compute themaster
public key wbibe.mpk(≤i) and the master secret key wbibe.msk(≤i):

(wbibe.mpk(≤i),wbibe.msk(≤i)) ← WBIBE.Setup(wbibe.pp; fs(id[≤ i])).

(By convention, id[≤ 0] = ε)
For each 0 ≤ i ≤ n − 1 and j ∈ [S], define id′

i,j := idi+1||j||bi+1,j ∈ {0, 1} ×
[S] × {0, 1}, where bi+1,j := wbibe.mpk(≤i+1)[j]. Compute

ski,j ← WBIBE.Keygen(wbibe.pp,wbibe.msk(≤i), id′
i,j).

Finally, compute

skleaf ← WBIBE.Keygen(wbibe.pp,wbibe.msk(≤n), idnull),

where idnull = 0T is a default identity, and output

bibe.skid =
(

(

wbibe.mpk(≤i)
)

0≤i≤n
,
(

ski,j

)

j∈[S],0≤i≤n−1
, skleaf

)

.

– BIBE.Enc(bibe.pp, bibe.mpk, id,m): On input the public parameters, the master
public key, an n-bit identity id, and a message m, the encryption algorithm does
the following.

Let C[wbibe.pp, η, lab, r] be a circuit that computes the function
(

WBIBE.E2(wbibe.pp,wbibe.mpk, η||j||b, labj,b; rj,b)
)

j∈[S],b∈{0,1}

on input wbibe.mpk, where r is the collection of all rj,b and lab is the collection
of all labj,b. Let C ′[wbibe.pp,m, r] be a circuit that computes the function

WBIBE.E2(wbibe.pp,wbibe.mpk, idnull,m; r)

on input wbibe.mpk. Choose random strings r, r(1), . . . , r(n).
Compute ( ̂Cn, lab

(n)
) ← BGC.Garble

(

C ′[wbibe.pp,m, r]
)

. For i = n − 1 to
0, compute

( ̂Ci, lab
(i)

) ← BGC.Garble
(

C[wbibe.pp, idi+1, lab
(i+1)

, r(i+1)]
)

Compute ctn+1 ← WBIBE.E1(wbibe.pp; r), and for i = 1 to n, compute

cti,j,b ← WBIBE.E1(wbibe.pp; r
(i)
j,b),

and let cti := (cti,j,b)j,b.
Output the following as the ciphertext:

bibe.ct =
(

̂C0, . . . , ̂Cn−1, ̂Cn, ct1, . . . , ctn, ctn+1, lab
(0)

[wbibe.mpk(ε)]
)

,

where lab
(0)

[wbibe.mpk(ε)] is short-hand for (lab(0)j,b0,j
)j∈[S].
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– BIBE.Dec(bibe.pp, bibe.skid, bibe.ct): On input the public parameters, an iden-
tity secret key and a ciphertext, the decryption algorithm does the following.

Let ̂L(0) :=
(

lab
(0)
j,b0,j

)

j∈[S]
. For 1 ≤ i ≤ n, do the following steps one after

the other.
• Compute ct′i ← Eval( ̂Ci−1, ̂L(i−1)) which itself consists of ciphertexts ct′i,j,b

for j ∈ [S] and b ∈ {0, 1}.
• Compute L

(i)
j ← WBIBE.Dec(wbibe.pp, ski,j , cti,j,bi,j

||ct′i,j,bi,j
) for all j ∈

[S] and bi,j = wbibe.mpk(≤i)[j]. Let ̂L(i) denote the collection of all L
(i)
j .

Finally, compute ct′n+1 ← Eval( ̂Cn, ̂L(n)) and output

m′ ← WBIBE.Dec(wbibe.pp, skleaf, ctn+1||ct′n+1).

– The blind decomposition of BIBE.Enc is as follows: BIBE.E1(bibe.pp;
R) is defined to be the collection (ct1, ct2, . . . , ctn+1), while
BIBE.E2(bibe.pp, bibe.mpk, id,m;R) is defined to be the collection
(

̂C0, ..., ̂Cn, lab(0)[bibe.mpk]
)

.

Theorem 2. Suppose thatWBIBE is a weakly compact blind IBE scheme and that
BGBL is a blind garbling scheme. Then,BIBE is a blind IBE scheme. Additionally,
even without the blindness assumptions, BIBE is an IBE scheme.

We refer the reader to the full version [BLSV17] for details.
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