Unbounded ABE via Bilinear Entropy Expansion, Revisited

Jie Chen ${ }^{1}$, Junqing Gong ${ }^{2(\boxtimes)}$, Lucas Kowalczyk ${ }^{3}$, and Hoeteck Wee ${ }^{3,4}$
${ }^{1}$ East China Normal University, Shanghai, China
s080001@e.ntu.edu.sg
${ }^{2}$ ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), Lyon, France
junqing.gong@ens-lyon.fr
${ }^{3}$ Columbia University, New York, USA
luke@cs.columbia.edu
${ }^{4}$ CNRS, ENS, Paris, France
wee@di.ens.fr

Abstract

We present simpler and improved constructions of unbounded attribute-based encryption (ABE) schemes with constantsize public parameters under static assumptions in bilinear groups. Concretely, we obtain: - a simple and adaptively secure unbounded ABE scheme in compositeorder groups, improving upon a previous construction of Lewko and Waters (Eurocrypt '11) which only achieves selective security; - an improved adaptively secure unbounded ABE scheme based on the k-linear assumption in prime-order groups with shorter ciphertexts and secret keys than those of Okamoto and Takashima (Asiacrypt '12); - the first adaptively secure unbounded ABE scheme for arithmetic branching programs under static assumptions.

[^0]At the core of all of these constructions is a "bilinear entropy expansion" lemma that allows us to generate any polynomial amount of entropy starting from constant-size public parameters; the entropy can then be used to transform existing adaptively secure "bounded" ABE schemes into unbounded ones.

1 Introduction

Attribute-based encryption (ABE) [13,25] is a generalization of public-key encryption to support fine-grained access control for encrypted data. Here, ciphertexts and keys are associated with descriptive values which determine whether decryption is possible. In a key-policy ABE (KP-ABE) scheme for instance, ciphertexts are associated with attributes like '(author:Waters), (inst:UT), (topic:PK)' and keys with access policies like '((topic:MPC) OR (topic:Qu)) AND (NOT(inst:CWI))', and decryption is possible only when the attributes satisfy the access policy. A ciphertext-policy (CP-ABE) scheme is the dual of KP-ABE with ciphertexts associated with policies and keys with attributes.

Over past decade, substantial progress has been made in the design and analysis of ABE schemes, leading to a large families of schemes that achieve various trade-offs between efficiency, security and underlying assumptions. Meanwhile, ABE has found use as a tool for providing and enhancing privacy in a variety of settings from electronic medical records to messaging systems and online social networks.

As institutions grow and with new emerging and more complex applications for ABE , it became clear that we need ABE schemes that can readily accommodate the addition of new roles, entities, attributes and policies. This means that the ABE set-up algorithm should put no restriction on the length of the attributes or the size of the policies that will be used in the ciphertexts and keys. This requirement was introduced and first realized in the work of Lewko and Waters [21] under the term unbounded $A B E$. Their constructions have since been improved and extended in several subsequent works [$1-3,5,12,17,18,23,24]$ (cf. Figs. 1 and 2).

In this work, we put forth new ABE schemes that simultaneously:
(1) are unbounded (the set-up algorithm is independent of the length of the attributes or the size of the policies);
(2) can be based on faster asymmetric prime-order bilinear groups;
(3) achieve adaptive security;
(4) rely on simple hardness assumptions in the standard model.

All four properties are highly desirable from both a practical and theoretical stand-point and moreover, properties (1)-(3) are crucial for many real-world applications of ABE. Indeed, properties (2), (3) and (4) are by now standard cryptographic requirements pertaining to speed and efficiency, strong security guarantees under realistic and natural attack models, and minimal hardness
reference adaptive assumption standard model

| OT12 [23] | \checkmark | 2-Lin | \checkmark | reference | \|mpk| | adapt | ssumption |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RW13 [24] | | q-type | \checkmark | LW11 [21] | $O(1) \checkmark$ | | static \checkmark |
| Att16 [3] | \checkmark | q-type $+k$-Lin | \checkmark | Att14 [2] | $O(1) \checkmark$ | \checkmark | q-type |
| AC17 [1] | \checkmark | k-Lin, $k \geq 2$ | | KL15 [17] | $O(\log n)$ | \checkmark | static \checkmark |
| ours | \checkmark | k-Lin, $k \geq 1 \checkmark$ | \checkmark | ours | $O(1) \checkmark$ | \checkmark | static \checkmark |

Fig. 1. Summary of unbounded KP-ABE schemes for monotone span programs from prime-order groups with $O(1)$-size mpk.

Fig. 2. Summary of unbounded KPABE schemes for monotone span programs with n-bit attributes (i.e. universe $[n]$) from composite-order groups.
assumptions. Property (2) is additionally motivated by the fact that pairingbased schemes are currently more widely implemented and deployed than latticebased ones. There is now a vast body of works (e.g. [2,3,6,19, 22, 27]) showing how to achieve properties (2)-(4) for "bounded" ABE where the set-up time and public parameters grow with the attributes or policies, culminating in unifying frameworks that provide a solid understanding of the design and analysis of these schemes. Unbounded ABE, on the other hand, has received comparatively much less attention in the literature; this is in part because the schemes and proofs remain fairly complex and delicate. Amongst these latter works, only the work of Okamato and Takashima (OT) [23] simultaneously achieved (1)-(4).

Our Results. We present simpler and more modular constructions of unbounded ABE that realize properties (1)-(4) with better efficiency and expressiveness than was previously known.
(i) We present new adaptively secure, unbounded KP-ABE schemes for monotone span programs - which capture access policies computable by monotone Boolean formulas- whose ciphertexts are 42% smaller and our keys are 8% smaller than the state-of-the-art in [23] (with even more substantial savings with our SXDH-based scheme), as well as CP-ABE schemes with similar savings, cf. Fig. 3.
(ii) Our constructions generalize to the larger class of arithmetic span programs [15], which capture many natural computational models, such as monotone Boolean formulas, as well as Boolean and arithmetic branching programs; this yields the first adaptively secure, unbounded KP-ABE for arithmetic span programs. Prior to this work, we do not even know any selectively secure, unbounded KP-ABE for arithmetic span programs.

Moreover, our constructions generalize readily to the k-Lin assumption.
At the core of all of these constructions is a "bilinear entropy expansion" lemma [17] that allows us to generate any polynomial amount of entropy starting

reference	$\|\mathrm{mpk}\|$	$\|\mathrm{sk}\|$	$\|\mathrm{ct}\|$	assumption
KP-ABE OT12 [23]	$79\left\|G_{1}\right\|+\left\|G_{T}\right\|$	$14 n+5$	$14 n+5$	DLIN
Ours	$9\left\|G_{1}\right\|+\left\|G_{T}\right\|$	$8 n$	$5 n+3$	SXDH
	$28\left\|G_{1}\right\|+2\left\|G_{T}\right\|$	$13 n$	$8 n+5$	DLIN
	$\left(5 k^{2}+4 k\right)\left\|G_{1}\right\|+k\left\|G_{T}\right\|$	$(5 k+3) n$	$(3 k+2) n+2 k+1$	k-LIN
CP-ABE OT12 [23]	$79\left\|G_{1}\right\|+\left\|G_{T}\right\|$	$14 n+5$	$14 n+5$	DLIN
Ours	$11\left\|G_{1}\right\|+\left\|G_{T}\right\|$	$5 n+5$	$7 n+3$	SXDH
	$32\left\|G_{1}\right\|+2\left\|G_{T}\right\|$	$9 n+9$	$12 n+6$	DLIN
	$\left(7 k^{2}+4\right)\left\|G_{1}\right\|+k\left\|G_{T}\right\|$	$(4 k+1)(n+1)$	$(5 k+2) n+3 k$	k-LIN

Fig. 3. Summary of adaptively secure, unbounded ABE schemes for read-once monotone span programs with n-bit attributes (i.e. universe $[n]$) from prime-order groups. The columns $|\mathrm{sk}|$ and $|\mathrm{ct}|$ refer to the number of group elements in G_{2} and G_{1} respectively (minus a $\left|G_{T}\right|$ contribution in ct).
from constant-size public parameters; the entropy can then be used to transform existing adaptively secure bounded ABE schemes into unbounded ones in a single shot. The fact that we only need to invoke our entropy expansion lemma once yields both quantitative and qualitative advantages over prior works [17,23]: (i) we achieve security loss $O(n+Q)$ for n-bit attributes (i.e. universe $[n])$ and Q secret key queries, improving upon $O(n \cdot Q)$ in [23] and $O(\log n \cdot Q)$ in [17] and (ii) there is clear delineation between entropy expansion and the analysis of the underlying bounded ABE schemes, whereas prior works interweave both techniques in a more complex nested manner.

Following the recent literature on adaptively secure bounded ABE, we first describe our constructions in the simpler setting of composite-order bilinear groups, and then derive our final prime-order schemes by building upon and extending previous frameworks in $[6,7,11]$. Along the way, we also present a simple adaptively secure unbounded KP-ABE scheme in composite-order groups whose hardness relies on standard, static assumptions (cf. Fig. 2).

1.1 Technical Overview

We will start with asymmetric composite-order bilinear groups $\left(G_{N}, H_{N}, G_{T}\right)$ whose order N is the product of three primes p_{1}, p_{2}, p_{3}. Let g_{i}, h_{i} denote generators of order p_{i} in G_{N} and H_{N}, for $i=1,2,3$.

Warm-Up. We begin with the LOSTW KP-ABE for monotone span programs [19]; this is a bounded, adaptively secure scheme that uses composite-order groups.

Here, ciphertexts $\mathrm{ct}_{\mathbf{x}}$ are associated with attribute vector ${ }^{1} \mathbf{x} \in\{0,1\}^{n}$ and keys $\mathbf{s k}_{\mathbf{M}}$ with read-once monotone span programs \mathbf{M}. ${ }^{2}$

$$
\begin{align*}
\mathrm{mpk} & :=\left(g_{1}, g_{1}^{v_{1}}, \ldots, g_{1}^{v_{n}}, e\left(g_{1}, h_{1}\right)^{\alpha}\right) \tag{1}\\
\mathrm{ct}_{\mathbf{x}} & :=\left(g_{1}^{s},\left\{g_{1}^{s v_{j}}\right\}_{x_{j}=1}, e\left(g_{1}, h_{1}\right)^{\alpha s} \cdot m\right) \\
\mathrm{sk}_{\mathbf{M}} & :=\left(\left\{h_{1}^{\alpha_{j}+r_{j} v_{j}}, h_{1}^{r_{j}}\right\}_{j \in[n]}\right)
\end{align*}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are shares of α w.r.t. the span program \mathbf{M}; the shares satisfy the requirement that for any $\mathbf{x} \in\{0,1\}^{n}$, the shares $\left\{\alpha_{j}\right\}_{x_{j}=1}$ determine α if \mathbf{x} satisfies M, and reveal nothing about α otherwise. For decryption, observe that we can compute $\left\{e\left(g_{1}, h_{1}\right)^{\alpha_{j} s}\right\}_{x_{j}=1}$, from which we can compute the blinding factor $e\left(g_{1}, h_{1}\right)^{\alpha s}$. The proof of security relies on Waters' dual system encryption methodology [2,20,26,27], in the most basic setting at the core of which is an information-theoretic statement about α_{j}, v_{j}.

Towards Our Unbounded ABE. The main challenge in building an unbounded ABE lies in "compressing" $g_{1}^{v_{1}}, \ldots, g_{1}^{v_{n}}$ in mpk down to a constant number of group elements. The first idea following [21,23] is to generate $\left\{v_{j}\right\}_{j \in[n]}$ via a pairwise-independent hash function as $w_{0}+j \cdot w_{1}$, as in the Lewko-Waters IBE. Simply replacing v_{j} with $w_{0}+j \cdot w_{1}$ leads to natural malleability attacks on the ciphertext, and instead, we would replace $s v_{j}$ with $s_{j}\left(w_{0}+j \cdot w_{1}\right)$, where s_{1}, \ldots, s_{n} are fresh randomness used in encryption. Next, we need to bind the $s_{j}\left(w_{0}+j \cdot w_{1}\right)$'s together via some common randomness s; it suffices to use $s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)$ in the ciphertext. That is, we start with the scheme in (1) and we perform the substitutions $\left(^{*}\right)$ for each $j \in[n]$:

$$
\begin{array}{rcc}
\text { ciphertext: } & \left(s, s v_{j}\right) & \mapsto\left(s, s w+s_{j}\left(w_{0}+j \cdot w_{1}\right), s_{j}\right) \\
\text { secret key: } & \left(\alpha_{j}+v_{j} r_{j}, r_{j}\right) & \mapsto\left(\alpha_{j}+r_{j} w, r_{j}, r_{j}\left(w_{0}+j \cdot w_{1}\right)\right) \tag{*}
\end{array}
$$

This yields the following scheme:

$$
\begin{align*}
\mathrm{mpk} & :=\left(g_{1}, g_{1}^{w}, g_{1}^{w_{0}}, g_{1}^{w_{1}}, e\left(g_{1}, h_{1}\right)^{\alpha}\right) \tag{2}\\
\mathrm{ct}_{\mathbf{x}} & :=\left(g_{1}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{x_{j}=1}, e\left(g_{1}, h_{1}\right)^{\alpha s} \cdot m\right) \\
\mathrm{sk}_{\mathbf{M}} & :=\left(\left\{h_{1}^{\alpha_{j}+r_{j} w}, h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}\right)
\end{align*}
$$

As a sanity check for decryption, observe that we can compute $\left\{e\left(g_{1}, h_{1}\right)^{\alpha_{j} s}\right\}_{x_{j}=1}$ and then $e\left(g_{1}, h_{1}\right)^{\alpha s}$ as before. We note that the ensuing scheme is similar to

[^1]Attrapadung's unbounded KP-ABE in [2, Sect. 7.1], except the latter requires q-type assumptions. ${ }^{3}$

Our Proof Strategy. To analyze our scheme in (2), we follow a very simple and natural proof strategy: we would "undo" the substitutions described in (*) to recover ciphertext and keys similar to those in the LOSTW KP-ABE, upon which we could apply the analysis for the bounded setting from the prior works. That is, we want to computationally replace each $w_{0}+j \cdot w_{1}$ with a fresh u_{j} :

$$
\left\{\begin{array}{l}
g_{1}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \tag{3}\\
\left\{h_{1}^{\alpha_{j}+r_{j} w}, h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} \stackrel{\text { hopefully }}{\approx}\left\{\begin{array}{l}
g_{1}^{s},\left\{g_{1}^{s w+s_{j} u_{j}}, g_{1}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{1}^{\alpha_{j}+r_{j} w}, h_{1}^{r_{j}}, h_{1}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

Unfortunately, once we give out $g_{1}^{w_{0}}, g_{1}^{w_{1}}$ in mpk, the above distributions are trivially distinguishable by using the relation $e\left(g_{1}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right)=e\left(g_{1}^{w_{0}+j \cdot w_{1}}, h_{1}^{r_{j}}\right)$. Furthermore, the above statement does not yield a scheme similar to LOSTW when applied to our scheme in (2); for that, we would need to also replace w on the RHS in (3) with fresh v_{j} as described by

$$
\left(g_{1}^{s w+s_{j} u_{j}}, h_{1}^{\alpha_{j}+r_{j} w}\right) \mapsto\left(g_{1}^{s v_{j}+s_{j} u_{j}}, h_{1}^{\alpha_{j}+r_{j} \underline{v_{j}}}\right)
$$

in order to match up with the LOSTW KP-ABE in (1).

1.2 Bilinear Entropy Expansion

The core of our analysis is a (bilinear) entropy expansion lemma [17] that captures the spirit of the above statement in (3), namely, it allows us to generate fresh independent randomness starting from the correlated randomness, albeit in a new subgroup of order p_{2} generated by g_{2}, h_{2}.

More formally, given public parameters $\left(g_{1}, g_{1}^{w}, g_{1}^{w_{0}}, g_{1}^{w_{1}}, h_{1}, h_{1}^{w}, h_{1}^{w_{0}}, h_{1}^{w_{1}}\right)$, we show that

$$
\left\{\begin{array}{l}
g_{1}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \tag{4}\\
\left\{h_{1}^{r_{j} w}, h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} \approx_{c}-\cdot\left\{\begin{array}{l}
g_{2}^{s},\left\{g_{2}^{s v_{j}+s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{2}^{r_{j} v_{j}}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

where "-" is short-hand for duplicating the terms on the LHS, so that the g_{1}, h_{1}-components remain unchanged. That is, starting with the LHS, we replaced (i) $w_{0}+j \cdot w_{1}$ with fresh u_{j}, and (ii) w with fresh v_{j}, both in the p_{2}-subgroup. We also omitted the α_{j} 's from (3). We clarify that the trivial distinguisher on (3) fails here because $e\left(g_{1}, h_{2}\right)=1$.

[^2]Prior Work. We clarify that the name "bilinear entropy expansion" was introduced in the prior work of Kowalczyk and Lewko (KL) [17], which also proved a statement similar to (3), with three notable differences: (i) our entropy expansion lemma starts with 3 units of entropy $\left(w, w_{0}, w_{1}\right)$ whereas KL uses $O(\log n)$ units of entropy; (ii) the KL statement does not account for the public parameters, and therefore (unlike our lemma) cannot serve as an immediate bridge from the unbounded ABE to the bounded variant; (iii) our entropy expansion lemma admits an analogue in prime-order groups, which in turn yields an unbounded ABE scheme in prime-order groups, whereas the composite-order ABE scheme in KL does not have an analogue in prime-order setting (an earlier prime-order construction was retracted on June 1, 2016). In fact, the "consistent randomness amplification" techniques used in the unbounded ABE schemes of Okamoto and Takashima (OT) [23] also seem to yield an entropy expansion lemma with $O(1)$ units of entropy in prime-order groups. As noted earlier in the introduction, our approach is also different from both KL and OT in the sense that we only need to invoke our entropy expansion lemma once when proving security of the unbounded ABE.

Proof Overview. We provide a proof overview of our entropy expansion lemma in (4). The proof proceeds in two steps: (i) replacing $w_{0}+j \cdot w_{1}$ with fresh u_{j}, and then (ii) replacing w with fresh v_{j}.
(i) We replace $w_{0}+j \cdot w_{1}$ with fresh u_{j}; that is,

$$
\left.\left\{\begin{array}{l}
\left\{g_{1}^{s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \tag{5}\\
\left\{h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]},
\end{array}\right\} \approx_{c}-\cdot \right\rvert\,\left\{\begin{array}{l}
\left\{g_{2}^{s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

where we suppressed the terms involving w; moreover, this holds even given $g_{1}, g_{1}^{w_{0}}, g_{1}^{w_{1}}$. Our first observation is that we can easily adapt the proof of Lewko-Waters IBE $[8,20]$ to show that for each $i \in[n]$,

$$
\left\{\begin{array}{l}
g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)}, g_{1}^{s_{i}} \tag{6}\\
\left\{h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \neq i}
\end{array}\right\} \approx_{c}-\cdot\left\{\begin{array}{ll}
g_{2}^{s_{i} u_{i}}, & g_{2}^{s_{i}} \\
\left\{h_{2}^{r_{j}},\right. & \left.h_{2}^{r_{j} u_{j}}\right\}_{j \neq i}
\end{array}\right\}
$$

The idea is that the first term on the LHS corresponds to an encryption for the identity i, and the next $n-1$ terms correspond to secret keys for identities $j \neq i$; on the right, we have the corresponding "semi-functional entities". At this point, we can easily handle $\left(h_{2}^{r_{i}}, h_{2}^{r_{i}\left(w_{0}+i \cdot w_{1}\right)}\right)$ via a statistical argument, thanks to the entropy in $w_{0}+i \cdot w_{1} \bmod p_{2}$. Next, we need to get from a single $\left(g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)}, g_{1}^{s_{i}}\right)$ on the LHS in (6) to n such terms on the LHS in (5). This requires a delicate "two slot" hybrid argument over $i \in[n]$ and the use of an additional subgroup; similar arguments also appeared in [14,23]. This is where we used the fact that N is a product of three primes, whereas the Lewko-Waters IBE and the statement in (6) works with two primes in the asymmetric setting.
(ii) Next, we replace w with fresh v_{j}; that is,

$$
\left\{\begin{array}{c}
g_{2}^{s},\left\{g_{2}^{s w+s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{2}^{r_{j} w}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\} \approx_{c}\left\{\begin{array}{l}
g_{2}^{s},\left\{g_{2}^{s v_{j}+s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{2}^{r_{j} v_{j}}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

Intuitively, this should follow from the DDH assumption in the p_{2}-subgroup, which says that $\left(h_{2}^{r_{j} w}, h_{2}^{r_{j}}\right) \approx_{c}\left(h_{2}^{r_{j} v_{j}}, h_{2}^{r_{j}}\right)$. The actual proof is more delicate since w also appears on the other side of the pairing as $g_{2}^{s w+s_{j} u_{j}}$; fortunately, we can treat u_{j} as a one-time pad that masks w.

Completing the Proof of Unbounded ABE. We return to a proof sketch of our unbounded ABE in (2). Let us start with the simpler setting where the adversary makes only a single key query. Upon applying our entropy expansion lemma ${ }^{4}$, we have that the ciphertext/key pair $\left(\mathrm{ct}_{\mathbf{x}}, \mathrm{sk}_{\mathbf{M}}\right)$ satisfies

$$
\left\{\begin{array}{l}
g_{1}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{x_{j}=1} \\
\left\{h_{1}^{\alpha_{j}+r_{j} w}, h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} \approx_{c}-\cdot\left(\begin{array}{l}
g_{2}^{s},\left\{g_{1}^{s v_{j}+s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{x_{j}=1} \\
\left\{h_{2}^{\alpha_{j}+r_{j} v_{j}}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

with $e\left(g_{1}, h_{1}\right)^{\alpha s} \cdot m$ omitted. Note that the boxed term on the RHS is exactly the LOSTW KP-ABE ciphertext/key pair in (1) over the p_{2}-subgroup, once we strip away the terms involving u_{j}, s_{j}.

Finally, to handle the general setting where the ABE adversary makes Q key queries, we simply observe that thanks to self-reducibility, our entropy expansion lemma extends to a Q-fold setting (with Q copies of $\left\{r_{j}\right\}_{j \in[n]}$) without any additional security loss:

$$
\left\{\begin{array}{l}
g_{1}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{1}^{r_{j, 1} w}, h_{1}^{r_{j, 1}}, h_{1}^{r_{j, 1}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]} \\
\vdots \\
\left\{h_{1}^{r_{j, Q} w}, h_{1}^{r_{j, Q}}, h_{1}^{r_{j, Q}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} \approx_{c}-\cdot\left(\begin{array}{c}
g_{2}^{s},\left\{g_{2}^{s v_{j}+s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\left\{h_{2}^{r_{j, 1} v_{j}}, h_{2}^{r_{j, 1}}, h_{2}^{r_{j, 1} u_{j}}\right\}_{j \in[n]} \\
\vdots \\
\left\{h_{2}^{r_{j, Q} v_{j}}, h_{2}^{r_{j, Q}}, h_{2}^{r_{j, Q} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

At this point, we can rely on the (adaptive) security for the LOSTW KP-ABE for the setting with a single challenge ciphertext and Q key queries.

1.3 Our Prime-Order Scheme

To obtain prime-order analogues of our composite-order schemes, we build upon and extend the previous framework of Chen et al. [6,11] for simulating compositeorder groups in prime-order ones. Along the way, we present a more general framework that provides prime-order analogues of the static assumptions used in the security proof for our composite-order ABE. Moreover, we show that these prime-order analogues follow from the standard k-Linear assumption (and more generally, the MDDH assumption [9]) in prime-order bilinear groups.

[^3]Our KP-ABE. Let $\left(G_{1}, G_{2}, G_{T}\right)$ be a bilinear group of prime order p. Following $[6,11]$, we start with our composite-order KP-ABE scheme in (2), sample $\mathbf{A}_{1} \leftarrow_{\mathrm{R}}$ $\mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{B} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(k+1) \times k}$, and carry out the following substitutions:

$$
\begin{align*}
g_{1} & \mapsto\left[\mathbf{A}_{1}\right]_{1}, & & h_{1} \mapsto[\mathbf{B}]_{2} \\
\alpha & \mapsto \mathbf{k} \in \mathbb{Z}_{p}^{2 k+1} & & w, w_{0}, w_{1} \mapsto \mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1} \in \mathbb{Z}_{p}^{(2 k+1) \times(k+1)} \\
s, s_{j} & \mapsto \mathbf{s}, \mathbf{s}_{j} \in \mathbb{Z}_{p}^{k}, & & r_{j} \mapsto \mathbf{r}_{j} \in \mathbb{Z}_{p}^{k} \tag{7}\\
g_{1}^{s} & \mapsto\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1}, & & h_{1}^{r_{j}} \mapsto\left[\mathbf{B r}_{j}\right]_{2} \\
g_{1}^{w s} & \mapsto\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1}, & & h_{1}^{w r_{j}} \mapsto\left[\mathbf{W} \mathbf{B} \mathbf{r}_{j}\right]_{2}
\end{align*}
$$

where $[\cdot]_{1},[\cdot]_{2}$ correspond respectively to exponentiations in the prime-order groups G_{1}, G_{2}. This yields the following prime-order KP-ABE scheme for monotone span programs:

$$
\begin{aligned}
& \mathrm{mpk}:=\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1}, e\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},[\mathbf{k}]_{2}\right)\right) \\
& \mathrm{ct}_{\mathbf{x}}:=\left(\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left\{\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}+\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)\right]_{1},\left[\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top}\right]_{1}\right\}_{x_{j}=1},\right. \\
&\left.e\left(\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},[\mathbf{k}]_{2}\right) \cdot m\right) \\
& \mathbf{s k}_{\mathbf{M}}:=\left(\left\{\left[\mathbf{k}_{j}+\mathbf{W} \mathbf{B r}_{j}\right]_{2},\left[\mathbf{B r}_{j}\right]_{2},\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right) \mathbf{B r}_{j}\right]_{2}\right\}_{j \in[n]}\right)
\end{aligned}
$$

where \mathbf{k}_{j} is the j 'th share of \mathbf{k}. Decryption proceeds as before by first computing $\left\{e\left(\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{k}_{j}\right]_{2}\right)\right\}_{x_{j}=1}$ and relies on the associativity relations $\mathbf{A}_{1}^{\top} \mathbf{W} \cdot \mathbf{B}=$ $\mathbf{A}_{1}^{\top} \cdot \mathbf{W B}$ (ditto $\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}$) [7].

Dimensions of $\mathbf{A}_{1}, \mathbf{B}$. It is helpful to compare the dimensions of $\mathbf{A}_{1}, \mathbf{B}$ to those of the CGW prime-order analogue of LOSTW in [6]; once we fix the dimensions of $\mathbf{A}_{1}, \mathbf{B}$, the dimensions of $\mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1}$ are also fixed. In all of these constructions, the width of $\mathbf{A}_{1}, \mathbf{B}$ is always k, for constructions based on the k-linear assumption. CGW uses a shorter \mathbf{A}_{1} of dimensions $(k+1) \times k$, and a \mathbf{B} of the same dimensions $(k+1) \times k$. Roughly speaking, increasing the height of \mathbf{A}_{1} by k plays the role of adding a subgroup in our composite-order scheme; in particular, the LOSTW KP-ABE uses a group of order $p_{1} p_{2}$ in the asymmetric setting, whereas our unbounded ABE uses a group of order $p_{1} p_{2} p_{3}$.

We note that the direct adaptation of the prior techniques in [11] would yield \mathbf{A}_{1} of height $3 k$ and \mathbf{B} of height $k+1$, and reducing the height of \mathbf{A}_{1} down to $2 k+1$ is the key to our efficiency improvements over the prime-order unbounded KP-ABE scheme in [23]. To accomplish this, we need to optimize on the static assumptions used in the composite-order bilinear entropy expansion lemma, and thereafter, carefully transfer these optimizations to the prime-order setting, building upon and extending the recent prime-order IBE schemes in [11].

Bilinear Entropy Expansion Lemma. In the rest of this overview, we motivate the prime-order analogue of our bilinear entropy expansion lemma in (4), and defer a more accurate treatment to Sect. 6. Upon our substitutions in (7),
we expect to prove a statement of the form:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\left.\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left\{\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}+\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)\right]_{1},\left[\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top}\right]_{1}\right\}_{j \in[n]}\right\} \\
\left\{\left[\mathbf{W B r}_{j}\right]_{2},\left[\mathbf{B r}_{j}\right]_{2},\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right) \mathbf{B r}_{j}\right]_{2}\right\}_{j \in[n]}
\end{array}\right\} \tag{8}\\
\stackrel{\text { roughly }}{\sim}-\sqrt{\left.\left[\hat{\mathbf{s}}^{\top} \mathbf{A}_{2}^{\top}\right]_{1},\left\{\left[\hat{\mathbf{s}}^{\top} \mathbf{A}_{2}^{\top} \mathbf{V}_{j}+\hat{\mathbf{s}}_{j}^{\top} \mathbf{A}_{2}^{\top} \mathbf{U}_{j}\right]_{1},\left[\hat{\mathbf{s}}_{j}^{\top} \mathbf{A}_{2}^{\top}\right]_{1}\right\}_{j \in[n]}\right\}} \\
\left\{\left[\mathbf{V}_{j} \mathbf{B} \mathbf{r}_{j}\right]_{2},[\mathbf{0}]_{2},\left[\mathbf{U}_{j} \mathbf{B} \mathbf{r}_{j}\right]_{2}\right\}_{j \in[n]}
\end{array}\right] .
$$

given also the public parameters $\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1}$. Here, $\mathbf{A}_{2} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(2 k+1) \times k}$ is an additional matrix that plays the role of g_{2}, whereas $\mathbf{U}_{j}, \mathbf{V}_{j}$ play the roles of the fresh entropy u_{j}, v_{j}. Note that we do not introduce additional terms that correspond to those involving h_{2} on the RHS, and can therefore keep \mathbf{B} of dimensions $(k+1) \times k$. To prevent a trivial distinguishing attack based on the associativity relation $\mathbf{A}_{1}^{\top} \mathbf{W} \cdot \mathbf{B}=\mathbf{A}_{1}^{\top} \cdot \mathbf{W B}$, we need to sample random $\mathbf{U}_{j}, \mathbf{V}_{j}$ subject to the constraints $\mathbf{A}_{1}^{\top} \mathbf{U}_{j}=\mathbf{A}_{1}^{\top} \mathbf{V}_{j}=\mathbf{0}$. In the proof of the entropy expansion lemma, we will show that the k-Lin assumption implies
$\left(\mathbf{A}_{1}, \mathbf{A}_{1}^{\top} \mathbf{W},\left\{\left[\mathbf{W B r}_{j}\right]_{2},\left[\mathbf{B r}_{j}\right]_{2}\right\}_{j \in[n]}\right) \approx_{c}\left(\mathbf{A}_{1}, \mathbf{A}_{1}^{\top} \mathbf{W},\left\{\left[\left(\mathbf{W}+\mathbf{U}_{j}\right) \mathbf{B r}_{j}\right]_{2},\left[\mathbf{B r}_{j}\right]_{2}\right\}_{j \in[n]}\right)$.
To complete the proof of the unbounded ABE , we proceed as before in the composite-order setting, and observe that the boxed term in (8) above (once we strip away the terms involving \mathbf{U}_{j} and $\hat{\mathbf{s}}_{j}$) correspond to the prime-order variant of the LOSTW KP-ABE in CGW, as given by:

$$
\begin{aligned}
\mathrm{ct}_{\mathbf{x}} & :=\left(\left[\hat{\mathbf{s}}^{\top} \mathbf{A}_{2}^{\top}\right]_{1},\left\{\left[\hat{\mathbf{s}}^{\top} \mathbf{A}_{2}^{\top} \mathbf{V}_{j}\right]_{1}\right\}_{x_{j}=1}, e\left(\left[\hat{\mathbf{s}}^{\top} \mathbf{A}_{2}^{\top}\right]_{1},[\mathbf{k}]_{2}\right) \cdot m\right) \\
\mathrm{sk}_{\mathbf{M}} & :=\left(\left\{\left[\mathbf{k}_{j}+\mathbf{V}_{j} \mathbf{B r}_{j}\right]_{2},\left[\mathbf{B r}_{j}\right]_{2}\right\}_{j \in[n]}\right)
\end{aligned}
$$

As in the composite-order setting, we need to first extend our bilinear entropy expansion lemma to a Q-fold setting via random self-reducibility. We may then carry out the analysis in CGW to complete the proof of our unbounded ABE.

1.4 Extensions

Due to lack of space, we briefly sketch two extensions: CP-ABE for monotone span programs, and KP-ABE for arithmetic span programs.

CP-ABE. Here, we start with the LOSTW CP-ABE for monotone span programs [19], which basically reverses the structures of the ciphertexts and keys. This means that we will need a variant of our entropy expansion lemma that accommodates a similar reversal. The statement adapts naturally to this setting, and so does the proof, except we need to make some changes to step two, which requires that we start with a taller $\mathbf{A}_{1} \in \mathbb{Z}_{q}^{3 k \times k}$. This gives rise to the following prime-order CP-ABE:

$$
\begin{aligned}
\mathrm{mpk} & :=\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{U}_{0}\right]_{1} e\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},[\mathbf{k}]_{2}\right)\right), \\
\mathrm{ct}_{\mathbf{M}}: & =\left(\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left\{\left[\mathbf{c}_{0, j}^{\top}+\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{j}^{\top} \mathbf{A}_{1}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)\right]_{1}\right\}_{j \in[n]},\right. \\
& \left.e\left(\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},[\mathbf{k}]_{2}\right) \cdot m\right) \\
\mathbf{s k}_{\mathbf{x}}: & =\left(\left[\mathbf{k}+\mathbf{U}_{0} \mathbf{B r}\right]_{2},[\mathbf{B r}]_{2},\left\{\left[\mathbf{W B r}+\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right) \mathbf{B r} r_{j}\right]_{2},\left[\mathbf{B r} r_{j}\right]_{2}\right\}_{x_{j}=1}\right)
\end{aligned}
$$

where $\mathbf{c}_{0, j}$ is the j 'th share of $\mathbf{c}_{0}:=\mathbf{s}^{\top} \mathbf{A}_{1}^{\top} \mathbf{U}_{0}$ w.r.t. \mathbf{M}. Decryption proceeds by first computing $\left\{e\left(\left[\mathbf{c}_{0, j}^{\top}\right]_{1},[\mathbf{B r}]_{2}\right)\right\}_{x_{j}=1}$ and then $e\left(\left[\mathbf{c}_{0}^{\top}\right]_{1},[\mathbf{B r}]_{2}\right)$.

Arithmetic Span Programs. In arithmetic span programs, the attributes \mathbf{x} come from \mathbb{Z}_{p}^{n} instead of $\{0,1\}^{n}$, which enable richer and more expressive arithmetic computation. The analogue of the LOSTW KP-ABE for arithmetic span programs $[6,15]$ will then have ciphertexts:

$$
\mathrm{ct}_{\mathbf{x}}:=\left(g_{1}^{s},\left\{g_{1}^{\left(v_{j}+x_{j} v_{j}^{\prime}\right) s}\right\}_{j \in[n]}, e\left(g_{1}, h_{1}\right)^{\alpha s} \cdot m\right)
$$

That is, we replaced $g_{1}^{x_{j} v_{j} s}$ in (1) with $g_{1}^{\left(v_{j}+x_{j} v_{j}^{\prime}\right) s}$. In the unbounded setting, we will need to generate $\left\{v_{j}\right\}_{j \in[n]}$ and $\left\{v_{j}^{\prime}\right\}_{j \in[n]}$ via two different pairwiseindependent hash functions, given by $w_{0}+j \cdot w_{1}$ and $w_{0}^{\prime}+j \cdot w_{1}^{\prime}$ respectively. Our entropy expansion lemma generalizes naturally to this setting.

2 Preliminaries

Notation. We denote by $s \leftarrow_{\mathrm{R}} S$ the fact that s is picked uniformly at random from a finite set S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout this paper, we use 1^{λ} as the security parameter. We use lower case boldface to denote (column) vectors and upper case boldcase to denote matrices. We use \equiv to denote two distributions being identically distributed, and \approx_{c} to denote two distributions being computationally indistinguishable. For any two finite sets (also including spaces and groups) S_{1} and S_{2}, the notation " $S_{1} \approx_{c} S_{2}$ " means the uniform distributions over them are computationally indistinguishable.

2.1 Monotone Span Programs

We define (monotone) span programs [16].
Definition 1 (span programs [4,16]). A (monotone) span program for attribute universe $[n]$ is a pair (\mathbf{M}, ρ) where \mathbf{M} is a $\ell \times \ell^{\prime}$ matrix over \mathbb{Z}_{p} and $\rho:[\ell] \rightarrow[n]$. Given $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$, we say that

$$
\mathbf{x} \text { satisfies }(\mathbf{M}, \rho) \text { if } f \mathbf{1} \in \operatorname{span}\left\langle\mathbf{M}_{\mathbf{x}}\right\rangle
$$

Here, $\mathbf{1}:=(1,0, \ldots, 0)^{\top} \in \mathbb{Z}^{1 \times \ell^{\prime}}$ is a row vector; $\mathbf{M}_{\mathbf{x}}$ denotes the collection of vectors $\left\{\mathbf{M}_{j}: x_{\rho(j)}=1\right\}$ where \mathbf{M}_{j} denotes the j 'th row of \mathbf{M}; and span refers to linear span of collection of (row) vectors over \mathbb{Z}_{p}.

That is, \mathbf{x} satisfies (\mathbf{M}, ρ) if f there exists constants $\omega_{1}, \ldots, \omega_{\ell} \in \mathbb{Z}_{p}$ such that

$$
\begin{equation*}
\sum_{j: x_{\rho(j)}=1} \omega_{j} \mathbf{M}_{j}=\mathbf{1} \tag{9}
\end{equation*}
$$

Observe that the constants $\left\{\omega_{j}\right\}$ can be computed in time polynomial in the size of the matrix \mathbf{M} via Gaussian elimination. Like in $[6,19]$, we need to impose a one-use restriction, that is, ρ is a permutation and $\ell=n$. By re-ordering the rows of \mathbf{M}, we may assume WLOG that ρ is the identity map, which we omit in the rest of this section.

Lemma 1 (statistical lemma [6, Appendix A.6]). For any \mathbf{x} that does not satisfy \mathbf{M}, the distributions

$$
\left(\left\{v_{j}\right\}_{j: x_{j}=1},\left\{\mathbf{M}_{j}\binom{\alpha}{\mathbf{u}}+r_{j} v_{j}, r_{j}\right\}_{j \in[n]}\right)
$$

perfectly hide α, where the randomness is taken over $v_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}, \mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell^{\prime}-1}$, and for any fixed $r_{j} \neq 0$.

2.2 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a predicate $\mathrm{P}(\cdot, \cdot)$ consists of four algorithms (Setup, Enc, KeyGen, Dec):
$\operatorname{Setup}\left(1^{\lambda}, \mathcal{X}, \mathcal{Y}, \mathcal{M}\right) \rightarrow(\mathrm{mpk}, \mathrm{msk})$. The setup algorithm gets as input the security parameter λ, the attribute universe \mathcal{X}, the predicate universe \mathcal{Y}, the message space \mathcal{M} and outputs the public parameter mpk, and the master key msk.
$\operatorname{Enc}(\mathrm{mpk}, x, m) \rightarrow \mathrm{ct}_{x}$. The encryption algorithm gets as input mpk, an attribute $x \in \mathcal{X}$ and a message $m \in \mathcal{M}$. It outputs a ciphertext ct_{x}. Note that x is public given ct_{x}.
KeyGen(mpk, msk, y) $\rightarrow \mathrm{sk}_{y}$. The key generation algorithm gets as input msk and a value $y \in \mathcal{Y}$. It outputs a secret key sk_{y}. Note that y is public given sk_{y}.
$\mathrm{Dec}\left(\mathrm{mpk}, \mathrm{sk}_{y}, \mathrm{ct}_{x}\right) \rightarrow m$. The decryption algorithm gets as input sk_{y} and ct_{x} such that $\mathrm{P}(x, y)=1$. It outputs a message m.

Correctness. We require that for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that $\mathrm{P}(x, y)=1$ and all $m \in \mathcal{M}$,

$$
\operatorname{Pr}\left[\operatorname{Dec}\left(m p k, \operatorname{sk}_{y}, \operatorname{Enc}(m p k, x, m)\right)=m\right]=1
$$

where the probability is taken over (mpk, msk) $\leftarrow \operatorname{Setup}\left(1^{\lambda}, \mathcal{X}, \mathcal{Y}, \mathcal{M}\right), \mathrm{sk}_{y} \leftarrow$ KeyGen(mpk, msk, y), and the coins of Enc.

Security Definition. For a stateful adversary \mathcal{A}, we define the advantage function
with the restriction that all queries y that \mathcal{A} makes to KeyGen (msk, \cdot) satisfies $\mathrm{P}\left(x^{*}, y\right)=0$ (that is, sk_{y} does not decrypt $\mathrm{ct}_{x^{*}}$). An ABE scheme is adaptively secure if for all PPT adversaries \mathcal{A}, the advantage $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ABE}}(\lambda)$ is a negligible function in λ.

Unbounded ABE. An ABE scheme is unbounded [21] if the running time of Setup only depends on λ; otherwise, we say that it is bounded.

3 Bilinear Entropy Expansion, Revisited

3.1 Composite-Order Bilinear Groups and Computational assumptions

A generator \mathcal{G} takes as input a security parameter λ and outputs $\mathbb{G}:=$ $\left(G_{N}, H_{N}, G_{T}, e\right)$, where N is product of three primes p_{1}, p_{2}, p_{3} of $\Theta(\lambda)$ bits, G_{N}, H_{N} and G_{T} are cyclic groups of order N and $e: G_{N} \times H_{N} \rightarrow G_{T}$ is a nondegenerate bilinear map. We require that the group operations in G_{N}, H_{N} and G_{T} as well the bilinear map e are computable in deterministic polynomial time with respect to λ. We assume that a random generator g (resp. h) of G_{N} (resp. H_{N}) is always contained in the description of bilinear groups. For every divisor n of N, we denote by G_{n} the subgroup of G_{N} of order n. We use g_{1}, g_{2}, g_{3} to denote random generators of the subgroups $G_{p_{1}}, G_{p_{2}}, G_{p_{3}}$ respectively. We define h_{1}, h_{2}, h_{3} random generators of the subgroups $H_{p_{1}}, H_{p_{2}}, H_{p_{3}}$ analogously.

Computational Assumptions. We review two static computational assumptions in the composite-order group, used e.g. in $[8,20]$.
Assumption $1\left(\mathbf{S D}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}\right)$. We say that $\left(p_{1} \mapsto p_{1} p_{2}\right)$-subgroup decision assumption, denoted by $S D_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$, holds if for all PPT adversaries \mathcal{A}, the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{0}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{1}\right)=1\right]\right| .|c|}
$$

where

$$
\begin{aligned}
& D:=\left(g_{1}, g_{2}, g_{3}, h_{1}, h_{3}, h_{12}\right), \quad h_{12} \leftarrow_{\mathrm{R}} H_{p_{1} p_{2}} \\
& T_{0} \leftarrow_{\mathrm{R}} G_{p_{1}}, T_{1} \leftarrow_{\mathrm{R}} G_{p_{1} p_{2}} .
\end{aligned}
$$

Assumption $2\left(\mathbf{D D H}_{p_{1}}^{H_{N}}\right)$. We say that p_{1}-subgroup Diffie-Hellman assumption, denoted by $D D H_{p_{1}}^{H_{N}}$, holds if for all PPT adversaries \mathcal{A}, the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{DDH}_{p_{1}}^{H_{N}}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{0}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{1}\right)=1\right]\right|
$$

where

$$
\begin{aligned}
& D:=\left(g_{1}, g_{2}, g_{3}, h_{1}, h_{2}, h_{3}\right) \\
& T_{0}:=\left(h_{1}^{x}, h_{1}^{y}, h_{1}^{x y}\right), T_{1}:=\left(h_{1}^{x}, h_{1}^{y}, h_{1}^{x y+z}\right), \quad x, y, z \leftarrow_{\mathrm{R}} \mathbb{Z}_{N} .
\end{aligned}
$$

By symmetry, one may permute the indices for subgroups and/or exchange the roles of G_{N} and H_{N}, and define $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}, \mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}, \mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{H_{N}}, \mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{H_{N}}$ and $\mathrm{DDH}_{p_{2}}^{H_{N}}, \mathrm{DDH}_{p_{3}}^{H_{N}}$ analogously.

3.2 Lemma in Composite-Order Groups

We state our entropy expansion lemma in composite-order groups as follows.
Lemma 2 (Bilinear entropy expansion lemma). Under the $S D_{p_{1} \mapsto p_{1} p_{2}}^{H_{N}}$, $S D_{p_{1} \mapsto p_{1} p_{3}}^{H_{N}}, S D_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}, D D H_{p_{2}}^{H_{N}}, S D_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}, D D H_{p_{3}}^{H_{N}}, S D_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}$ assumptions, we have

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { aux : } g_{1}, g_{1}^{w}, g_{1}^{w_{0}}, g_{1}^{w_{1}} \\
\text { ct : } g_{1}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \\
\text { sk: }\left\{h_{1}^{r_{j} w}, h_{1}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} \\
& \approx_{c}\left\{\begin{array}{l}
\mathrm{aux}: g_{1}, g_{1}^{w}, g_{1}^{w_{0}}, g_{1}^{w_{1}} \\
\mathrm{ct}: g_{1}^{s} \cdot g_{2}^{s},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot g_{2}^{s v_{j}+s_{j} u_{j}}, g_{1}^{s_{j}} \cdot g_{2}^{s_{j}}\right. \\
\mathrm{sk}:\left\{h_{1}^{r_{j} w} \cdot h_{2}^{r_{j} v_{j}}, h_{1}^{r_{j}} \cdot h_{2}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
\end{aligned}
$$

where

$$
w, w_{0}, w_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, v_{j}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, s, s_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}
$$

Concretely, the distinguishing advantage $\operatorname{Adv}_{\mathcal{A}}^{\operatorname{ExpLem}}(\lambda)$ is at most

$$
\begin{aligned}
& +\operatorname{Adv}_{\mathcal{B}_{0}}^{\operatorname{DDH}_{p_{2}}}(\lambda)+n \cdot\left(\operatorname{Adv}_{\mathcal{B}_{1}}^{H_{p_{1}} \rightarrow p_{1} p_{3}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{2}}^{\operatorname{SD}_{p_{3}}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{4}}^{\operatorname{SD}_{p_{3} \rightarrow p_{3} p_{2}}^{G_{N}}}(\lambda)\right. \\
& \left.+\operatorname{Adv}_{\mathcal{B}_{6}}^{\mathrm{DDH}_{p_{3}}^{H_{N}}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{7}}^{\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}}\right)(\lambda)+\operatorname{Adv}_{\mathcal{B}_{8}}^{\mathrm{DDH}_{p_{2}}}(\lambda)
\end{aligned}
$$

where $\operatorname{Time}(\mathcal{B})$, $\operatorname{Time}\left(\mathcal{B}^{\prime}\right)$, $\operatorname{Time}\left(\mathcal{B}^{\prime \prime}\right)$, $\operatorname{Time}\left(\mathcal{B}^{\prime \prime \prime}\right)$, Time $\left(\mathcal{B}_{0}\right)$, Time $\left(\mathcal{B}_{1}\right)$, Time $\left(\mathcal{B}_{2}\right)$, $\operatorname{Time}\left(\mathcal{B}_{4}\right)$, $\operatorname{Time}\left(\mathcal{B}_{6}\right)$, $\operatorname{Time}\left(\mathcal{B}_{7}\right), \operatorname{Time}\left(\mathcal{B}_{8}\right) \approx \operatorname{Time}(\mathcal{A})$.

We will prove the lemma in two main steps (cf. Sect.1.2), which are formulated via the following two lemmas.

Lemma 3 (Bilinear entropy expansion lemma (step one)). Under the $D D H_{p_{2}}^{H_{N}}, S D_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}, D D H_{p_{3}}^{H_{N}}, S D_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}$ assumptions, we have

$$
\left\{\begin{array}{l}
\text { aux : } g_{1}, g_{1}^{w_{0}}, g_{1}^{w_{1}}, g_{2} \\
\text { ct : }\left\{g_{1}^{s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \\
\text { sk: }\left\{h_{123}^{r_{j}}, h_{123}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} \approx_{c}\left\{\begin{array}{l}
\text { aux : } g_{1}, g_{1}^{w_{0}}, g_{1}^{w_{1}}, g_{2} \\
\text { ct : }\left\{g_{1}^{s_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot g_{2}^{s_{j} u_{j}}, g_{1}^{s_{j}} \cdot g_{2}^{s_{j}},\right\}_{j \in[n]} \\
\text { sk: } \left.\left\{h_{13}^{r_{j}} \cdot h_{2}^{r_{j}}, h_{13}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}}\right\}\right\}_{j \in[n]}
\end{array}\right\}
$$

where

$$
w_{0}, w_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, s_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}
$$

Concretely, the distinguishing advantage $\operatorname{Adv}_{\mathcal{A}}{ }^{\text {STEP1 }}(\lambda)$ is at most

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{B}_{0}}^{\operatorname{DDH}_{p_{2}} H_{N}}(\lambda)+n \cdot\left(\operatorname{Adv}_{\mathcal{B}_{1}}^{\operatorname{SD}_{p_{N} \mapsto p_{1} p_{3}}^{G_{N}}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{2}} \mathrm{DDH}_{p_{3}}^{H_{N}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{4}}^{\mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}}(\lambda)\right. \\
+ & \left.\operatorname{Adv}_{\mathcal{B}_{6}}^{\operatorname{DDH}_{p_{3}}^{H_{N}}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{7}}^{\operatorname{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}}(\lambda)\right)
\end{aligned}
$$

where $\operatorname{Time}\left(\mathcal{B}_{0}\right)$, $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right)$, $\operatorname{Time}\left(\mathcal{B}_{4}\right)$, Time $\left(\mathcal{B}_{6}\right)$, Time $\left(\mathcal{B}_{7}\right) \approx$ Time (\mathcal{A}).

Note that sk in the LHS of this lemma has an extra h_{23}-component, which we may introduce using the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{H_{N}}$ and $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{H_{N}}$ assumption. The proof of this lemma is fairly involved, and we defer the proof to Sect.3.3.

Lemma 4 (Bilinear entropy expansion lemma (step two)). Under the $D D H_{p_{2}}^{H_{N}}$ assumption, we have

$$
\left\{\begin{array}{l}
\mathrm{aux}: g_{1}, g_{1}^{w}, h_{1}, h_{1}^{w} \\
\mathrm{ct}: g_{2}^{s},\left\{g_{2}^{s w} \cdot g_{2}^{s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\text { sk: }\left\{h_{2}^{r_{j} w}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\} \approx_{c}\left\{\begin{array}{l}
\mathrm{aux}: g_{1}, g_{1}^{w}, h_{1}, h_{1}^{w} \\
\mathrm{ct}: g_{2}^{s},\left\{g_{2}^{s v_{j}} \cdot g_{2}^{s_{j} u_{j}}, g_{2}^{s_{j}}\right\}_{j \in[n]} \\
\text { sk: }\left\{h_{2}^{r_{j} v_{j}}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
\end{array}\right\}
$$

where

$$
w \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, v_{j}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, s, s_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}
$$

Concretely, the distinguishing advantage $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{STEP} 2}(\lambda)$ is at most $\operatorname{Adv}_{\mathcal{B}_{8}}^{\mathrm{DDH}_{p_{2}}}{ }^{H_{N}}(\lambda)$ where $\operatorname{Time}\left(\mathcal{B}_{8}\right) \approx \operatorname{Time}(\mathcal{A})$.

Proof. This follows from the $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption, which tells us that

$$
\left\{h_{2}^{r_{j}}, h_{2}^{r_{j} w}\right\}_{j \in[n]} \approx_{c}\left\{h_{2}^{r_{j}}, h_{2}^{r_{j} v_{j}}\right\}_{j \in[n]} .
$$

The adversary \mathcal{B}_{8} on input $\left\{h_{2}^{r_{j}}, T_{j}\right\}_{j \in[n]}$ along with $g_{1}, g_{2}, h_{1}, h_{2}$, picks $\tilde{w}, s, s_{j}, \tilde{u}_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ (and implicitly sets $u_{j}=\frac{1}{s_{j}}\left(\tilde{u}_{j}-s w\right)$), then runs \mathcal{A} on input

$$
\left\{\begin{array}{l}
\text { aux : } g_{1}, g_{1}^{\tilde{w}}, h_{1}, h_{1}^{\tilde{w}} \\
\text { ct : } g_{2}^{s},\left\{g_{2}^{\tilde{u}_{j}}, g_{2}^{s_{j}}\right\}_{j_{j \in[n]}} \\
\text { sk: }\left\{T_{j}, h_{2}^{r_{j}},\left(h_{2}^{r_{j}}\right)^{\frac{u_{j}}{s_{j}}} \cdot T_{j}^{-\frac{s}{s_{j}}}\right\}_{j \in[n]}
\end{array}\right\} .
$$

By the Chinese Remainder Theorem, we have $\left(g_{1}^{w}, h_{1}^{w}, g_{2}^{w}, h_{2}^{w}\right) \equiv$ $\left(g_{1}^{\tilde{w}}, h_{1}^{\tilde{w}}, g_{2}^{w}, h_{2}^{w}\right)$, where $w, \tilde{w} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$. Next, observe that

- When $T_{j}=g^{r_{j} w}$ and if we write $r_{j} u_{j}=r_{j} \cdot \frac{\tilde{u}_{j}}{s_{j}}+r_{j} w \cdot\left(-\frac{s}{s_{j}}\right)$, then $\tilde{u}_{j}=s w+s_{j} u_{j}$ and the distribution we feed to \mathcal{A} is exactly that of the left distribution.
- When $T_{j}=g^{r_{j} v_{j}}$ and if we write $r_{j} u_{j}=r_{j} \cdot \frac{\tilde{u}_{j}}{s_{j}}+r_{j} v_{j} \cdot\left(-\frac{s}{s_{j}}\right)$, then $\tilde{u}_{j}=$ $s v_{j}+s_{j} u_{j}$ and the distribution we feed to \mathcal{A} is exactly that of the right distribution.

This completes the proof.

3.3 Entropy Expansion Lemma: Step One

Proof Overview. First, we note that we can adapt the proof of the LewkoWaters IBE $[8,20]^{5}$ to show that under $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}$ and $\mathrm{DDH}_{p_{3}}^{H_{N}}$ assumptions,

[^4]we have that for each $i \in[n]$:

We can then use the $\mathrm{SD}_{p_{3} \mapsto p_{2} p_{3}}^{G_{N}}$ assumption to argue that

$$
\left(g_{3}^{s_{i}}, g_{3}^{s_{i} u_{i}}\right) \approx_{c}\left(g_{3}^{s_{i}} \cdot g_{2}^{s_{i}}, g_{3}^{s_{i} u_{i}} \cdot g_{2}^{s_{i} u_{i}}\right)
$$

Roughly speaking, we will then repeat the above argument n times for each $i \in[n]$ (see Sub-Game $i_{i, 1}$ through Sub-Game ${ }_{i, 4}$ below). Here, there is an additional complication arising from the fact that in order to invoke the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}$ assumption, we need to simulate sk given only h_{1}, h_{13}, h_{2}. To do this, we need to switch sk back to $\left\{h_{13}^{r_{j}}, h_{13}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}$, which we do in Sub-Game ${ }_{i, 5}$ through Sub-Game ${ }_{i, 7}$.

At this point, we are almost done, except we still need to introduce a $\left(h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right)$-component into sk. We will handle this at the very beginning of the proof (cf. Game ${ }_{0^{\prime}}$). Fortunately, we can carry out the above argument even with the extra $\left(h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right)$-component in sk.

Actual Proof. We prove step one of the entropy expansion lemma in Lemma 3 via the following game sequence. Each claim will be followed by a proof sketch but a formal proof is omitted. $\mathrm{By} \mathrm{ct}_{j}$ (resp. sk_{j}), we denote the j 'th tuple of ct (resp. sk).
$\underline{\text { Game }_{0} .}$ This is the left distribution in Lemma 3:

$$
\left\{\begin{array}{l}
\mathrm{aux}: g_{1}, g_{1}^{w_{0}}, g_{1}^{w_{1}}, g_{2} \\
\mathrm{ct}:\left\{g_{1}^{s_{j}\left(w_{0}+j \cdot w_{1}\right)}, g_{1}^{s_{j}}\right\}_{j \in[n]} \\
\text { sk: }\left\{h_{123}^{r_{j}}, h_{123}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}
\end{array}\right\} .
$$

Game $_{0^{\prime}}$. We modify sk as follows:

$$
\text { sk : }\left\{h_{13}^{r_{j}} \cdot h_{2}^{r_{j}}, h_{13}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}
$$

where $u_{1}, \ldots, u_{n} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$. We claim that Game ${ }_{0} \approx_{c}$ Game $_{0^{\prime}}$. This follows from the $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption, which tells us that

$$
\left\{h_{2}^{r_{j}}, h_{2}^{r_{j} w_{0}}\right\}_{j \in[n]} \approx_{c}\left\{h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}^{\prime}}\right\}_{j \in[n]} \text { given } g_{1}, g_{2}, h_{13}
$$

where $u_{j}^{\prime} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and we will then implicitly set $u_{j}=u_{j}^{\prime}+j \cdot w_{1}$ for all $j \in[n]$. In the security reduction, we use the fact that aux, ct leak no information about $w_{0} \bmod p_{2}$.
$\operatorname{Game}_{i}(i=1, \ldots, n+1)$. We modify ct as follows:

$$
\begin{array}{rlll}
\mathrm{ct}: & \left\{g_{1}^{s_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot \sqrt[g_{2}^{s_{j} u_{j}},]{ },\right. & g_{1}^{s_{j}} \cdot g_{2}^{s_{j}} & \}_{j<i} \\
& \left\{g_{1}^{s_{j}\left(w_{0}+j \cdot w_{1}\right)},\right. & g_{1}^{s_{j}} & \}_{j \geq i}
\end{array}
$$

where u_{1}, \ldots, u_{i-1} are defined as in Game $0_{0^{\prime}}$. It is easy to see that Game ${ }_{0^{\prime}} \equiv$ Game_{1}. To show that $\mathrm{Game}_{i} \approx_{c} \mathrm{Game}_{i+1}$, we will require another sequence of sub-games.
Sub-Game ${ }_{i, 1}$. Identical to Game $_{i}$ except that we modify ct $_{i}$ as follows:

$$
\mathrm{ct}_{i}:\left\{g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot g_{3}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)}, g_{1}^{s_{i}} \cdot g_{3}^{s_{i}}\right\}
$$

We claim that Game ${ }_{i} \approx_{c}$ Sub-Game $i_{i, 1}$. This follows from the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}$ assumption, which tells us that

$$
g_{1}^{s_{i}} \approx_{c} g_{1}^{s_{i}} \cdot g_{3}^{s_{i}} \text { given } g_{1}, g_{2}, h_{13}, h_{2}
$$

In the reduction, we will sample $w_{0}, w_{1}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and use g_{1}, g_{2} to simulate aux, $\left\{\mathrm{ct}_{j}\right\}_{j \neq i}$ and h_{13}, h_{2} to simulate sk.
Sub-Game $_{i, 2}$. We modify the distribution of sk_{j} for all $j \neq i$ (while keeping sk ${ }_{i}$ unchanged):

$$
\mathrm{sk}_{j}(j \neq i): h_{1}^{r_{j}} \cdot h_{2}^{r_{j}} \cdot h_{3}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}} \cdot h_{3}^{r_{j} u_{j}}
$$

We claim that Sub-Game $i_{i, 1} \approx_{c}$ Sub-Game ${ }_{i, 2}$. This follows from the $\mathrm{DDH}_{p_{3}}^{H_{N}}$ assumption, which tells us that

$$
\left\{h_{3}^{r_{j}}, h_{3}^{r_{j} w_{1}}\right\}_{j \neq i} \approx_{c}\left\{h_{3}^{r_{j}}, h_{3}^{r_{j} u_{j}^{\prime}}\right\}_{j \neq i} \text { given } g_{1}, g_{2}, g_{3}, h_{1}, h_{2}, h_{3}
$$

where $u_{j}^{\prime} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$. In the reduction, we will program $w_{0}:=\tilde{w}_{0}-i \cdot w_{1} \bmod p_{3}$ with $\tilde{w}_{0} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ so that we can simulate $g_{3}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)}$ in ct_{i}, and then implicitly set $u_{j}=\tilde{w}_{0}+(j-i) \cdot u_{j}^{\prime} \bmod p_{3}$ for all $j \neq i$.
Sub-Game ${ }_{i, 3}$. We modify the distribution of ct_{i} and sk_{i} simultaneously:

$$
\begin{aligned}
& \mathrm{ct}_{i}: g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot g_{3}^{s_{i} u_{i}}, g_{1}^{s_{i}} \cdot g_{3}^{s_{i}} \\
& \mathrm{sk}_{i}: h_{1}^{r_{i}} \cdot h_{2}^{r_{i}} \cdot h_{3}^{r_{i}}, h_{1}^{r_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot h_{2}^{r_{i} u_{i}} \cdot h_{3}^{r_{i} u_{i}}
\end{aligned}
$$

We claim that Sub-Game $i_{i, 2} \equiv$ Sub-Game ${ }_{i, 3}$. This follows from the fact that for all $j \neq i$, the quantity $w_{0}+j \cdot w_{1} \bmod p_{3}$ leaked in $s k_{j}$ is masked by u_{j} and therefore $\left\{w_{0}+i \cdot w_{1} \bmod p_{3}\right\} \equiv\left\{u_{i} \bmod p_{3}\right\}$.
Sub-Game $_{i, 4}$. We modify the distribution of ct_{i} as follows:

$$
\mathrm{ct}_{i}: g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot g_{2}^{s_{i} u_{i}} \cdot g_{3}^{s_{i} u_{i}}, g_{1}^{s_{i}} \cdot g_{2}^{s_{i}} \cdot g_{3}^{s_{i}}
$$

We claim that Sub-Game $i_{i, 3} \approx_{c}$ Sub-Game ${ }_{i, 4}$. This follows from the $\mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}$ assumption, which tells us that

$$
g_{3}^{s_{i}} \approx_{c} g_{2}^{s_{i}} \cdot g_{3}^{s_{i}} \text { given } g_{1}, g_{2}, h_{1}, h_{23} .
$$

In the reduction, we will sample $w_{0}, w_{1}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and use g_{1}, g_{2} to simulate aux, $\left\{\mathrm{ct}_{j}\right\}_{j \neq i}$. In addition, we will use generator h_{23} to sample $\left\{h_{2}^{r_{j}} \cdot h_{3}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right.$. $\left.h_{3}^{r_{j} u_{j}}\right\}_{j \in[n]}$ in sk.
Sub-Game ${ }_{i, 5}$. We modify the distribution of ct_{i} and sk_{i} :

$$
\begin{aligned}
& \mathrm{ct}_{i}: g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot g_{2}^{s_{i} u_{i}} \cdot g_{3}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)}, g_{1}^{s_{i}} \cdot g_{2}^{s_{i}} \cdot g_{3}^{s_{i}} \\
& \mathrm{sk}_{i}: h_{1}^{r_{i}} \cdot h_{2}^{r_{i}} \cdot h_{3}^{r_{i}}, h_{1}^{r_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot h_{2}^{r_{i} u_{i}} \cdot h_{3}^{r_{i}\left(w_{0}+i \cdot w_{1}\right)}
\end{aligned}
$$

We claim that Sub-Game $e_{i, 4} \equiv$ Sub-Game $e_{i, 5}$. The proof is completely analogous to that of Sub-Game $i_{i, 2} \equiv$ Sub-Game $_{i, 3}$.
Sub-Game ${ }_{i, 6}$. We modify the distribution of sk_{j} for all $j \neq i$:

$$
\operatorname{sk}_{j}(j \neq i): h_{1}^{r_{j}} \cdot h_{2}^{r_{j}} \cdot h_{3}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}} \cdot h_{3}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}
$$

We claim that Sub-Game $i_{, 5} \approx_{c}$ Sub-Game $_{i, 6}$. The proof is completely analogous to that of Sub-Game ${ }_{i, 1} \approx_{c}$ Sub-Game $_{i, 2}$.
Sub-Game ${ }_{i, 7}$. We modify the distribution of ct_{i} :

$$
\mathrm{ct}_{i}: g_{1}^{s_{i}\left(w_{0}+i \cdot w_{1}\right)} \cdot g_{2}^{s_{i} u_{i}} \cdot g_{3}^{s_{i}\left(w_{0}+i w_{1}\right)}, g_{1}^{s_{i}} \cdot g_{2}^{s_{i}} \cdot g g_{3}^{s /}
$$

We claim that Sub-Game $i_{i, 6} \approx_{c}$ Sub-Game $_{i, 7}$. The proof is completely analogous to that of Game $i_{i} \approx_{c}$ Sub-Game $_{i, 1}$. Furthermore, observe that Sub-Game ${ }_{i, 7}$ is actually identical to Game ${ }_{i+1}$.
$\underline{\text { Game }_{n+1} \text {. In Game }}$ n+1 , we have:

This is exactly the right distribution of Lemma 3.

4 KP-ABE for Monotone Span Programs in Composite-Order Groups

In this section, we present our adaptively secure, unbounded KP-ABE for monotone span programs based on static assumptions in composite-order groups (cf. Sect. 3.1).

4.1 Construction

Setup $\left(1^{\lambda}, 1^{n}\right)$: On input $\left(1^{\lambda}, 1^{n}\right)$, sample $\mathbb{G}:=\left(N=p_{1} p_{2} p_{3}, G_{N}, H_{N}, G_{T}, e\right) \leftarrow$ $\mathcal{G}\left(1^{\lambda}\right)$ and select random generators g_{1}, h_{1} and h_{123} of $G_{p_{1}}, H_{p_{1}}$ and H_{N}, respectively. Pick

$$
w, w_{0}, w_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, \alpha \leftarrow_{\mathrm{R}} \mathbb{Z}_{N},
$$

a pairwise independent hash function $\mathrm{H}: G_{T} \rightarrow\{0,1\}^{\lambda}$, and output the master public and secret key pair

$$
\begin{aligned}
\mathrm{mpk} & :=\left(\left(N, G_{N}, H_{N}, G_{T}, e\right) ; g_{1}, g_{1}^{w}, g_{1}^{w_{0}}, g_{1}^{w_{1}}, e\left(g_{1}, h_{123}\right)^{\alpha} ; \mathrm{H}\right) \\
\mathrm{msk} & :=\left(h_{123}, h_{1}, \alpha, w, w_{0}, w_{1}\right) .
\end{aligned}
$$

Enc(mpk, $\mathbf{x}, m)$: On input an attribute vector $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ and $m \in\{0,1\}^{\lambda}$, pick $s, s_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ for all $j \in[n]$ and output

$$
\mathrm{ct}_{\mathbf{x}}:=\left(\begin{array}{c}
C_{0}:=g_{1}^{s},\left\{C_{1, j}:=g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)}, C_{2, j}:=g_{1}^{s_{j}}\right\}_{j: x_{j}=1}, \\
C:=\mathrm{H}\left(e\left(g_{1}, h_{123}\right)^{\alpha s}\right) \cdot m \\
\in G_{N}^{2 n+1} \times\{0,1\}^{\lambda} .
\end{array}\right.
$$

KeyGen(mpk, msk, M): On input a monotone span program $\mathbf{M} \in \mathbb{Z}_{N}^{n \times \ell^{\prime}}$, pick $\mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$ and $r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ for all $j \in[n]$, and output

$$
\mathbf{s k}_{\mathbf{M}}:=\left(\left\{K_{0, j}:=h_{123}^{\mathbf{M}_{j}\binom{\alpha}{\mathbf{u}}} \cdot h_{1}^{r_{j} w}, K_{1, j}:=h_{1}^{r_{j}}, K_{2, j}:=h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}\right) \in H_{N}^{3 n} .
$$

$\operatorname{Dec}\left(\mathrm{mpk}, \mathrm{sk}_{\mathbf{M}}, \mathrm{ct}_{\mathbf{x}}\right)$: If \mathbf{x} satisfies \mathbf{M}, compute $\omega_{1}, \ldots, \omega_{n} \in \mathbb{Z}_{p}$ such that

$$
\sum_{j: x_{j}=1} \omega_{j} \mathbf{M}_{j}=\mathbf{1}
$$

Then, compute

$$
K \leftarrow \prod_{j: x_{j}=1}\left(e\left(C_{0}, K_{0, j}\right) \cdot e\left(C_{1, j}, K_{1, j}\right)^{-1} \cdot e\left(C_{2, j}, K_{2, j}\right)\right)^{\omega_{j}}
$$

and recover the message as $m \leftarrow C / \mathrm{H}(K) \in\{0,1\}^{\lambda}$.
It is direct to prove the correctness and we omit the detail here.

4.2 Proof of Security

We prove the following theorem:
Theorem 1. Under the subgroup decision assumptions and the subgroup DiffieHellman assumptions (cf. Sect.3.1), the unbounded KP-ABE scheme described in this section (cf. Sect. 4.1) is adaptively secure (cf. Sect. 2.2).

Main Technical Lemma. We prove the following technical lemma. Our proof consists of two steps. We first apply the entropy expansion lemma (see Lemma 2) and obtain a copy of the LOSTW KP-ABE (variant there-of) in the p_{2}-subgroup. We may then carry out the classic dual system methodology used for establishing adaptive security of the LOSTW KP-ABE in the p_{2}-subgroup with the p_{3}-subgroup as the semi-functional space.

Lemma 5. For any adversary \mathcal{A} that makes at most Q key queries against the unbounded KP-ABE scheme, there exist adversaries $\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{2}$ such that:
$\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ABE}}(\lambda) \leq \operatorname{Adv}_{\mathcal{B}_{0}}^{\operatorname{ExPLEM}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{SD}_{2} G_{2_{N}}{ }^{G_{N}} p_{2} p_{3}}(\lambda)+Q \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{\operatorname{SD}_{p_{2} \mapsto p_{2} p_{3}}^{H_{N}}}(\lambda)+Q \cdot \operatorname{Adv}_{\mathcal{B}_{3}}^{\operatorname{SD}_{p_{N} \rightarrow p_{2} p_{3}}^{H_{N}}}(\lambda)$
where $\operatorname{Time}\left(\mathcal{B}_{0}\right)$, $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right), \operatorname{Time}\left(\mathcal{B}_{3}\right) \approx \operatorname{Time}(\mathcal{A})$. In particular, we achieve security loss $O(n+Q)$ based on the $S D_{p_{1} \mapsto p_{1} p_{2}}^{H_{N}}, S D_{p_{1} \mapsto p_{1} p_{3}}^{H_{N}}, S D_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$, $D D H_{p_{2}}^{H_{N}}, S D_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}, D D H_{p_{3}}^{H_{N}}, S D_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}, S D_{p_{2} \mapsto p_{2} p_{3}}^{G_{N}}, S D_{p_{2} \mapsto p_{2} p_{3}}^{H_{N}}$ assumptions.

The proof follows a series of games based on the dual system methodology (see Fig. 4). We first define the auxiliary distributions, upon which we can describe the games.

Fig. 4. Game sequence for our composite-order unbounded KP-ABE.

Auxiliary Distributions. We define various forms of a ciphertext (of message m under attribute vector \mathbf{x}):

- Normal: Generated by Enc.
- E-normal: Same as a normal ciphertext except that a copy of normal ciphertext is created in $G_{p_{2}}$ and then we use the substitution:

$$
\begin{equation*}
w \mapsto v_{j} \bmod p_{2} \text { in } j \text { 'th component } \quad \text { and } \quad w_{0}+j \cdot w_{1} \mapsto u_{j} \bmod p_{2} \tag{10}
\end{equation*}
$$

where $v_{j}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$. Concretely, an E-normal ciphertext is of the form

$$
\mathrm{ct}_{\mathbf{x}}:=\binom{g_{1}^{s} \cdot \boxed{g_{2}^{s}},\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot \sqrt[g_{2}^{s v_{j}+s_{j} u_{j}}]{ }, g_{1}^{s_{j}} \cdot \sqrt[g_{2}^{s_{j}}]{ }\right\}_{j: x_{j}=1},}{\mathrm{H}\left(e\left(g_{1}^{s} \cdot \cdot g_{2}^{s}, h_{123}^{\alpha}\right)\right) \cdot m}
$$

where g_{2} is a random generator of $G_{p_{2}}$ and $s, s_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$.

- SF: Same as E-normal ciphertext except that we copy all entropy from $G_{p_{2}}$ to $G_{p_{3}}$. Concretely, an SF ciphertext is of the form

$$
\mathrm{ct}_{\mathbf{x}}:=\left(\begin{array}{l}
g_{1}^{s} \cdot g_{2}^{s} \cdot \sqrt[g_{3}^{s}]{ }, \\
\left\{g_{1}^{s w+s_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot g_{2}^{s v_{j}+s_{j} u_{j}} \cdot \overline{g_{3}^{s v_{j}+s_{j} u_{j}}}, g_{1}^{s_{j}} \cdot g_{2}^{s_{j}} \cdot \sqrt[g_{3}^{s_{j}}]{ }\right\}_{j: x_{j}=1}, \\
\mathrm{H}\left(e\left(g_{1}^{s} \cdot g_{2}^{s} \cdot \sqrt[g_{3}^{s}]{ }, h_{123}^{\alpha}\right)\right) \cdot m
\end{array}\right)
$$

where g_{3} is a random generator of $G_{p_{3}}$ and $s, s_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$.
Then we pick $\hat{\alpha} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and define various forms of a key (for span program \mathbf{M}):

- Normal: Generated by KeyGen.
- E-normal: Same as a normal key except that a copy of $\left\{h_{1}^{r_{j} w}, h_{1}^{r_{j}}\right.$, $\left.h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)}\right\}_{j \in[n]}$ is created in $H_{p_{2}}$ and use the same substitution as in (10). Concretely, an E-normal key is of the form
where h_{123}, h_{1} and h_{2} are respective random generators of $H_{N}, H_{p_{1}}$ and $H_{p_{2}}$, $\mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$ and $r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$.
- P-normal: Same as E-normal key except that a copy of $\left\{h_{2}^{r_{j} v_{j}}, h_{2}^{r_{j}}, h_{2}^{r_{j} u_{j}}\right\}_{j \in[n]}$ is created in $H_{p_{3}}$. Concretely, a P-normal key is of the form

$$
\mathbf{s k}_{\mathrm{M}}:=\left(\left\{\begin{array}{c}
h_{12}^{\mathrm{M}_{2}(\alpha)}, h_{1}^{r_{j} w} \cdot h_{2}^{r_{j} v_{j}} \cdot \cdot \sqrt[h_{3}^{r_{j} v_{j}}]{ }, \\
h_{1}^{r_{j}} \cdot h_{2}^{r_{j}} \cdot \cdot h_{3}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}} \cdot h_{3}^{r_{j} u_{j}}
\end{array}\right\}_{j \in[n]}\right)
$$

where h_{3} is a random generator of $H_{p_{3}}, \mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$ and $r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$.

- P-SF: Same as P-normal key except that $\hat{\alpha}$ is introduced in $H_{p_{3}}$. Concretely, a P-SF key is of the form

$$
\mathbf{s k}_{\mathbf{M}}:=\left(\left\{\begin{array}{l}
h_{123}^{\left.\mathbf{M}_{j}\binom{\alpha}{\mathbf{u}} \cdot h_{\mathbf{M}_{3}(\hat{\alpha})}^{\mathbf{\alpha}}\right)} \cdot h_{\mathbf{o}_{j}^{r_{j} w}} \cdot h_{2}^{r_{j} v_{j}} \cdot h_{3}^{r_{j} v_{j}}, \\
h_{1}^{r_{j}} \cdot h_{2}^{r_{j}} \cdot h_{3}^{r_{j}}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}} \cdot h_{3}^{r_{j} u_{j}}
\end{array}\right\}_{j \in[n]}\right)
$$

where $\mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$ and $r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$.

- SF: Same as P-SF key except that $\left\{h_{3}^{r_{j} v_{j}}, h_{3}^{r_{j}}, h_{3}^{r_{j} u_{j}}\right\}_{j \in[n]}$ is removed. Concretely, a SF key is of the form

$$
\mathbf{s k}_{\mathbf{M}}:=\left(\left\{\begin{array}{c}
h_{123}^{\mathbf{M}_{j}\binom{\alpha}{\mathbf{u}} \cdot h_{3}^{\mathbf{M}_{j}\binom{\hat{\alpha}}{\mathbf{0}} \cdot h_{1}^{r_{j} w} \cdot h_{2}^{r_{j} v_{j}} \cdot h^{r_{j} y}},} \\
h_{1}^{r_{j}} \cdot h_{2}^{r_{j}} \cdot h^{r / /}, h_{1}^{r_{j}\left(w_{0}+j \cdot w_{1}\right)} \cdot h_{2}^{r_{j} u_{j}} \cdot h^{r_{j} y s}
\end{array}\right\}_{j \in[n]}\right)
$$

where $\mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$ and $r_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$.
Here E, P, SF means "expanded", "pesudo", "semi-functional", respectively.

Games. We describe the game sequence in detail. For each following claim, we omit its formal proof but provide a proof sketch instead.
Game $_{0}$. The real security game (cf. Sect. 2.2) where keys and ciphertext are normal.
Game ${ }_{0}^{\prime}$. Identical to $G_{a m e}$ except that all keys and the challenge ciphertext are E-normal. We claim that Game ${ }_{0} \approx_{c} \mathrm{Game}_{0^{\prime}}$. This follows from the entropy expansion lemma (see Lemma 2). In the reduction, on input

$$
\left\{\begin{array}{l}
\text { aux : } g_{1}, g_{1}^{w}, g_{1}^{w_{0}}, g_{1}^{w_{1}} \\
\text { ct : } C_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j \in[n]} \\
\text { sk: }\left\{K_{0, j}, K_{1, j}, K_{2, j}\right\}_{j \in[n]}
\end{array}\right\},
$$

we select a random generator h_{123} of H_{N}, sample $\alpha \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, \mathbf{u}_{\kappa} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$, $\tilde{r}_{j, \kappa} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ for $j \in[n]$ and $\kappa \in[Q]$, and simulate the game with

$$
\left\{\begin{array}{l}
\mathrm{mpk}: \text { aux, } e\left(g_{1}, h_{123}\right)^{\alpha} \\
\mathrm{ct}_{\mathbf{x}^{*}}:\left\{C_{0}, C_{1, j}, C_{2, j}\right\}_{j: x_{j}^{*}=1}, e\left(C_{0}, h_{123}^{\alpha}\right) \cdot m_{b} \\
\operatorname{sk}_{\mathbf{M}}^{\kappa}:\left\{h_{123}^{\mathbf{M}_{j}}\left(\mathbf{u}_{\kappa}\right)\right.
\end{array}\right\} .
$$

Game $_{i}$. Identical to Game 0^{\prime} except that the first $i-1$ keys and the challenge ciphertext is SF. We claim that Game $0_{0^{\prime}} \approx_{c}$ Game $_{1}$. This follows from the $\mathrm{SD}_{p_{2} \mapsto p_{2} p_{3}}^{G_{N}}$ assumption, which asserts that

$$
\left(g_{2}^{s},\left\{g_{2}^{s_{j}}\right\}_{j \in[n]}\right) \approx_{c}\left(g_{2}^{s} \cdot g_{3}^{s},\left\{g_{2}^{s_{j}} \cdot g_{3}^{s_{j}}\right\}_{j \in[n]}\right) \text { given } g_{1}, h_{1}, h_{2}
$$

In the reduction, we sample $w, w_{0}, w_{1}, v_{j}, u_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}, h_{123} \leftarrow_{\mathrm{R}} H_{N}, \alpha \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and simulate $\mathrm{mpk}, \mathrm{sk}_{\mathrm{M}}^{\kappa}$ honestly. To show that $\mathrm{Game}_{i} \approx_{c} \mathrm{Game}_{i+1}$, we will require another sequence of sub-games.
Game $_{i, 1}$. Identical to $G^{\prime} e_{i}$ except that the i 'th key is P-normal. We claim that $\overline{\mathrm{Game}_{i}} \approx_{c} \mathrm{Game}_{i, 1}$. This follows from $\mathrm{SD}_{p_{2} \mapsto p_{2} p_{3}}^{H_{N}}$ assumption which asserts that

$$
\left\{h_{2}^{r_{j}}\right\}_{j \in[n]} \approx_{c}\left\{h_{2}^{r_{j}} \cdot h_{3}^{r_{j}}\right\}_{j \in[n]} \text { given } g_{1}, g_{23}, h_{1}, h_{2}, h_{3}
$$

In the reduction, we sample $w, w_{0}, w_{1}, v_{j}, u_{j}, \alpha, \hat{\alpha} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and select a random generator h_{123} of H_{N}, and simulate $\mathrm{mpk}, \mathrm{ct},\left\{\mathrm{sk}_{\mathrm{M}}^{\kappa}\right\}_{\kappa \neq i}$ honestly.

Game $_{i, 2}$. Identical to Game_{i} except that the i 'th key is P-SF. We claim that $\overline{G a m e}_{i, 1} \equiv$ Game $_{i, 2}$. This follows from Lemma 1 in Sect. 2 which ensures that for any \mathbf{x} that does not satisfy \mathbf{M},

$$
\begin{aligned}
& (\overbrace{h_{2},\left\{h_{2}^{v_{j}}\right\}_{j \in[n]}, \alpha, \hat{\alpha}}^{\kappa \text { 'th sk, } \kappa \neq i} ; \overbrace{\left\{g_{2}, g_{2}^{v_{j}}, g_{3}, g_{3}^{v_{j}}\right\}_{j: x_{j}=1}}^{\text {SF ct }} ; \overbrace{\left\{h_{123}^{\left.\mathbf{M}_{j}\binom{\alpha}{\mathbf{u}} \cdot h_{3}^{r_{j} v_{j}}, h_{3}^{r_{j}}\right\}_{j \in[n]}}\right.}^{\text {P-normal } i \text { 'th sk }})
\end{aligned}
$$

where $v_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$ and $\mathbf{u} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}^{\ell^{\prime}-1}$, and for all α, $\hat{\alpha}$, and $r_{j} \neq 0 \bmod p_{3}$. It is straight-forward to compute the remaining terms in mpk, the challenge ciphertext and the Q secret keys by sampling $g_{1}, w, w_{0}, w_{1}, u_{j}, s, s_{j}$ ourselves.
Game $_{i, 3}$. Identical to Game ${ }_{i}$ except that the i 'th key is SF. We claim that $\mathrm{Game}_{i, 2} \approx_{c} \mathrm{Game}_{i, 3}$. The proof is completely analogous to that of Game ${ }_{i} \approx_{c}$ Game $_{i, 1}$. Furthermore, observe that Game ${ }_{i, 3}$ is actually identical to Game ${ }_{i+1}$.
Game $_{\text {Final }}$. Identical to Game_{Q+1} except that the challenge ciphertext is a SF one for a random message in G_{T}. We claim that Game $_{Q+1} \equiv$ Game $_{\text {Final }}$. This follows from the fact that

$$
(\overbrace{e\left(g_{1}, h_{123}^{\alpha}\right)}^{\mathrm{mpk}}, \overbrace{h_{123}^{\alpha} \cdot h_{3}^{\alpha}}^{\mathrm{SF}}, \overbrace{e\left(g_{123}^{s}, h_{123}^{\alpha}\right)}^{\mathrm{SF} \mathrm{ct}}) \equiv\left(e\left(g_{1}, h_{123}^{\alpha}\right), h_{123}^{\alpha}, e\left(g_{123}^{s}, h_{123}^{\alpha} \cdot h_{3}^{\hat{\alpha}}\right)\right)
$$

where g_{123}, h_{123} and h_{3} are respective random generators of G_{N}, H_{N} and $H_{p_{3}}$, $\alpha, \hat{\alpha} \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$. The message m_{b} is statistically hidden by $e\left(g_{123}^{s}, h_{3}^{\hat{\alpha}}\right)$. In Game ${ }_{\text {Final }}$, the view of the adversary is statistically independent of the challenge bit b. Hence, $A \operatorname{Adv}_{\text {Final }}=0$.

5 Simulating Composite-Order Groups in Prime-Order Groups

We build upon and extend the previous framework of Chen et al. [6,11] for simulating composite-order groups in prime-order ones. We provide prime-order analogues of the static assumptions $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}, \mathrm{DDH}_{p_{1}}^{H_{N}}$ used in the previous sections. Moreover, we show that these prime-order analogues follow from the standard k-Linear assumption (and more generally, the MDDH assumption [9]) in prime-order bilinear groups.

Additional Notation. Let \mathbf{A} be a matrix over \mathbb{Z}_{p}. We use span(A) to denote the column span of \mathbf{A}, and we use $\operatorname{span}^{\ell}(\mathbf{A})$ to denote matrices of width ℓ where each column lies in $\operatorname{span}(\mathbf{A})$; this means $\mathbf{M} \leftarrow_{R} \operatorname{span}^{\ell}(\mathbf{A})$ is a random matrix of width ℓ where each column is chosen uniformly from $\operatorname{span}(\mathbf{A})$. We use basis(A)
to denote a basis of span (\mathbf{A}), and we use $\left(\mathbf{A}_{1} \mid \mathbf{A}_{2}\right)$ to denote the concatenation of matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$. If \mathbf{A} is a m-by- n matrix with $m>n$, we use $\overline{\mathbf{A}}$ to denote the sub-matrix consisting of the first n rows and $\underline{\mathbf{A}}$ the sub-matrix with remaining $m-n$ rows. We let \mathbf{I}_{n} be the n-by- n identity matrix and $\mathbf{0}$ be a zero matrix whose size will be clear from the context.

5.1 Prime-Order Groups and Matrix Diffie-Hellman Assumptions

A generator \mathcal{G} takes as input a security parameter λ and outputs a description $\mathbb{G}:=\left(p, G_{1}, G_{2}, G_{T}, e\right)$, where p is a prime of $\Theta(\lambda)$ bits, G_{1}, G_{2} and G_{T} are cyclic groups of order p, and $e: G_{1} \times G_{2} \rightarrow G_{T}$ is a non-degenerate bilinear map. We require that the group operations in G_{1}, G_{2} and G_{T} as well the bilinear map e are computable in deterministic polynomial time with respect to λ. Let $g_{1} \in G_{1}$, $g_{2} \in G_{2}$ and $g_{T}=e\left(g_{1}, g_{2}\right) \in G_{T}$ be the respective generators. We employ the implicit representation of group elements: for a matrix \mathbf{M} over \mathbb{Z}_{p}, we define $[\mathbf{M}]_{1}:=g_{1}^{\mathbf{M}},[\mathbf{M}]_{2}:=g_{2}^{\mathbf{M}},[\mathbf{M}]_{T}:=g_{T}^{\mathbf{M}}$, where exponentiation is carried out component-wise. Also, given $[\mathbf{A}]_{1},[\mathbf{B}]_{2}$, we let $e\left([\mathbf{A}]_{1},[\mathbf{B}]_{2}\right)=[\mathbf{A B}]_{T}$.

We define the matrix Diffie-Hellman (MDDH) assumption on $G_{1}[9]$:
Assumption 3 ($\mathbf{M D D H}_{k, \ell}^{m}$ Assumption). Let $\ell>k \geq 1$ and $m \geq 1$. We say that the $M D D H_{k, \ell}^{m}$ assumption holds if for all PPT adversaries \mathcal{A}, the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{MDDH}_{k, \ell}^{m}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G},[\mathbf{M}]_{1},[\mathbf{M S}]_{1}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G},[\mathbf{M}]_{1},[\mathbf{U}]_{1}\right)=1\right]\right|
$$

where $\mathbf{M} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times k}, \mathbf{S} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{k \times m}$ and $\mathbf{U} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times m}$.
The MDDH assumption on G_{2} can be defined in an analogous way. Escala et al. [9] showed that

$$
k \text {-Lin } \Rightarrow \mathrm{MDDH}_{k, k+1}^{1} \Rightarrow \mathrm{MDDH}_{k, \ell}^{m} \forall \ell>k, m \geq 1
$$

with a tight security reduction. Henceforth, we will use MDDH_{k} to denote $\mathrm{MDDH}_{k, k+1}^{1}$.

5.2 Basis Structure

We want to simulate composite-order groups whose order is the product of three primes. Fix parameters $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{W} \geq 1$. Pick random

$$
\mathbf{A}_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times \ell_{1}}, \mathbf{A}_{2} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times \ell_{2}}, \mathbf{A}_{3} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times \ell_{3}}
$$

where $\ell:=\ell_{1}+\ell_{2}+\ell_{3}$. Let $\left(\mathbf{A}_{1}^{\|}\left|\mathbf{A}_{2}^{\|}\right| \mathbf{A}_{3}^{\|}\right)^{\top}$ denote the inverse of $\left(\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}\right)$, so that $\mathbf{A}_{i}^{\top} \mathbf{A}_{i}^{\|}=\mathbf{I}$ (known as non-degeneracy) and $\mathbf{A}_{i}^{\top} \mathbf{A}_{j}^{\|}=\mathbf{0}$ if $i \neq j$ (known as orthogonality), as depicted in Fig. 5. This generalizes the constructions in [10,11] where $\ell_{1}=\ell_{2}=\ell_{3}=k$.

Fig. 5. Basis relations. Solid lines mean orthogonal, dashed lines mean nondegeneracy. Similar relations hold in composite-order groups with (g_{1}, g_{2}, g_{3}) in place of $\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right)$ and ($\left.h_{1}, h_{2}, h_{3}\right)$ in place of $\left(\mathbf{A}_{1}^{\|}, \mathbf{A}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right)$.

Correspondence. We have the following correspondence with composite-order groups:

$$
\begin{aligned}
g_{i} & \mapsto\left[\mathbf{A}_{i}\right]_{1}, & g_{i}^{s} & \mapsto\left[\mathbf{A}_{i} \mathbf{s}\right]_{1} \\
w \in \mathbb{Z}_{N} & \mapsto \mathbf{W} \in \mathbb{Z}_{p}^{\ell \times \ell_{W}}, & g_{i}^{w} & \mapsto\left[\mathbf{A}_{i}^{\top} \mathbf{W}\right]_{1}
\end{aligned}
$$

The following statistical lemma is analogous to the Chinese Remainder Theorem, which tells us that $w \bmod p_{2}$ is uniformly random given g_{1}^{w}, g_{3}^{w}, where $w \leftarrow_{\mathrm{R}} \mathbb{Z}_{N}$:

Lemma 6 (statistical lemma). With probability $1-1 / p$ over $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$, $\mathbf{A}_{1}^{\|}, \mathbf{A}_{2}^{\|}, \mathbf{A}_{3}^{\|}$, the following two distributions are statistically identical.

$$
\left\{\mathbf{A}_{1}^{\top} \mathbf{W}, \mathbf{A}_{3}^{\top} \mathbf{W}, \boxed{\mathbf{W}}\right\} \quad \text { and } \quad\left\{\mathbf{A}_{1}^{\top} \mathbf{W}, \mathbf{A}_{3}^{\top} \mathbf{W}, \mathbf{W}+\mathbf{U}^{(2)}\right\}
$$

where $\mathbf{W} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times \ell_{W}}$ and $\mathbf{U}^{(2)} \leftarrow_{\mathrm{R}} \operatorname{span}^{\ell_{W}}\left(\mathbf{A}_{2}^{\|}\right)$.

5.3 Basic Assumptions

We first describe the prime-order $\left(\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{A}_{2}\right)$-subgroup decision assumption, denoted by $\mathrm{SD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{A}_{2}}^{G_{1}}$. This is analogous to the subgroup decision assumption in composite-order groups $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$ which asserts that $G_{p_{1}} \approx_{c} G_{p_{1} p_{2}}$ given h_{1}, h_{3}, h_{12} along with g_{1}, g_{2}, g_{3}. By symmetry, we can permute the indices for $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$.

Lemma 7 ($\mathbf{M D D H}_{\ell_{1}, \ell_{1}+\ell_{2}} \Rightarrow \mathbf{S D}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{A}_{2}}^{G_{1}}$). Under the $M D D H_{\ell_{1}, \ell_{1}+\ell_{2}}$ assumption in G_{1}, there exists an efficient sampler outputting random $\left(\left[\mathbf{A}_{1}\right]_{1},\left[\mathbf{A}_{2}\right]_{1},\left[\mathbf{A}_{3}\right]_{1}\right)$ (as described in Sect. 5.2) along with base basis $\left(\mathbf{A}_{1}^{\|}\right)$, $\operatorname{basis}\left(\mathbf{A}_{3}^{\|}\right)$, basis $\left(\mathbf{A}_{1}^{\|}, \mathbf{A}_{2}^{\|}\right)$(of arbitrary choice) such that the following advantage function is negligible in λ.
where

$$
\begin{aligned}
& D:=\left(\left[\mathbf{A}_{1}\right]_{1},\left[\mathbf{A}_{2}\right]_{1},\left[\mathbf{A}_{3}\right]_{1}, \operatorname{basis}\left(\mathbf{A}_{1}^{\|}\right), \operatorname{basis}\left(\mathbf{A}_{3}^{\|}\right), \operatorname{basis}\left(\mathbf{A}_{1}^{\|}, \mathbf{A}_{2}^{\|}\right)\right), \\
& \mathbf{t}_{0} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}\right), \mathbf{t}_{1} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) .
\end{aligned}
$$

Similar statements were also implicit in $[10,11]$.
We then formalize the prime-order \mathbf{A}_{1}-subgroup Diffie-Hellman assumption, denoted by $\mathrm{DDH}_{\mathbf{A}_{1}}^{G_{2}}$. This is analogous to the subgroup Diffie-Hellman assumption in the composite-order group $\mathrm{DDH}_{p_{1}}^{H_{N}}$ which ensures that $\left\{h_{1}^{r_{j} w}, h_{1}^{r_{j}}\right\}_{j \in[Q]} \approx_{c}\left\{h_{1}^{r_{j} w} \cdot h_{1}^{u_{j}}, h_{1}^{r_{j}}\right\}_{j \in[Q]}$ given $g_{1}, g_{2}, g_{3}, h_{1}, h_{2}, h_{3}$ for $Q=$ $\operatorname{poly}(\lambda)$. One can permute the indices for $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$.

Lemma $8\left(\mathbf{M D D H}_{\ell_{W}, Q}^{\ell_{1}} \Rightarrow \mathbf{D D H}_{\mathbf{A}_{1}}^{G_{2}}\right)$. Fix $Q=\operatorname{poly}(\lambda)$ with $Q>\ell_{W} \geq 1$. Under the $M D D H_{\ell_{W}, Q}^{\ell_{1}}$ assumption in G_{2}, the following advantage function is negligible in λ

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{DDH}_{A_{1}}^{G_{2}}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(D, T_{0}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(D, T_{1}\right)=1\right]\right|
$$

where

$$
\begin{aligned}
& D:=\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{1}^{\|}, \mathbf{A}_{2}^{\|}, \mathbf{A}_{3}^{\|} ; \mathbf{A}_{2}^{\top} \mathbf{W}, \mathbf{A}_{3}^{\top} \mathbf{W}\right), \\
& T_{0}:=\left([\mathbf{W D}]_{2},[\mathbf{D}]_{2}\right), T_{1}:=\left(\left[\mathbf{W D}+\mathbf{R}^{(1)}\right]_{2},[\mathbf{D}]_{2}\right),
\end{aligned}
$$

and $\mathbf{W} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell \times \ell_{W}}, \mathbf{D} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell_{W} \times Q}, \mathbf{R}^{(1)} \leftarrow_{\mathrm{R}} \operatorname{span}^{Q}\left(\mathbf{A}_{1}^{\|}\right)$.

6 KP-ABE for Monotone Span Programs in Prime-Order Groups

In this section, we present our adaptively secure, unbounded KP-ABE for monotone span programs programs based on the k-Lin assumption in prime-order groups.

6.1 Construction

Setup $\left(1^{\lambda}, 1^{n}\right)$: On input $\left(1^{\lambda}, 1^{n}\right)$, sample $\mathbf{A}_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{B} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(k+1) \times k}$ and

$$
\mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(2 k+1) \times(k+1)}, \mathbf{k} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{2 k+1}
$$

and output the master public and secret key pair

$$
\begin{aligned}
\mathrm{mpk} & :=\left(\left[\mathbf{A}_{1}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{W}, \mathbf{A}_{1}^{\top} \mathbf{W}_{0}, \mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1}, e\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},[\mathbf{k}]_{2}\right)\right) \\
\mathrm{msk} & :=\left(\mathbf{k}, \mathbf{B}, \mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1}\right) .
\end{aligned}
$$

$\operatorname{Enc}(m p k, \mathbf{x}, m)$: On input an attribute vector $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ and $m \in G_{T}$, pick $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}\right)$ for all $j \in[n]$ and output

$$
\mathrm{ct}_{\mathbf{x}}:=\left(\begin{array}{l}
C_{0}:=\left[\mathbf{c}^{\top}\right]_{1}, \\
\left\{C_{1, j}:=\left[\mathbf{c}^{\top} \mathbf{W}+\mathbf{c}_{j}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)\right]_{1}, C_{2, j}:=\left[\mathbf{c}_{j}^{\top}\right]_{1}\right\}_{j: x_{j}=1}, \\
C:=e\left(\left[\mathbf{c}^{\top}\right]_{1},[\mathbf{k}]_{2}\right) \cdot m \\
\in G_{1}^{2 k+1} \times\left(G_{1}^{k+1} \times G_{1}^{2 k+1}\right)^{n} \times G_{T}
\end{array}\right)
$$

KeyGen(mpk, msk, \mathbf{M}): On input a monotone span program $\mathbf{M} \in \mathbb{Z}_{p}^{n \times \ell^{\prime}}$, pick $\mathbf{K}^{\prime} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(2 k+1) \times\left(\ell^{\prime}-1\right)}, \mathbf{d}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}(\mathbf{B})$ for all $j \in[n]$, and output

$$
\mathrm{sk}_{\mathbf{M}}:=\left(\left\{\begin{array}{c}
K_{0, j}:=\left[\left(\mathbf{k} \| \mathbf{K}^{\prime}\right) \mathbf{M}_{j}^{\top}+\mathbf{W} \mathbf{d}_{j}\right]_{2}, K_{1, j}:=\left[\mathbf{d}_{j}\right]_{2}, \\
K_{2, j}:=\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right) \mathbf{d}_{j}\right]_{2} \\
\in\left(G_{2}^{2 k+1} \times G_{2}^{k+1} \times G_{2}^{2 k+1}\right)^{n} .
\end{array}\right.\right.
$$

$\operatorname{Dec}\left(\mathrm{mpk}, \mathrm{sk}_{\mathbf{M}}, \mathrm{ct}_{\mathbf{x}}\right)$: If \mathbf{x} satisfies \mathbf{M}, compute $\omega_{1}, \ldots, \omega_{n} \in \mathbb{Z}_{p}$ such that

$$
\sum_{j: x_{j}=1} \omega_{j} \mathbf{M}_{j}=\mathbf{1}
$$

Then, compute

$$
K \leftarrow \prod_{j: x_{j}=1}\left(e\left(C_{0}, K_{0, j}\right) \cdot e\left(C_{1, j}, K_{1, j}\right)^{-1} \cdot e\left(C_{2, j}, K_{2, j}\right)\right)^{\omega_{j}},
$$

and recover the message as $m \leftarrow C / K \in G_{T}$.
The proof of correctness is direct and we omit it here.

6.2 Entropy Expansion Lemma in Prime-Order Groups

With $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{1}^{\|}, \mathbf{A}_{2}^{\|}, \mathbf{A}_{3}^{\|}$defined as in Sect. 5.2, our prime-order entropy expansion lemma is stated as follows. The proof is analogous to that for composite-order entropy expansion lemma (Lemma 2) shown in Sect.3.2.

Lemma 9 (prime-order entropy expansion lemma). Suppose $\ell_{1}, \ell_{3}, \ell_{W} \geq$ k. Then, under the $M D D H_{k}$ assumption, we have

$$
\begin{aligned}
&\left\{\begin{array}{l}
\text { aux : }\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1} \\
\text { ct : } \left.\left[\mathbf{c}^{\top}\right]_{1},\left\{\left[\mathbf{c}^{\top} \mathbf{W}+\mathbf{c}_{j}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)\right]_{1},\left[\mathbf{c}_{j}^{\top}\right]_{1}\right\}_{j \in[n]}\right\} \\
\text { sk : }\left\{\left[\mathbf{W D}_{j}\right]_{2},\left[\mathbf{D}_{j}\right]_{2},\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right) \mathbf{D}_{j}\right]_{2}\right\}_{j \in[n]}
\end{array}\right\} \\
& \approx_{c}\left\{\begin{array}{l}
\text { aux : }\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1} \\
\left.\left.\mathrm{ct}:[\mathbf{c}]^{\top}\right]_{1},\left\{[\mathbf{c}]^{\top}\left(\mathbf{W}+\mathbf{V}_{j}^{(2)}\right)+\mathbf{c}_{j}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}+\mathbf{U}_{j}^{(2)}\right)\right]_{1},\left[\mathbf{c}_{j}^{\top}\right]_{1}\right\}_{j \in[n]} \\
\text { sk: }\left\{\left[\left(\mathbf{W}+\mathbf{V}_{j}^{(2)} \mathbf{D}_{j}\right]_{2},\left[\mathbf{D}_{j}\right]_{2},\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}+\mathbf{U}_{j}^{(2)}\right) \mathbf{D}_{j}\right]_{2}\right\}_{j \in[n]}\right.
\end{array}\right\}
\end{aligned}
$$

where $\mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell_{p} \ell_{W}}, \mathbf{V}_{j}^{(2)}, \mathbf{U}_{j}^{(2)} \leftarrow_{\mathrm{R}} \operatorname{span}^{\ell_{W}}\left(\mathbf{A}_{2}^{\|}\right), \mathbf{D}_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{\ell_{W} \times \ell_{W}}$, and $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}\right)$ in the left distribution while $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ in the right distribution. Concretely, the distinguishing advantage $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ExpLem}}(\lambda)$ is at most

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{B}} \operatorname{SD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{A}_{2}}^{G_{1}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{0}}^{\mathrm{DDH}_{\mathbf{A}_{2}}^{G_{2}}}(\lambda)+n \cdot\left(\operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{SD}_{\mathbf{A}_{1}}{ }^{G_{1}} \mathbf{A}_{1}, \mathbf{A}_{3}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{2}}^{\mathrm{DDH}_{\mathbf{A}_{3}}}(\lambda)\right.
\end{aligned}
$$

where $\operatorname{Time}(\mathcal{B})$, $\operatorname{Time}\left(\mathcal{B}_{0}\right)$, $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right)$, $\operatorname{Time}\left(\mathcal{B}_{4}\right)$, $\operatorname{Time}\left(\mathcal{B}_{6}\right)$, $\operatorname{Time}\left(\mathcal{B}_{7}\right)$, $\operatorname{Time}\left(\mathcal{B}_{8}\right) \approx \operatorname{Time}(\mathcal{A})$.

Remark 1 (Differences from overview in Sect. 1.3). We stated our prime-order expansion lemma for general $\ell_{1}, \ell_{2}, \ell_{3}$; for our KP-ABE, it suffices to set $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=(k, 1, k)$. Compared to the informal statement (8) in Sect. 1.3, we use $\mathbf{A}_{2} \in \mathbb{Z}_{p}^{2 k+1}$ instead of $\mathbf{A}_{2} \in \mathbb{Z}_{p}^{(2 k+1) \times k}$, and we introduced extra \mathbf{A}_{2}-components corresponding to $\mathbf{A}_{2}^{\top} \mathbf{W}, \mathbf{A}_{2}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)$ in ct on the RHS. We have \mathbf{D}_{j} in place of $\mathbf{B r}_{j}$ in the above statement, though we will introduce \mathbf{B} later on in Lemma 10. We also picked \mathbf{D}_{j} to be square matrices to enable random self-reducibility of the sk-terms. Finally, $\mathbf{V}_{j}^{(2)}, \mathbf{U}_{j}^{(2)}$ correspond to $\mathbf{V}_{j}, \mathbf{U}_{j}$ in the informal statement, and in particular, we have $\mathbf{A}_{1}^{\top} \mathbf{V}_{j}^{(2)}=\mathbf{A}_{1}^{\top} \mathbf{U}_{j}^{(2)}=\mathbf{0}$.

6.3 Proof of Security

We prove the following theorem:
Theorem 2. Under the $M D D H_{k}$ assumption in prime-order groups (cf. Sect.5.1), the unbounded KP-ABE scheme for monotone span programs described in this Section (cf. Sect.6.1) is adaptively secure (cf. Sect. 2.2).

Bilinear Entropy Expansion Lemma, Revisited. With the additional basis $\mathbf{B} \in \mathbb{Z}_{p}^{(k+1) \times k}$, we need a variant of the entropy expansion lemma in Lemma 9 with $\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{W}\right)=(k, 1, k, k+1)$ where the columns of \mathbf{D}_{j} are drawn from $\operatorname{span}(\mathbf{B})$ instead of \mathbb{Z}_{p}^{k+1} (see Lemma 10).

Lemma 10 (prime-order entropy expansion lemma, revisited). Pick $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{A}_{3}\right) \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(2 k+1) \times(k+1)} \times \mathbb{Z}_{p}^{2 k+1} \times \mathbb{Z}_{p}^{(2 k+1) \times(k+1)}$ and define its dual $\left(\mathbf{A}_{1}^{\|}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right)$as in Sect. 5.2. With $\mathbf{B} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(k+1) \times k}$, we have

$$
\begin{aligned}
&\left\{\begin{array}{c}
\text { aux : }\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1} \\
\text { ct : } \left.\left[\mathbf{c}^{\top}\right]_{1},\left\{\left[\mathbf{c}^{\top} \mathbf{W}+\mathbf{c}_{j}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right)\right]_{1},\left[\mathbf{c}_{j}^{\top}\right]_{1}\right\}_{j \in[n]}\right\} \\
\text { sk: }\left\{\left[\mathbf{W D}_{j}\right]_{2},\left[\mathbf{D}_{j}\right]_{2},\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}\right) \mathbf{D}_{j}\right]_{2}\right\}_{j \in[n]}
\end{array}\right\} \\
& \approx_{c}\left\{\begin{array}{l}
\text { aux : }\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{0}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{W}_{1}\right]_{1} \\
\text { ct : } \left.\left.[\mathbf{c}]^{\top}\right]_{1},\left\{[\mathbf{c}]^{\top}\left(\mathbf{W}+\mathbf{V}_{j}^{(2)}\right)+\mathbf{c}_{j}^{\top}\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}+\mathbf{U}_{j}^{(2)}\right)\right]_{1},\left[\mathbf{c}_{j}^{\top}\right]_{1}\right\}_{j \in[n]} \\
\text { sk: }\left\{\left[\left(\mathbf{W}+\mathbf{V}_{j}^{(2)} \mathbf{D}_{j}\right]_{2},\left[\mathbf{D}_{j}\right]_{2},\left[\left(\mathbf{W}_{0}+j \cdot \mathbf{W}_{1}+\mathbf{U}_{j}^{(2)}\right) \mathbf{D}_{j}\right]_{2}\right\}_{j \in[n]}\right.
\end{array}\right\}
\end{aligned}
$$

where $\mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1} \quad \leftarrow_{\mathrm{R}} \quad \mathbb{Z}_{p}^{(2 k+1) \times(k+1)}, \quad \mathbf{V}_{j}^{(2)}, \mathbf{U}_{j}^{(2)} \quad \leftarrow_{\mathrm{R}} \quad \operatorname{span}^{k+1}\left(\mathbf{a}_{2}^{\|}\right)$, $\mathbf{D}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}^{k+1}(\mathbf{B})$, and $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}\right)$ in the left distribution while $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}}$ $\operatorname{span}\left(\mathbf{A}_{1}, \mathbf{a}_{2}\right)$ in the right distribution. We let $\operatorname{Adv}_{\mathcal{A}}^{\operatorname{ExpLemRev}}(\lambda)$ denote the distinguishing advantage.

We claim that the lemma follows from the basic entropy expansion lemma (Lemma 9) and the MDDH_{k} assumption, which tells us that

$$
\left\{\left[\mathbf{D}_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{(k+1) \times(k+1)}\right]_{2}\right\}_{j \in[n]} \approx_{c}\left\{\left[\mathbf{D}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}^{k+1}(\mathbf{B})\right]_{2}\right\}_{j \in[n]}
$$

Concretely, for all \mathcal{A}, we can construct \mathcal{B}_{0} and \mathcal{B}_{1} with $\operatorname{Time}\left(\mathcal{B}_{0}\right), \operatorname{Time}\left(\mathcal{B}_{1}\right) \approx$ Time (\mathcal{A}) such that

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{ExPLEmREv}}(\lambda) \leq \operatorname{Adv}_{\mathcal{B}_{0}}^{\operatorname{ExPLEM}}(\lambda)+2 \cdot \operatorname{Adv}_{\mathcal{B}_{1}}^{\operatorname{MDDH}_{k, k+1}^{n(k+1)}}(\lambda)
$$

The proof is straight-forward by demonstrating that the left (resp. right) distributions in Lemmas 9 and 10 are indistinguishable under the MDDH_{k} assumption and then applying Lemma 9. In the reduction, we sample $\mathbf{W}, \mathbf{W}_{0}, \mathbf{W}_{1} \leftarrow_{\mathrm{R}}$ $\mathbb{Z}_{p}^{(2 k+1) \times(k+1)}$ (and $\mathbf{V}_{j}^{(2)}, \mathbf{U}_{j}^{(2)} \leftarrow_{\mathrm{R}} \operatorname{span}^{k+1}\left(\mathbf{a}_{2}^{\|}\right)$for the right distributions) and simulate aux, ct honestly.

Main Technical Lemma. We prove the following technical lemma. As with the composite-order scheme in Sect. 4, we first apply the new entropy expansion lemma in Lemma 10 and obtain a copy of the CGW KP-ABE (variant-thereof) in the \mathbf{a}_{2}-subspace. We may then carry out the classic dual system methodology used for establishing adaptive security of the CGW KP-ABE.

Lemma 11. For any adversary \mathcal{A} that makes at most Q key queries against the unbounded KP-ABE scheme, there exist adversaries $\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}$ such that:

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ABE}}(\lambda) \leq \operatorname{Adv}_{\mathcal{B}_{0}}^{\text {ExPLEMREV}}(\lambda)+Q \cdot \operatorname{Adv}_{\mathcal{B}_{1}}^{\operatorname{MDDH}_{k, k+1}^{n}}(\lambda)+Q \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{\operatorname{MDDH}_{k, k+1}^{n}}(\lambda)+O(1 / p) .
$$

where $\operatorname{Time}\left(\mathcal{B}_{0}\right), \operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right) \approx \operatorname{Time}(\mathcal{A})$. In particular, we achieve security loss $O(n+Q)$ based on the $M D D H_{k}$ assumption.

The proof follows the same game sequence as shown in Sect. 4.2 except that the adversary is given an E-normal challenge ciphertext instead of a SF one in $\mathrm{Game}_{i}, \mathrm{Game}_{i, 1}, \mathrm{Game}_{i, 2}, \mathrm{Game}_{i, 3}$ (in fact, we do not need to define SF ciphertexts) and the auxiliary distributions are defined as follows.

Auxiliary Distributions. We define various forms of ciphertext (of message m under attribute vector \mathbf{x}):

- Normal: Generated by Enc; in particular, $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}\right)$.
- E-normal: Same as a normal ciphertext except that $\mathbf{c}, \mathbf{c}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}\left(\mathbf{A}_{1}, \mathbf{a}_{2}\right)$ and we use the substitution:

$$
\begin{array}{ll}
& \mathbf{W} \mapsto \mathbf{W}+\mathbf{V}_{j}^{(2)} \quad \text { in } j \text { 'th component } \\
\text { and } & \mathbf{W}_{0}+j \cdot \mathbf{W}_{1} \mapsto \mathbf{W}_{0}+j \cdot \mathbf{W}_{1}+\mathbf{U}_{j}^{(2)} \tag{11}
\end{array}
$$

where $\mathbf{U}_{j}^{(2)}, \mathbf{V}_{j}^{(2)} \leftarrow_{\mathrm{R}} \operatorname{span}^{k+1}\left(\mathbf{a}_{2}^{\|}\right)$.
Then we pick $\alpha \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}$ and define various forms of key (for span program \mathbf{M}):

- Normal: Generated by KeyGen.
- E-normal: Same as a normal key except that we use the same substitution as in (11).
- P-normal: Sample $\mathbf{d}_{j} \leftarrow_{\mathrm{R}} \mathbb{Z}_{p}^{k+1}$ in an E-normal key.
- P-SF: Replace \mathbf{k} with $\mathbf{k}+\alpha \mathbf{a}_{2}^{\|}$in a P-normal key.
- SF: Sample $\mathbf{d}_{j} \leftarrow_{\mathrm{R}} \operatorname{span}(\mathbf{B})$ in a P-SF key.

Acknowledgments. We greatly thank Katsuyuki Takashima for insightful and constructive feedback. We also thank all anonymous reviewers for their helpful comments.

References

1. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: ACM CCS (2017)
2. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31
3. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 591-623. Springer, Heidelberg (2016). https:// doi.org/10.1007/978-3-662-53890-6_20
4. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D., Technion - Israel Institute of Technology (1996)
5. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 363-384. Springer, Heidelberg (2016). https://doi.org/ 10.1007/978-3-662-53015-3_13
6. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595-624. Springer, Heidelberg (2015). https://doi.org/10. 1007/978-3-662-46803-6_20
7. Chen, J., Wee, H.: Fully, (Almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435-460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-400841_25
8. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277-297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16
9. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129-147. Springer, Heidelberg (2013). https://doi. org/10.1007/978-3-642-40084-1_8
10. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1-27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1
11. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 624-654. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_21
12. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 361-388. Springer, Heidelberg (2016). https://doi.org/10. 1007/978-3-662-53644-5_14
13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for finegrained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 89-98. ACM Press, October/November 2006. Available as Cryptology ePrint Archive Report 2006/309
14. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66-83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_5
15. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp. 650-662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_54
16. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, pp. 102-111 (1993)
17. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 524-541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_26
18. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318-335. Springer, Heidelberg (2012). https://doi.org/10. 1007/978-3-642-29011-4_20
19. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62-91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4
20. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455-479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27
21. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547-567. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_30
22. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191-208. Springer, Heidelberg (2010). https://doi.org/10. 1007/978-3-642-14623-7_11
23. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attributebased encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349-366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22
24. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 463-474. ACM Press, November 2013
25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg (2005). https:// doi.org/10.1007/11426639_27
26. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36
27. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616-637. Springer, Heidelberg (2014). https://doi.org/ 10.1007/978-3-642-54242-8_26

[^0]: J. Chen-School of Computer Science and Software Engineering. Supported by the National Natural Science Foundation of China (Nos. 61472142, 61632012, U1705264) and the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). Homepage: http://www.jchen.top.
 J. Gong-Supported in part by the French ANR ALAMBIC Project (ANR-16-CE390006).
 L. Kowalczyk-Supported in part by an NSF Graduate Research Fellowship DGE-16-44869; The Leona M. \& Harry B. Helmsley Charitable Trust; ERC Project aSCEND (H2020 639554); the Defense Advanced Research Project Agency (DARPA) and Army Research Office (ARO) under Contract W911NF-15-C-0236; and NSF grants CNS-1445424, CNS-1552932 and CCF-1423306. Any opinions, findings and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency, Army Research Office, the National Science Foundation, or the U.S. Government. H. Wee-Supported in part by ERC Project aSCEND (H2020 639554), H2020 FENTEC and NSF Award CNS-1445424.

[^1]: ${ }^{1}$ Some works associate ciphertexts with a set $S \subseteq[n]$ where $[n]$ is referred to as the attribute universe, in which case $\mathbf{x} \in\{0,1\}^{n}$ corresponds to the characteristic vector of S.
 ${ }^{2}$ All known adaptively secure ABE for monotone span programs under static assumptions in the standard model (even in the bounded setting and even with compositeorder groups) have a read-once restriction $[2,3,6,19,22,27]$.

[^2]: ${ }^{3}$ Attrapadung's unbounded KP-ABE does have the advantage that there is no readonce restriction on the span programs, but even with the read-once restriction, the proof still requires q-type assumptions.

[^3]: ${ }^{4}$ And a subgroup assumption to introduce the $h_{2}^{\alpha_{j}}$,s.

[^4]: ${ }^{5}$ With two main differences: (i) we are in the selective setting which allows for a much simpler proof, (ii) we allow $j=i$ in sk.

