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Abstract. This paper revisits the multi-user (mu) security of symmet-
ric encryption, from the perspective of delivering an analysis of the
AES-GCM-SIV AEAD scheme. Our end result shows that its mu security
is comparable to that achieved in the single-user setting. In particular,
even when instantiated with short keys (e.g., 128 bits), the security of
AES-GCM-SIV is not impacted by the collisions of two user keys, as long
as each individual nonce is not re-used by too many users. Our bounds
also improve existing analyses in the single-user setting, in particular
when messages of variable lengths are encrypted. We also validate secu-
rity against a general class of key-derivation methods, including one that
halves the complexity of the final proposal.

As an intermediate step, we consider mu security in a setting where
the data processed by every user is bounded, and where user keys are
generated according to arbitrary, possibly correlated distributions. This
viewpoint generalizes the currently adopted one in mu security, and can
be used to analyze re-keying practices.
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1 Introduction

This work continues the study of the multi-user (mu) security of symmetric
cryptography, the setting where the adversary distributes its resources to attack
multiple instances of a cryptosystem, with the end goal of compromising at least
one of them. This attack model was recently the object of extensive scrutiny [2,
9,21,22,26,29,35], and its relevance stems from the en masse deployment of
symmetric cryptography, e.g., within billions of daily TLS connections. The main
goal is to study the degradation in security as the number of users increases.

Our contributions. This paper will extend this line of work in different
ways. The most tangible contribution is a complete analysis in the mu setting
of the AES-GCM-SIV [18] scheme by Gueron, Langley, and Lindell, an AES-
based scheme for authenticated encryption with associated data (AEAD) which
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is meant to resist nonce misuse. Our main result will show that the scheme’s secu-
rity does not degrade in the mu setting, in a sense much stronger than what was
claimed in the previous mu analyses. Also, we abstract the requirement needed
for AES-GCM-SIV’s key-derivation step, and show that a very simple KDF is
sufficient for high security. Beyond this, our analysis also delivers conceptual
and technical insights of wider interest.

Concretely, our result will highlight the benefit of ensuring limited nonce re-
use across different users (e.g., by choosing nonces randomly). We show that in
this setting AES-GCM-SIV does not suffer any impact from key-collisions, in par-
ticular allowing security to go beyond the Birthday barrier (wrt the key length)
even in the multi-user setting. The resulting analysis is particularly involved, and
calls for a precise understanding of the power of verification queries (for which
nonce re-use across multiple users cannot be restricted). Previous analyses of AE
schemes (specifically, those of [9]) do not ensure security when two users have
the same key, thus forcing either an increase of the key length or a worse security
guarantee.

On the way, we analyze the building blocks of AES-GCM-SIV in a refined
model of mu security where the amount of data processed by each user is
bounded, and where keys come from arbitrary distributions. These results could
be of independent interest.

We now continue with a more detailed overview of our results.

Multi-user security. Multi-user (mu) security was introduced by Bellare,
Boldyreva and Micali [3] in the public-key setting as an explicit security tar-
get, although in the symmetric setting the notion had already been targeted in
attacks [10,11], and was used implicitly as a technical tool in [4].

For example, in the mu definition of encryption security under chosen-
plaintext attacks, each user i is assigned a secret key Ki, and the attacker’s
encryption queries Enc(i,M) result in either an encryption of M under Ki (in
the real world), or an equally long random ciphertext (in the ideal world). The
goal is to distinguish the real from the ideal-world.

Assessing security in this model is interesting and non-trivial. Take for exam-
ple randomized counter-mode encryption (CTR), based on a block cipher with
key length k and block length n. The advantage of any single-user adversary
encrypting, in total, L blocks of data and making p queries to the cipher (which
we model as ideal) is upper bounded by εsu(L, p) ≤ L2

2n + p
2k

(cf. e.g. [5]). If the
attacker now adaptively distributes its queries across u users, a hybrid argument
shows that the bound is εmu(L, p, u) ≤ u · εsu(L, p + L) ≤ 2uL2

2n + u(p+L)
2k

.
Usually, we do not want to fix u, and allow the adversary to encrypt its

budget of L blocks adaptively across as many users as it sees fit. In particular,
the adversary could (1) query one message only with length L, or (2) query L
messages with length 1, each to a different user. Thus, in the worst case, the
bound becomes εmu(L, p) ≤ 2L3

2n + Lp+L2

2k
. A number of recent works [2,21,22,

29,35] have shown that this is overly pessimistic, and the security loss can be
much smaller; in fact, often εmu(L, p) ≈ εsu(L, p) holds.
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Bounding the per-user data complexity. Note that even if εmu(L, p) ≈
εsu(L, p) above, the matching attack could be a single-user attack, requiring a
single honest user to encrypt L ≈ 2n/2 blocks under the same key. For k = n =
128, this would require a single honest user to willingly encrypt multiple exabytes
of data, and there are many scenarios where we can easily enforce this not to
happen. If we enforce a per-user upper bound B on the number of encrypted
blocks, an L-block adversary would be forced to spread its effort across at least
L/B users, and the advantage could become even smaller. Indeed, tightening
existing bounds, we show below that for CTR, the advantage of such an attacker
is at most

LB

2n
+

L2

2n+k
+

ap

2k
.

for some constant a. This bound shows that the fewer blocks we encrypt per
user, the higher the security: Beyond-birthday security is possible, e.g., for k =
n = 128 and B = 232, the bound is of the order L/296 + p/2128. Also, the
bound is independent of the number of users, and in particular the role of off-
line computation – captured here by p – is also independent of L. Note that
most previous results on mu security target deterministic security games, such
as PRFs/PRPs [2,21,22,29,35] or deterministic AE [9,26], and security falls
apart when more than 2k/2 users are present, and their keys collide. Here, key-
collisions are irrelevant, and security well beyond 2k/2 users is possible.

AES-GCM-SIV: Overview and bounds. The above viewpoint generalizes that
of Abdalla and Bellare [1], who were first to observe, in a simpler model, that re-
keying after encrypting B blocks increases security. The fewer data we encrypt
per key, the higher the security.

AES-GCM-SIV adapts the re-keying idea to the AEAD setting, making it in
particular nonce based – i.e., to encrypt a message M with a nonce N , we use
a key-derivation function (KDF) KD to derive a key KN ← KD(K,N) from the
master secret key K and the nonce N , and then encrypt the message M with
the nonce N under the key KN using a base AE scheme AE. Now, the keys KN

can be thought as belonging to different (virtual) users. Existing analyses [20,24]
show indeed that, assuming KD is a good PRF, a mu security bound for AE can
be lifted to a bound on the end scheme in the single-user setting, where now B
is a bound on the amount of data encrypted per nonce, rather than per user. If
nonces are not re-used, B is the maximum block length of an encrypted message.

Concretely, in AES-GCM-SIV, the underlying AE is GCM-SIV+, a slight mod-
ification of GCM-SIV [19]. This relies in turn on SIV (“synthetic IV”) [34], an
AEAD scheme which combines a PRF F and an encryption scheme SE (only
meant to be CPA secure) to achieve nonce-misuse resistance. For message M ,
nonce N , and associated data A, the encryption of SIV results into a ciphertext
C obtained as

IV ← F(KF, (M,N,A)), C ← SE.E(KE,M ; IV),

where KF and KE are the two components of the secret key, and SE.E(KE,M ; IV)
is the deterministic encryption function of SE run with IV IV.
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In GCM-SIV+, SE is counter mode, and F is what we call GMAC+, a Wegman-
Carter MAC [38] similar to, but different from, the one used in GCM [28]. It
composes an xor-universal hash function with n-bit key, with a block cipher
of block length n and key length k. GMAC+’s total key length is hence k + n
bits. (As we target AES, n = 128 and k ∈ {128, 256}.) A difference from the
original SIV scheme is that the same block cipher key is used across GMAC+ and
counter-mode, but an appropriate domain separation is used.

For nonce-misuse resistance (so-called mrae security), the best published
bound for AES-GCM-SIV with key length 128 bits is of order

QB2

2128
+

�maxQR

2128
+

p

2128
+ ε(Q),

for any adversary that makes at most p ideal-cipher queries, encrypts at most
B blocks per nonce, uses at most Q < 264 nonces in encryption/verification
queries, where R is the maximum number of repetition of a nonce, and �max is
the maximal length of a verification query. Here, ε(Q) is the PRF advantage of
KD against Q queries, and it is Q/296 for the considered instantiation.

Our bounds in the mu setting. The analysis of AES-GCM-SIV uses mu
security as a tool, but still only gives su security bounds. A valid question is
whether its security substantially degrades in the mu setting or not.

We answer this question, and show that for a large class of suitable instan-
tiations of KD, multi-user mrae security of AES-GCM-SIV is of order

LB

2128
+

d(p + L)
2128

,

where L, B, and d are upper bounds, respectively, of the overall number of
encrypted/verified blocks, of the number of blocks encrypted per user-nonce
pair, and of the number of users that re-use a particular nonce value.

This shows a number of things: First off, our bound is an improvement even
in the single-user case, as d = 1 vacuously holds, and even if we use the KDF
considered in the previous works. (Note in particular that the PRF advantage
term ε(Q) disappears from the bound.) The term LB

2128 can be much smaller than
QB2

2128 , as in many settings Q and L can be quite close (e.g., if most messages
are very short). In fact, the point is slightly more subtle, and we elaborate on
it at the end of the introduction. Second, if d is constant (which we can safely
assume if nonces are randomly chosen), security does not degrade as the number
of users increases. In particular, the security is unaffected by key collisions. If d
cannot be bounded, we necessarily need to increase the key length to 256 bits,
and in this case the second term becomes d(p+L)

2256 . Finally, we have no assumption
on the data amount of verification queries per user-nonce pair (other than the
overall bound L), whereas the bounds in prior works can become weak if there is
a very long verification query, and the adversary uses only a single nonce among
verification queries.

The rest of the introduction will explain some ideas behind the bound and
the techniques, which we believe to be more broadly applicable.
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Challenges. On the way to our end result, we give a number of results of
independent interest. Interestingly, while we will recycle ideas on the way, the
approach is less modular than one expects. First off, we analyze CTR and GMAC+

in a regime where the amount of data processed by each user is bounded. We
will then obtain an analysis of the mu security GCM-SIV+. Here, due to the key
re-use, the technique for generic composition used in the original SIV scheme
fails, but we will be able to recycle many low-level parts of the proofs for CTR
and GMAC+.

At this point, however, it is unclear whether nonce-based key derivation
achieves its purpose in the mu setting, where B is now a bound on the number
of blocks encrypted per user-nonce pair. Indeed, say the master secret key K
has length k = 128. Then, should the number of users exceed 2k/2 = 264, with
high probability two users will end up with identical keys. If we treat KD as
a PRF, like [20,24] do, all security will vanish at this point. Indeed, the exist-
ing mu analysis of GCM succumbs to this problem [9], and the problem seems
unavoidable here too, since we are considering a deterministic security game.

Bounded nonce re-use across users. The way out from this problem is to
assume every nonce is re-used by at most d users. Consider the canonical attack
to break privacy of the scheme: Fix a sufficiently long message M and a nonce
N , and re-use them over and over in encryption queries for different users, and
if the same ciphertext appears twice after roughly 2k/2 queries, we are likely to
be in the real world, as ciphertexts are random and independent in the ideal
world. This however requires us to re-use the same nonce across 2k/2 users. A
first interesting point we observe is that the security of KD as PRF degrades
gracefully with the number of users d that can re-use the same input/nonce.

Unfortunately, this is not enough. The catch is that a bound d on the num-
ber of users re-using a nonce is only meaningful for encryption queries, e.g., if
nonces are chosen randomly. For authenticity, an attacker would attempt to issue
verification queries for as many users as it wishes, and we cannot restrict the
choice of nonces. In particular, we cannot prevent that 2k/2 verification queries
for different users with the same nonce may end up using colliding user keys.
The question is how far this is an issue.

To get some intuition, consider the security of KD as a MAC, i.e., the adver-
sary issues, in a first stage, queries (i,N), producing output KD(Ki, N) (where
Ki is the key of the i-th user), but respecting the constraint that no nonce is
used more than d times across different i’s, where d is relatively small. Then, in
a second stage, the adversary gets to ask unrestricted verification queries with
input (i,N, T ), except for the obvious requirement that (i,N) must be previously
un-queried. The adversary wins if KD(Ki, N) = T for one of these verification
queries. At first glance, a collision Ki = Kj could help if we have queried (i,N)
in the first stage, learnt T , and now can submit (j,N, T ) in the second. The
caveat is that we need to be able to have detected such collisions. This is hard
to do during the first stage, even with many queries, due to the constraint of
reusing N only d times. Thus, the only obvious way to exploit this would be to
try, for each of the q first-stage queries (i,N) with corresponding output T , to
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query (j,N, T ) for many j �= i. This would however require roughly 2k trials to
succeed. Finally, note that while it may be that we ask two verification queries
(i,N, T ) and (j′, N ′, T ′) where Ki = Kj , this does not seem to give any help in
succeeding, because a verification query does not reveal the actual output of KD
on that input.

Confirming this intuition is not simple. We will do so for a specific class of
natural KD constructions outlined below, and point out that the setting of AE
is harder than studying the security of KD itself as a MAC. Indeed, our KD is
used to derive keys for GMAC+ and CTR at the same time, and we need to prove
unpredictability of the overall encryption scheme on a new pair (N, i) which was
previously unqueried, while producing a bound which does not depend on key
collisions. This is the most technically involved part of the paper.

A simpler KDF. Finally, let us address how we instantiate KD. The construc-
tion of KD from [18] is truncation based, and makes 4 (for k = 128), respectively
6 (for k = 256) calls to a block cipher to derive a key. A recent proposal [24] sug-
gests using the so-called XOR construction to achieve higher security, as multiple
analyses [7,14,25,31,33] confirm better bounds than for truncation [16]. Still, the
resulting KD would need 4 resp. 6 calls. They also consider a faster construction,
based on CENC [23], which would require 3 resp. 4 calls. All of these constructions
are required to be good PRFs in existing analyses.

Rather than studying concrete constructions, we apply our result to a gen-
eral class of KDFs which includes in particular all of these proposals, but also
simpler ones. For instance, our bounds apply to the following simple KDF, a
variant of which was in the initial AES-GCM-SIV proposal, but was discarded
due to security concerns. Namely, given the underlying block cipher E, the KDF
outputs

KD(K,N) = E(K, pad(N, 0)) ‖ E(K, pad(N, 1)) (1)

for k = n and N an nl-bit string, with nl ≤ n − 2, and, analogously, for k = 2n,
one can extend this by additionally concatenating E(K, pad(N, 2)). Here, pad
is a mapping with the property that the sets {pad(N, 0), pad(N, 1), pad(N, 2)}
defined by each N are disjoint. This approach seems to contradict common
sense which was adopted in the new KDF variants for AES-GCM-SIV, because
the derived keys are not truly random. However, a crucial point of our analyses
is that we do not prove PRF security of these KDFs. Rather, we study the
distributions on keys they induce, and then (implicitly) rely on the security
of the underlying components using keys obtained from (slightly) non-uniform
distributions.1

1 This key-derivation scheme is also used to derive sub-keys from tweaks in the set-
ting of FPE within the DFF construction [37]. DFF is a replacement for FF2 [36],
a scheme proposed to NIST for standardization but eventually rejected due to a
birthday-bound key-recovery attack [15]. The security of DFF is formalized and
studied in [6], but their analysis is still in the su setting, namely there is only one
master key for KD.
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In platforms that support AES hardware acceleration, the difference in per-
formance between the KDF in Eq. (1) and the current one in AES-GCM-SIV is
not important, as demonstrated via the experiments in [18]. Still, we believe it
is important for schemes to be minimal, and thus to understand the security of
the simplest possible instantiations of the KDF.

Sub-optimality of POLYVAL. We also observe that the universal hash
POLYVAL within GMAC+ is somewhat suboptimal. That is, if both the mes-
sage and the associated data are the empty string, then their hash image under
POLYVAL is always 0128, regardless of the hash key. This does not create any
issue in the single-user setting, but substantially weakens the mu security of
GCM-SIV+ and GMAC+ to LB

2128 + d(p+L)
2128 , despite their use of 256-bit keys. Had

the padding in POLYVAL ensured that the hash image of empty strings under a
random key has a uniform distribution, the security of GCM-SIV+ and GMAC+

could be improved to LB
2128 + Lp

2256 , meaning this bound is independent of the num-
ber d of users that reuse any particular nonce. While this issue does not affect
the concrete security bound of AES-GCM-SIV, this change becomes necessary if
GCM-SIV+ or GMAC+ are used as standalone schemes.

Relation to existing works. We elaborate further on our improvements in
the su setting over recent analyses [20,24]. As mentioned above, their bound
contains a term of the order QB2/2n, which we improve to LB/2n. The fact
that the latter is better is not quite obvious. Indeed, it is not hard to improve
the term QB2/2n in [20,24] to

∑Q
i=1 B2

i /2n, where Bi is a bound on the number
of blocks encrypted with the i-th nonce. This seems to address the point that
different amounts of data can be encrypted for different nonces.

The crucial point is that we capture a far more general class of attacks by
only limiting the adversary in terms of L, p, and d. For instance, for a parameter
L, consider the following single-user adversary using Q = L/2 nonces. It will
select a random subset of the Q nonces, of size L/(2B), for which it encrypts
B blocks of data, and for the remaining L/2 − L/(2B) nonces, it only encrypts
one block of data. In our bound, we still get a term LB/2n. In contrast, with
the parametrization adopted by [20,24], we can only set Q = L/2 and Bi = B
for all i ∈ [Q], because any of the nonces can, a priori, be used to encrypt B
blocks. This ends up giving a term of magnitude LB2/2n, however, which is
much larger. For B = 232, the difference between L/264 and L/296 is enormous.

Switching to the type of bounds is non-trivial: The adversary can adopt an
arbitrarily adaptive attack pattern. Handling such adversaries was the object of
recent works in the mu regime [2,21,22,26,29,35].

Standard vs ideal-model. We also note that the bound of [24] is expressed
in the standard model, and contains a term Qε, where ε is the advantage of a
PRF adversary A′ against the cipher E, making B queries. The catch is that
ε is very sensitive to the time complexity of A′, which we approximate with
the number of ideal-cipher queries p. Thus, Qε is of order Q(B2/2n + p/2k).
While [24] argues that QB2/2n is the largest term, the ideal model makes it
evident that the hidden term Qp/2k is likely to be far more problematic in the
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case n = k. Indeed, p ≥ Q and B2 ≤ Q are both plausible (the attacker can
more easily invest in local computation than obtaining honest encryptions under
equal nonces), and this becomes Q2

2k
. This shows security is bounded by 2k/2.

The work of [26] on classical GCM also seemingly focuses on the standard model
and thus seems to fail to capture such hidden terms. In contrast, [20] handles
this properly.

We stress that we share the sentiment that ideal-model analysis may oversim-
plify some security issues. However, we find them a necessary evil when trying
to capture the influence of local computation in multi-user attacks, which is a
fundamental part of the analysis.

Outline of this paper. We introduce basic notions and security definitions
in the multi-user setting in Sect. 3. Then, in Sect. 4, we study the security of our
basic building blocks, CTR and GMAC+, in the multi-user setting. In Sect. 5, we
analyze the SIV composition when keys are re-used across encryption and PRF,
and observe this to work in particular for the setting of GCM-SIV. Finally, Sect. 6
studies our variant of AES-GCM-SIV with more general key derivation.

2 Preliminaries

Notation. Let ε denote the empty string. For a finite set S, we let x ←$ S
denote the uniform sampling from S and assigning the value to x. Let |x| denote
the length of the string x, and for 1 ≤ i < j ≤ |x|, let x[i, j] (and also x[i : j])
denote the substring from the ith bit to the jth bit (inclusive) of x. If A is
an algorithm, we let y ← A(x1, . . . ; r) denote running A with randomness r
on inputs x1, . . . and assigning the output to y. In the context that we use a
blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, the block length of a string x,
denoted |x|n, is max

{
1,

⌈
|x|/n

⌉}
.

Systems and Transcripts. Following the notation from [21] (which was in
turn inspired by Maurer’s framework [27]), it is convenient to consider interac-
tions of a distinguisher A with an abstract system S which answers A’s queries.
The resulting interaction then generates a transcript τ = ((X1, Y1), . . . , (Xq, Yq))
of query-answer pairs. It is well known that S is entirely described by the prob-
abilities pS(τ) that if we make queries in τ to system S, we will receive the
answers as indicated in τ .

We will generally describe systems informally, or more formally in terms a
set of oracles they provide, and only use the fact that they define corresponding
probabilities pS(τ) without explicitly giving these probabilities.

The H-coefficient technique. We now describe the H-coefficient technique
of Patarin [13,32]. Generically, it considers a deterministic distinguisher A, inter-
acting with system S0 or with system S1. Let X0 and X1 be random variables
for the transcripts defined by these interactions with S0 and S1, and a bound on
the distinguishing advantage of A is given by the statistical distance SD(X0,X1).
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Lemma 1. [13,32] Supposed we can partition transcripts into good and bad tran-
scripts. Further, suppose that there exists ε ≥ 0 such that 1− pS0 (τ)

pS1 (τ)
≤ ε for every

good transcript τ such that pS1(τ) > 0. Then,

SD(X1,X0) ≤ ε + Pr[X1 is bad].

3 Multi-user Security of Symmetric Primitives

We revisit security definitions for basic symmetric primitives in the multi-user
setting. We will in particular extend existing security definitions to impose overall
bounds on the volume of data processed by each user, however we will relegate
this matter to theorem statements restricting the considered adversaries, rather
than hard-coding these bounds in the definitions.

3.1 Symmetric and Authenticated Encryption

We define AE syntax here, as well as natural multi-user generalizations of clas-
sical security notions for confidentiality and integrity. Since this paper will deal
both with probabilistic and deterministic schemes, we define both, following the
treatment of Namprempre, Rogaway, and Shrimpton [30]. Our notational con-
ventions are similar to those from [9].

IV-based encryption. An IV-based symmetric encryption scheme SE consists
of two algorithms, the randomized encryption algorithm SE.E and the deter-
ministic decryption algorithm SE.D, and is associated with a corresponding key
length SE.kl ∈ N and initialization-vector (IV) length SE.vl ∈ N. Here, SE.E
takes as input a secret key K ∈ {0, 1}SE.kl and a plaintext M ∈ {0, 1}∗. It then
samples IV ←$ {0, 1}SE.vl, deterministically computes a ciphertext core C ′ from
K,M and IV, and returns C ← IV ‖ C ′. We often write C ←$ SE.EK(M) or
C ←$ SE.E(K,M). If we want to force the encryption scheme to run on a spe-
cific initialization vector IV, then we write SE.E(K,M ; IV). The corresponding
decryption algorithm SE.D takes as input a key K ∈ {0, 1}SE.kl and a cipher-
text C ∈ {0, 1}∗, returns either a plaintext M ∈ {0, 1}∗, or an error symbol ⊥.
For correctness, we require that if C is output by SE.EK(M), then SE.DK(C)
returns M . We allow all algorithms to make queries to an ideal primitive Π, in
which case this will be made explicit when not clear from the context, e.g., by
writing SE[Π] in lieu of SE.

Chosen-plaintext security for IV-based encryption. We re-define the
traditional security notion of ind-security for the multi-user setting. Our defini-
tion will however incorporate a general, stateful key-generation algorithm KeyGen
which is invoked every time a new user is spawned via a call to the New oracle.
KeyGen is a parameter of the game, and it takes additionally some input string
aux which is supplied by the adversary. The traditional mu security setting would
have KeyGen simply output a random string, and ignore aux, but we will con-
sider a more general setting to lift mu bounds to the key-derivation setting.
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The game is further generalized to handle an arbitrary ideal primitive (an ideal
cipher, a random oracle, or a combination thereof) via an oracle Prim.2 Also
note that the oracle Prim can simply trivially provide no functionality, in which
case we revert to the standard-model definition. We note that the key-generation
algorithm KeyGen does not have access to the oracle Prim.

Given an adversary A, the resulting game is Gmu-ind
SE,KeyGen,Π(A), and is depicted

at the top of Fig. 1. The associated advantage is

Advmu-ind
SE,KeyGen,Π(A) = 2 · Pr

[
Gmu-ind

SE,KeyGen,Π(A)
]
− 1.

Whenever we use the canonical KeyGen which outputs a random string regardless
of its input, we will often omit it, and just write Advmu-ind

SE,Π (A) instead.

Authenticated encryption scheme. An authenticated encryption scheme
AE with associated data (also referred to as an AEAD scheme), the algorithms
AE.E and AE.D are both deterministic. In particular, AE.E takes as input a
secret key K ∈ {0, 1}AE.kl, a nonce N ∈ {0, 1}AE.nl, a plaintext M ∈ {0, 1}∗, and
the associated data A, and returns the ciphertext C ← AE.E(K,N,M,A). The
corresponding decryption algorithm AE.D takes as input a key K ∈ {0, 1}AE.kl,
the nonce N , the ciphertext C ∈ {0, 1}∗, and the associated data A, and returns
either a plaintext M ∈ {0, 1}∗, or an error symbol ⊥. We require that if C is
output by AE.EK(M,N,A), then AE.DK(C,N,A) returns M .

Our security notion for AE is nonce-misuse-resistant: Ciphertexts produced
by encryptions with the same nonce are pseudorandom as long as the encryptions
are on different messages or associated data, even if they are for the same nonce.
Our formalization of AE multi-user security in terms of Gmu-mrae

AE,KeyGen,Π(A) is that
of Bellare and Tackmann [9], with the addition of a KeyGen algorithm to handle
arbitrary correlated key distributions. It is depicted in Fig. 1, at the bottom.

Given an adversary A and a key-generation algorithm KeyGen, we are then
going to define

Advmu-mrae
AE,KeyGen,Π(A) = 2 · Pr

[
Gmu-mrae

AE,KeyGen,Π(A)
]

− 1.

As above, KeyGen is omitted if it is the canonical one.
We say that an adversary is d-repeating if among the encryption queries, an

adversary only uses each nonce for at most d users. We stress that we make no
assumption on how the adversary picks nonces for the verification queries, and
for each individual user, the adversary can repeat nonces in encryption queries
as often as it wishes. If nonces are chosen arbitrarily then d can be as big as the
number of encryption queries. If nonces are picked at random then d is a small
constant.

A key-collision attack. We now show that for any AE scheme AE that uses
the canonical KeyGen, if an adversary can choose nonces arbitrarily then there
2 If Prim is meant to handle multiple primitives, we assume they can be accessed

through the same interface by pre-pending to the query a prefix indicating which
primitive is meant to be queried.
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Fig. 1. Security definitions for chosen-plaintext security of IV-based encryp-
tion (top), as well as nonce-misuse resistance for authenticated encryption
(bottom). We assume (without making this explicit) that Prim implements the ideal-
primitive Π.

is an attack, using q encryption queries and no verification query, that achieves
advantage q(q − 1)/2AE.kl+3.

Suppose that under AE, a ciphertext is always at least as long as the corre-
sponding plaintext. Fix an arbitrary message M such that |M | ≥ AE.kl+ 2. Fix
a nonce N and associated data A. The adversary A attacks q users, and for each
user i, it queries Enc(i,N,M,A) to get answer Ci. If there are distinct i and j
such that Ci = Cj then it outputs 1, hoping that users i and j have the same
key. For analysis, we need the following well-known result; see, for example, [17,
Chapter 5.8] for a proof.

Lemma 2 (Lower bound for birthday attack). Let q,N ≥ 1 be integers
such that q ≤

√
2N . Suppose that we throw q balls at random into N bins. Then

the chance that there is a bin of at least two balls is at least q(q−1)
4N .

From Lemma 2 above, in the real world, the adversary will output 1 if two users
have the same key, which happens with probability at least q(q − 1)/2AE.kl+2.
In contrast, since the ciphertexts are at least |M |-bit long, in the ideal world, it
outputs 1 with probability at most q(q − 1)/2|M |+1 ≤ q(q − 1)/2AE.kl+3. Hence
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Advmu-mrae
AE,Π (A) ≥ q(q − 1)

2AE.kl+2
− q(q − 1)

2AE.kl+3
=

q(q − 1)
2AE.kl+3

.

3.2 Multi-user PRF Security

We consider keyed functions F : {0, 1}F.kl×{0, 1}F.il → {0, 1}F.ol, possibly making
queries to an ideal primitive Π. Here, note that we allow F.il = ∗, indicating a
variable-input-length function. We define a variant of the standard multi-user
version of PRF security from [4] using (as in the previous section) a general
algorithm KeyGen to sample possibly correlated keys.

Concretely, let Func(il, ol) be the set of all functions {0, 1}il → {0, 1}ol, where,
once again, il = ∗ is allowed. We give the multi-user PRF security game in Fig. 2.
There, F’s access to Π is modeled by having oracle access to Prim. For any
adversary A, and key-generation algorithm KeyGen, we define

Advmu-prf
F,KeyGen,Π(A) = 2 · Pr

[
Gmu-prf

F,KeyGen,Π(A)
]

− 1.

As usual, we will omit KeyGen when it is the canonical key generator outputting
independent random keys.

Fig. 2. Definition of multi-user PRF security. Again, Prim implements the ideal
primitive Π.

3.3 Decomposing AE Security

While the notion mu-mrae is very strong, it might be difficult to prove that
an AE scheme, say AES-GCM-SIV meets this notion, if one aims for beyond-
birthday bounds. We therefore decompose this notion into separate privacy and
authenticity notions, as defined below.

Privacy. Consider the game Gmu-priv
AE,KeyGen,Π(A) in Fig. 3 that defines the (misuse-

resistant) privacy of an AE scheme AE, with respect to a key-generation algo-
rithm KeyGen, and an ideal primitive Π. Define

Advmu-priv
AE,KeyGen,Π(A) = 2Pr[Gmu-priv

AE,KeyGen,Π(A)] − 1.

Under this notion, the adversary is given access to an encryption oracle that
either implements the true encryption or returns a random string of appropri-
ate length, but there is no decryption oracle. If the adversary repeats a prior
encryption query then this query will be ignored.
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Fig. 3. Games to define privacy (left), and authenticity (right) of an AE
scheme AE with respect to a key-generation algorithm KeyGen : K × N →
{0, 1}AE.kl. The oracle Prim implements the ideal primitive Π. In the authenticity
notion, queries to Vf must be performed after all queries to Enc.

Authenticity. Consider the game Gmu-auth
AE,KeyGen,Π(A) in Fig. 3 that defines the

(misuse-resistant) authenticity of an AE scheme AE, with respect to a key-
generation algorithm KeyGen, and an ideal primitive Π. Define

Advmu-auth
AE,KeyGen,Π(A) = 2Pr[Gmu-auth

AE,KeyGen,Π(A)] − 1.

Under this notion, initially a bit b is set to 0 and the adversary is given an
encryption oracle that always implements the true encryption, and a verification
oracle. We require that the verification queries be made after all the evalua-
tion queries. On a verification (i,N,C,A), if there is a prior encryption query
(i,N,M,A) for an answer C, then the oracle ignores this query. Otherwise, the
oracle sets b ← 1 if AE.DPrim(Ki, N,C,A) returns a non-⊥ answer. The goal of
the adversary is to set b = 1.

Relations. Note that in the mrae notion, the adversary can perform encryption
and verification queries in an arbitrary order. In contrast, in the authenticity
notion, the adversary can only call the verification oracle after it finishes querying
the encryption oracle. Still, in Proposition 1 below, we show that authenticity
and privacy tightly implies mrae security. The proof is in the full version of this
paper [12].

Proposition 1. Let AE be an AE scheme associated with a key-generation algo-
rithm KeyGen and an ideal primitive Π. Suppose that a ciphertext in AE is always
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at least n-bit longer than the corresponding plaintext. For any adversary A0 that
makes qv verification queries, we can construct adversaries A1 and A2 such that

Advmu-mrae
AE,KeyGen,Π(A0) ≤ Advmu-priv

AE,KeyGen,Π(A1) + Advmu-auth
AE,KeyGen,Π(A2) +

2qv

2n
.

Any query of A1 or A2 is produced directly from A0. If A0 is d-repeating then
so are A1 and A2.

4 Multi-user Security of Basic Symmetric Schemes

4.1 Security of Counter-Mode Encryption

We study the mu security of counter mode encryption, or CTR for short. While
this is interesting on its own right (we are not aware of any analysis achieving
a comparable bound in the literature), we will also use Theorem 1 below to
obtain security results for AES-GCM-SIV. For this reason, we introduce some
extra notions to handle the degree of generality needed for our proof. Also, our
result is general enough to suggest an efficient solution to the re-keying problem
first studied by Abdalla and Bellare [1].

General IVs. We will consider a general IV-increasing procedure add, which is
associated with some maximal message length of Lmax blocks, and a block length
n. In particular, add takes an n-bit string IV and an offset i ∈ {0, . . . , Lmax − 1}
as inputs, and is such that add(IV, i) returns an n-bit string, and for all IV, the
strings add(IV, 0), . . . , add(IV, Lmax − 1) are distinct. We also say that add has
min-entropy h if for a random n-bit IV, and every i ∈ ZLmax , add(IV, i) takes any
value with probability at most 2−h, i.e., its min-entropy is at least h.

For example, the canonical IV addition is such that add(IV, i) = IV + i
(mod 2n), where we identify n-bit strings with integers in Z2n . Here, Lmax = 2n.
In contrast, AES-GCM-SIV will use CTR with Lmax = 232, n = 128, and
add(IV, i) = 1 ‖ IV[2, 96] ‖ (IV[97, 128] + i (mod 232)). Clearly, here, the min-
entropy is 127 bits, due to the first bit being set to one.

CTR encryption. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, i.e.,
E(K, ·) is a permutation for all k-bit K. We denote E(K, ·) = EK(·), and E−1

K

is the inverse of EK . Further, let add be a general IV-increasing procedure with
maximal block length Lmax. We define the IV-based encryption scheme CTR =
CTR[E, add] with CTR.kl = k, and where encryption operates as follows (where
we use n← to denote some function which pads a message M into n-bit blocks).

CTR.E(K,M) :

C[0] ← IV ←$ {0, 1}n,M [1], . . . , M [�] n← M

If � > Lmax then return ⊥
For i = 1 to � do C[i] ← EK(add(IV, i − 1)) ⊕ M [i]
Return C[0] ‖ C[1] ‖ · · · ‖ C[�]
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Decryption CTR.D re-computes the masks EK(add(IV, i−1)) using C[0] = IV,
and then retrieves the message blocks by xoring the masks to the ciphertext.
Here, we assume without loss of generality messages are padded (e.g., PKCS#7),
so that they are split uniquely into full-length n-bit blocks. Our result extends
easily to the more common padding-free variant where the last block is allowed to
be shorter than n bits, and the output of EK(add(IV, �−1)) is truncated accord-
ingly, since an adversary can simulate the padding-free version by removing the
appropriate number of bits from the received ciphertexts.

Security of CTR. We establish the (CPA) security of randomized CTR in
the ideal-cipher model for an arbitrary key-generation algorithm KeyGen which
produces keys that collide with small probability. In particular, we say that
KeyGen is α-smooth if for a sequence of keys (K1, . . . , Ku) output by an arbitrary
interaction with New, we have Pr[Ki = K] ≤ α for all i and K ∈ {0, 1}k, and
Pr[Ki = Kj ] ≤ α for all i �= j. The canonical KeyGen is α-smooth for α = 2−k.
See the full version of this paper [12] for the proof.

Theorem 1. Let E be modeled as an ideal cipher, add have min-entropy h, and
KeyGen be α-smooth. Further, let L,B ≥ 1 such that L ≤ 2(1−ε)h−1, for some
ε ∈ (0, 1], and let A be an adversary that queries Enc for at most L n-bit blocks,
and at most B blocks for each user, and makes p Prim queries. Then,

Advmu-ind
CTR[E,add],KeyGen,E(A) ≤ 2−n/2 +

(
LB + L2α

)
·
(

1
2n

+
1
2h

)

+ apα,

where a :=
⌈
1.5n
εh

⌉
− 1.

The bound highlights the benefits when each user only encrypts B blocks.
In particular, assume h = n, α = 1/2k. If B = 2b, then the number L of blocks
encrypted overall by the scheme can be as high as 2n−b. (The second term has
L2 in the numerator, but the denominator is much larger, i.e., 2n+k.) Another
interesting feature is that the contribution of Prim queries to the bound is
independent of the number of users and L.

More on the bound. Previous works [20,24] implicitly give mu security
bounds for CTR, but adopt a different model, where the adversary is a-priori
constrained in (1) the number of queries q, (2) a bound Bi on the number of
blocks encrypted per user i ∈ [u]. The resulting bounds contain a leading term∑u

i=1 B2
i /2n, assuming no primitive queries are made (adding primitive queries p

only degrades the bound). This is essentially what one can obtain by applying a
näıve hybrid argument to the single-user analysis. We discussed the disadvantage
of such a bound in the introduction already.

Re-keying, revisited. Also, in contrast to the previous works, the above result
holds for an arbitrary KeyGen, and only requires very weak randomness from it.
This suggests a new and efficient solutions for the re-keying problem of [1]. Let
H : {0, 1}k×{0, 1}∗ → {0, 1}k be a hash function, and let KeyGen, on input aux ∈
{0, 1}∗, simply output H(K, aux) for some master secret key K, and this KeyGen
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is α-smooth if H is for example POLYVAL from AES-GCM-SIV, where α = �/2k,
and � is an upper bound on the length of aux. We can assume � to be fixed to
something short, even 1. Indeed, aux could be a counter, or some other short
string. The resulting bound (when h = n) would be 2−n/2 + 2LB

2n + 2L2

2n+k +ap/2k.
Note that this solution heavily exploits the ideal-cipher model — clearly, we are
indirectly assuming some form of related-key security on E implicitly, and one
should carefully assess the security of E in this setting.

The results in the model of Abdalla and Bellare [1] are weaker in that they
only study more involved key-derivation methods (but with the benefit of a
standard-model security reduction), in a more constrained model, where the
adversary sequentially queries B blocks on a key, before moving to the next
key. Our model, however, is adaptive, as the adversary can distribute queries
as it pleases across users. But difference is not only qualitative, as quantitative
bounds in [1] are obtained via näıve hybrid arguments.

4.2 Security of GMAC+

This section deals with an abstraction of GMAC+, the PRF used within the
AES-GCM-SIV mode of operation. We show good mu bounds for this construc-
tion. The ideas extend similarly to various Wegman-Carter type MACs [38], but
we focus here on GMAC+.

The GMAC+
construction. The construction relies on a hash function H :

{0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n, which is meant to satisfy the following
properties. (We employ the shorthand HK(M,A) = H(K,M,A).)

Definition 1. Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n. We say that H is
c-almost XOR universal if for all (M,A) �= (M ′, A′), and all Δ ∈ {0, 1}n, and
K ←$ {0, 1}n,

Pr[HK(M,A) ⊕ HK(M ′, A′) = Δ] ≤ c · max{|M |n + |A|n, |M ′|n + |A′|n}
2n

,

where |X|n = max{1, �|X| /n�} is the block length of string X, as defined in
Sect. 2. Further, we say it is c-regular if for all Y ∈ {0, 1}n, M,A ∈ {0, 1}∗, and
K ←$ {0, 1}n,

Pr[HK(M,A) = Y ] ≤ c · (|M |n + |A|n)
2n

.

We say it is weakly c-regular if this is only true for (M,A) �= (ε, ε), and
HK(ε, ε) = 0n for all K.

Remark 1. Note that for POLYVAL as used in AES-GCM-SIV, we can set c =
1.5 provided that we exclude the empty string as input. This is because the
empty string results in POLYVAL outputting 0n regardless of the key, and thus
POLYVAL is only weakly c-regular. It is easy to fix POLYVAL so that this does
not happen (as the input is padded with its length, it is sufficient to ensure that
the length padding of the empty string contains at least one bit with value 1).
See the full version of this paper [12] for more details.
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We also consider a generic function xor : {0, 1}n × {0, 1}nl → {0, 1}n, for
nl < n, which is meant to add a nonce to a string. In particular, we require:
(1) λ-regularity: For every N ∈ {0, 1}nl and Z ∈ {0, 1}n, there are at most
λ strings Y ∈ {0, 1}n such that xor(Y,N) = Z, (2) injectivity: For every Y ,
xor(Y, ·) is injective, and (3) linearity: For every Y, Y ′, N,N ′, we have xor(Y,N)⊕
xor(Y ′, N ′) = xor(Y ⊕ Y ′, N ⊕ N ′).

Example 1. In GCM-SIV and AES-GCM-SIV, one uses

xor(Y,N) = 0 ‖ (Y ⊕ 0n−nlN)[2 : n].

This is clearly 2-regular, injective, and linear. Note that here it is important to
prepend 0’s to the nonce N ; if one instead appends 0’s to N then injectivity of
xor will be destroyed.

Given H and xor, as well as a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n, we
define GMAC+ = GMAC+[H,E, xor] : {0, 1}k+n × ({0, 1}∗ ×{0, 1}∗ ×{0, 1}nl) →
{0, 1}n such that

GMAC+(Kin ‖ Kout, (M,A,N)) = EKout(xor(HKin(M,A), N)). (2)

Mu-prf security of GMAC+. We upper bound the mu-prf advantage
for GMAC+. We stress here that the adversary’s Eval queries have form
(i,M,A,N), and the length of such queries is implicitly defined as |M |n + |A|n.

We also consider an arbitrary KeyGen algorithm, which outputs pairs of keys
(Ki

in,K
i
out) ∈ {0, 1}n × {0, 1}k. We will only require these keys to be pairwise-

close to uniform, i.e., we say that KeyGen is β-pairwise almost uniform (AU)
if for every i �= j, the distribution of (Ki

in,K
i
out), (K

j
in,K

j
out) is such that every

pair of (n+k)-bit strings appears with probability at most β 1
22(n+k) . Clearly, the

canonical KeyGen satisfies this with β = 1, but we will be for instance interested
later on in cases where β = 1 + ε for some small constant ε > 0.

The proof of the following theorem is in the full version of this paper [12].

Theorem 2 (Security of GMAC+). Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ →
{0, 1}n be c-almost xor universal and c-regular, KeyGen be β-pairwise AU, xor be
injective, linear, and λ-regular, and let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block
cipher, which we model as an ideal cipher. Then, for any adversary A making q
Eval queries of at most L n-bit blocks (with at most B blocks queries per user),
as well as p ideal-cipher queries,

Advmu-prf
GMAC+[H,E,xor],B,E(A) ≤ (1 + C)qB

2n
+

CL(p + q) + βq2

2n+k
, (3)

where C := c · λ · β.

Here, parameters are even better than in the case of counter-mode, but this
is in part due to the longer key. In particular, this being PRF security, it is
unavoidable that security is compromised when more than 2(k+n)/2 users are
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involved. The interesting fact is that partial key collisions (i.e., a collision in the
hash keys or in the cipher keys) alone do not help.

For example, take k = n = 128, C = β = 1, B = 232, L = qB, q ≤ 295, then
the bound becomes roughly q/295+p/2128, and note that this is when processing
up to 2128 blocks of data.

Weak regularity. We also provide a version of Theorem 2 for the case where
H is only weakly c-regular. We stress that the security loss is substantial here
(and thus if using GMAC+ alone, one should rather make sure H is c-regular),
but nonetheless the security is preserved in the case where a nonce N is reused
across a sufficiently small number d of users. A proof sketch is in the full version
of this paper [12].

Theorem 3 (Security of GMAC+, weak regularity). Let H : {0, 1}n ×
{0, 1}∗ × {0, 1}∗ → {0, 1}n be c-almost xor universal and weakly c-regular,
KeyGen be β-pairwise AU, xor be injective, linear, and λ-regular, and let
E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, which we model as an ideal
cipher. Then, for any adversary A making q Eval queries of at most L n-bit
blocks (with at most B blocks queries per user), as well as p ideal-cipher queries,

Advmu-prf
GMAC+[H,E,xor],B,E(A) ≤ (1 + C)qB

2n
+

CL(p + 2q) + βq2

2n+k
+

d(p + q)
2k

, (4)

where C := c · λ · β, and d is a bound on the number of users re-using any given
nonce.

5 SIV Composition with Key Reuse

SIV with key reuse. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher that
we will model as an ideal cipher. Let F : {0, 1}F.kl×N ×{0, 1}∗×{0, 1}∗ → {0, 1}∗

be a keyed function, with F.kl ≥ k. Let SE : {0, 1}k × {0, 1}∗ → {0, 1}∗ be an
IV-based encryption scheme of IV length n. Both F and SE are built on top of E.
In a generic SIV composition, the key Kin ‖Kout of F and the key J of SE will be
chosen independently. However, for efficiency, it would be convenient if one can
reuse Kout = J , which GCM-SIV+ does. Formally, let AE = SIV[F,SE] be the AE
scheme as defined in Fig. 4.

Results. We consider security of the SIV construction for F = GMAC+ and SE =
CTR. We assume that GMAC+ and CTR use functions xor and add, respectively,
such that (1) xor is 2-regular, injective, and linear, and xor(X,N) ∈ 0{0, 1}n−1

for every string X ∈ {0, 1}n and every nonce N ∈ {0, 1}nl, and (2) add has min-
entropy n−1, and add(IV, �) ∈ 1{0, 1}n−1 for every IV ∈ {0, 1}n and every � ∈ N.
(Those notions for add and xor can be found in Sects. 4.1 and 4.2 respectively.)
This assumption holds for the design choice of AES-GCM-SIV. We thus only write
CTR[E] or GMAC+[H,E] instead of CTR[E, add] or GMAC+[H,E, xor]. Below,
we show the mu-mrae security of SIV[GMAC+[H,E],CTR[E]], with respect to
a pairwise AU KeyGen, and a c-regular, c-AXU hash function H; the notion of
pairwise AU for key-generation algorithms can be found in Sect. 4.2. See the full
version of this paper [12] for the proof.
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Fig. 4. The SIV construction (with key reuse) AE = SIV[F, SE] that is built on top of
an ideal cipher E.

Theorem 4 (Security of SIV). Let E : {0, 1}k × {0, 1}n → {0, 1}n be a
blockcipher that we will model as an ideal cipher. Fix 0 < ε < 1. Let H :
{0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a c-regular, c-AXU hash. Let AE ←
SIV[GMAC+[H,E],CTR[E]]. Then for any β-pairwise AU KeyGen and for any
adversary A that makes at most q encryption/verification queries whose total
block length is at most L ≤ 2(1−ε)n−4, and encryption queries of at most B
blocks per user, and p ≤ 2(1−ε)n−4 ideal-cipher queries,

Advmu-mrae
AE,KeyGen,E(A) ≤ 1

2n/2
+

βap

2k
+

(3βc + 7β)L2 + 4βcLp

2n+k

+
(4cβ + 0.5β + 6.5)LB

2n
,

where a = �1.5n/(n − 1)ε� − 1.

Remarks. The proof of Theorem 4 only needs to know that the mu-ind proof
of CTR and the mu-prf proof of GMAC+ follow some high-level structure that
we will describe below. We do not need to know any other specific details about
those two proofs. This saves us the burden of repeating the entire prior proofs
in Sects. 4.1 and 4.2. The mu-ind proof of CTR uses the H-coefficient technique
and follows this canonical structure:

(i) When the adversary finishes querying, we grant it all the keys. Note that
in the ideal world, the keys are still created but not used.

(ii) For each ideal-cipher query EK(X) for answer Y , the transcript correspond-
ingly stores an entry (prim,K,X, Y,+). Likewise, for each query E−1(K,Y )
for answer X, the transcript stores an entry (prim,K,X, Y,−). For each
query Enc(i,M) with answer C, we store an entry (enc, i,M,C).

(iii) When the adversary finishes querying, for each entry (enc, i,M,C), in the
real world, we grant it a table that stores all triples (Ki,X,E(Ki,X)) for
all queries E(Ki,X) that CTR.E[E](Ki,M ;T ) makes, where Ki is the key
of user i and T is the IV of C. In the ideal world, the proof generates
a corresponding fake table as follows. If we consider the version of CTR
in which messages are padded (e.g., PKCS#7), then one can first parse
IV‖C1‖ · · · ‖Cm

n← C and M1‖ · · · ‖Mm
n← M and then return (Ki,X1, C1⊕

M1), . . . , (Ki,Xm, Cm ⊕ Mm), where Xi = add(IV, i − 1) and we use n← to
denote some function that pads a message into n-bit blocks. If one uses the
well-known padding-free version of CTR where the last block of the message
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is allowed to be shorter than n-bit, then one first pads C with random bits
so that the last fragmentary block becomes n-bit long, and likewise pads M
with 0’s so that the last fragmentary block becomes n-bit long, and then
proceeds as above. (This step can be optionally omitted for the padding
version since the adversary can generate the table by itself.)

(iv) Consider a transcript τ . If there are two tables T1 and T2 in τ that contain
triples (K,X, Y ) and (K,X ′, Y ′) respectively, and either X = X ′, or Y =
Y ′, then τ must be considered bad. If there is a table T that contains triples
(K,X, Y ) and (K,X ′, Y ′) such that either X = X ′, or Y = Y ′, then τ is
also considered bad. In addition, if there is a table T that contains a triple
(K,X, Y ), and there is an entry (prim,K,X ′, Y ′, ·), and either X = X ′ or
Y = Y ′, then τ is considered bad. The proof may define some other criteria
for badness of transcripts.

We say that a CTR transcript is CTR-bad if it is bad according to the criteria
defined by the proof of Theorem 1. (Note that although not all of those criteria
are specified in the structure above, it is enough for our purpose, as our proof of
Theorem 4 does not need to know those specific details.) The proof of GMAC+

also follows a similar high-level structure. We say that a GMAC+ transcript
is GMAC+-bad if it is bad according to the criteria defined by the proof of
Theorem 2.

Weak regularity. We also provide a version of Theorem 4 for the case where
H is only weakly c-regular. Again, the security loss is substantial here, but
security is preserved if each nonce is reused across a sufficiently small number d
of users. A proof sketch is given in the full version of this paper [12].

Theorem 5 (Security of SIV, weak regularity). Let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher that we will model as an ideal cipher. Fix 0 < ε < 1.
Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a weakly c-regular, c-AXU hash.
Let AE ← SIV[GMAC+[H,E],CTR[E]]. Then for any β-pairwise AU KeyGen and
for any adversary A that makes at most q encryption/verification queries whose
total block length is at most L ≤ 2(1−ε)n−4, and encryption queries of at most B
blocks per user, and p ≤ 2(1−ε)n−4 ideal-cipher queries,

Advmu-mrae
AE,KeyGen,E(A) ≤ 1

2n/2
+

βap

2k
+

(3βc + 7β)L2 + 4βcLp

2n+k

+
(4cβ + 0.5β + 6.5)LB

2n
+

dp + (2d + a)L
2k

,

where a = �1.5n/(n− 1)ε�− 1, and d is a bound on the number of users re-using
any given nonce.

6 AES-GCM-SIV with a Generic Key Derivation

In this section we consider the mu-mrae security of AES-GCM-SIV with respect to
a quite generic class of key-derivation functions. This class includes the current
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KDF KD0 of AES-GCM-SIV, but it contains another KDF KD1 that is not only
simpler but also twice faster. This KD1 was the original KDF in AES-GCM-SIV,
but then subsequently replaced by KD0. Our multi-user bound is even better
than the single-user bound of Gueron and Lindell [20]. In this section, we assume
that GMAC+ and CTR use functions xor and add, respectively, such that (1) xor
is 2-regular, injective, and linear, and xor(X,N) ∈ 0{0, 1}n−1 for every string
X ∈ {0, 1}n and every nonce N ∈ N = {0, 1}nl, and (2) add has min-entropy
n−1, and add(IV, �) ∈ 1{0, 1}n−1 for every IV ∈ {0, 1}n and every � ∈ N. (Those
notions for add and xor can be found in Sects. 4.1 and 4.2 respectively.) This
assumption holds for the design choice of AES-GCM-SIV. We thus only write
CTR[E] or GMAC+[H,E] instead of CTR[E, add] or GMAC+[H,E, xor].

Below, we will formalize the Key-then-Encrypt transform that captures the
way AES-GCM-SIV generates session keys for every encryption/decryption. We
then describe our class of KDFs.

The KtE transform. Let AE be an AE scheme of nonce space N and let KD :
K × N → {0, 1}AE.kl be a key-derivation function. Given KD and AE, the Key-
then-Encrypt (KtE) transform constructs another AE scheme AE = KtE[KD,AE]
as shown in Fig. 5.

Fig. 5. The AE scheme AE = KtE[KD,AE] constructed from an AE scheme AE and a
key-derivation function KD, under the KtE transform.

Natural KDFs. Let n ≥ 1 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
pad : N ×{0, . . . , 5} → {0, 1}n be a padding mechanism such that pad(N0, s0) �=
pad(N1, s1) for every distinct pairs (N0, s0), (N1, s1) ∈ N × {0, . . . , 5}. Let
KD[E] : {0, 1}k × N → {0, 1}n+k be a KDF that is associated with a deter-
ministic algorithm KD.Map : ({0, 1}n)6 → {0, 1}n+k. We say that KD[E] is
natural if on input (K,N), KD[E] first calls R0 ← E(K, pad(N, 0)), . . . , R5 ←
E(K, pad(N, 5)), and then returns KD.Map(R0, . . . , R5).

It might seem arbitrary to limit the number of blockcipher calls of a natural
KDF to six. However, note that since k ≤ 2n, the block length of each (k + n)-
bit derived key is at most three. All known good constructions, which we list
below, use at most six blockcipher calls. Using more would simply make the
performance and even the bounds worse. We therefore define a natural KDF to
use at most six blockcipher calls.

The current KDF KD0[E] of AES-GCM-SIV, as shown in the left panel of
Fig. 6, is natural; it is defined for even n only. For k = n, it can be imple-
mented using four blockcipher calls, but for k = 2n it needs six blockcipher
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calls. Consider the KDF KD1[E] on the right panel of Fig. 6. For k = n it can be
implemented using two blockcipher calls, and k = 2n it needs three blockcipher
calls. This KDF is also simpler to implement than KD0. Iwata and Seurin [24]
propose to use either the XOR construction [8,14] or the CENC construction [23].
Both the XOR and CENC constructions are natural; the former uses four block-
cipher calls for k = n and six blockcipher calls for k = 2n, and the latter uses
three and four blockcipher calls respectively.

Fig. 6. Key-derivation functions KD0 (left) and KD1 (right).

For a natural key-derivation function KD[E], we say that it is γ-unpredictable
if for any subset S ⊆ {0, 1}n of size at least 15

16 · 2n and any s ∈ {0, 1}n+k, if the
random variables R0, . . . , R5 are sampled uniformly without replacement from
S then Pr[KD.Map(R0, . . . , R5) = s] ≤ γ/2n+k. Lemma 3 below shows that both
KD0[E] and KD1[E] are 2-unpredictable; see the full version of this paper [12]
for the proof. One might also show that both the XOR and CENC constructions
are 2-unpredictable. Therefore, in the remainder of this section, we only consider
natural, 2-unpredictable KDFs.

Lemma 3. Let n ≥ 128 be an even integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Then
both KD0[E] and KD1[E] are 2-unpredictable.

Ideal counterpart of natural KDF. For a natural KDF KD[E], consider
its following ideal version KD[k]. The key space of KD[k] is the entire set Perm(n).
It takes as input a permutation π ∈ Perm(n) and a string N ∈ N , computes
Rs ← π(pad(N, s)) for all s ∈ {0, . . . , 5}, and returns KD.Map(R0, . . . , R5). Of
course KD[k] is impractical since its key length is huge, but it will be useful in
studying the security of the KtE transform. The following bounds the privacy and
authenticity of KtE[KD[k],AE] via the mu-mrae security of the AE scheme AE;
the proof is in the full version of this paper [12]. In light of that, in the subsequent
subsections, we will analyze the difference between security of KtE[KD[E],AE]
and that of KtE[KD[k],AE].

Proposition 2. Let n ≥ 8 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural KDF. Let AE be an AE scheme of key length k + n. Let
AE = KtE[KD[k],AE]. Then for any adversaries A1 and A2, we can construct
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Fig. 7. Key-generation algorithm KeyGen corresponding to KD[k].

a key-generation algorithm KD.KeyGen as shown in Fig. 7, and an adversary A
such that

Advmu-priv

AE,E
(A1) + Advmu-auth

AE,E
(A2) ≤ 3 Advmu-mrae

AE,KeyGen,E(A).

For any type of queries, the number of A’s queries is at most the maximum of
that of A1 and A2, and the similar claim holds for the total block length of the
encryption/verification queries. Moreover, the maximum of total block length of
encryption queries per user of A is at most the maximum of that per (user,
nonce) pair of A1 and A2.

The following lemma says that if KD[E] is 2-unpredictable then the con-
structed KeyGen in the theorem statement of Proposition 2 is 4-pairwise AU; the
notion of pairwise AU for key-generation algorithms can be found in Sect. 4.2.
The proof is in the full version of this paper [12].

Lemma 4. Let n ≥ 8 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural, 2-unpredictable KDF. Then the corresponding key-generation
algorithm KeyGen in Fig. 7 is 4-pairwise AU.

Indistinguishability of KD[E]. For an adversary A, define

AdvdistKD[E](A) = 2Pr[Gdist
KD[E](A)] − 1

as the advantage of A in distinguishing a natural KDF KD[E] and its ideal
counterpart KD[k] in the multi-user setting, where game Gdist

KD[E](A) is defined
in Fig. 8. Under this notion, the adversary is given access to both E and E−1,
an oracle New() to initialize a new user v with a truly random master key Kv

and a secret ideal permutation πv, and an evaluation oracle Eval that either
implements KD[E] or KD[k]. We say that an adversary A is d-repeating if among
its evaluation queries, a nonce is used for at most d users.

Lemma 5 below bounds the indistinguishability advantage between KD[E]
and KD[k]. The proof is in the full version of this paper [12].
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Fig. 8. Game to distinguish KD[E] and its ideal counterpart KD[k].

Lemma 5. Fix 0 < ε < 1. Let n ≥ 16 be an integer and let k ∈ {n, 2n}. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let KD[E] be a natural KDF. For any d-repeating adversary A that makes
at most p ≤ 2n−4 ideal-cipher queries, and q ≤ 2(1−ε)n−4 evaluation queries,

AdvdistKD[E](A) ≤ 1
2n/2

+
24pq + 18q2

2k+n
+

ap + d(p + 3q)
2k

where a = �1.5/ε�−1. The theorem statement still holds if we grant the adversary
the master keys when it finishes querying.

6.1 Privacy Analysis

Lemma 6 below reduces the privacy security of KtE[KD[E],AE] for a generic AE
scheme AE, to that of KtE[KD[k],AE]; the proof relies crucially on Lemma 5.

Lemma 6. Fix 0 < ε < 1. Let n ≥ 16 be an integer and let k ∈ {n, 2n}. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal
cipher. Let KD[E] be a natural KDF. Let AE be an AE scheme of key length k+n,
and let AE = KtE[KD[E],AE]. Consider a d-repeating adversary A that makes
p ≤ 2n−5 ideal-cipher queries and q ≤ 2(1−ε)n−4 encryption queries. Suppose
that using AE to encrypt A’s encryption queries would need to make L ≤ 2n−5

ideal-cipher queries. Then

Advmu-priv

AE,E
(A) ≤ Advmu-priv

KtE[KD[k],AE],E(A) +
2

2n/2
+

48(L + p)q + 36q2

2k+n

+
2a(L + p) + 2d(L + p + 3q)

2k
,

where a = �1.5/ε� − 1.

Proof. We first construct an adversary A that tries to distinguish KD[E] and
KD[k]. Adversary A simulates game Gmu-priv

AE,E
(A), but each time it needs to gen-

erate a session key, it uses its Eval oracle instead of KD[E]. However, if A
previously queried Eval(i,N) for an answer K, next time it simply uses K
without querying. Finally, adversary A outputs 1 only if the simulated game
returns true. Let b be the challenge bit in game Gdist

KD[E](A). Then
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Pr[Gdist
KD[E](A) ⇒ true | b = 1] = Pr[Gmu-priv

AE,E
(A)], and

Pr[Gdist
KD[E](A) ⇒ false | b = 0] = Pr[Gmu-priv

KtE[KD[k],AE],E(A)].

Subtracting, we get

AdvdistKD[E](A) =
1
2
(
Advmu-priv

AE,E
(A1) − Advmu-priv

KtE[KD[k],AE],E(A1)
)
.

Note that A makes at most p + L ≤ 2n−4 ideal-cipher queries, and q Eval

queries. Moreover, A is also d-repeating. Hence using Lemma 5,

AdvdistKD[E],KD[k](A) ≤ 1
2n/2

+
24(L + p)q + 18q2

2k+n
+

a(L + p) + d(L + p + 3q)
2k

.

Putting this all together,

Advmu-priv

AE,E
(A) ≤ Advmu-priv

KtE[KD[k],AE],E(A) +
2

2n/2
+

48(L + p)q + 36q2

2k+n

+
2a(L + p) + 2d(L + p + 3q)

2k
.

This concludes the proof. ��

6.2 Authenticity Analysis

In Sect. 6.1, we bound the privacy advantage by constructing a d-repeating adver-
sary distinguishing KD[E] and KD[k], and then using Lemma 5. This method
does not work for authenticity: the constructed adversary might be q-repeating,
because there is no restriction of the nonces in verification queries, and one
would end up with an inferior term q(L+p+ q)/2k. We instead give a dedicated
analysis.

Restricting to simple adversaries. We say that an adversary is simple if for
any nonce N and user i, if the adversary uses N for an encryption query of user i,
then it will never use nonce N on verification queries for user i. Lemma 7 below
reduces the authenticity advantage of a general adversary against KtE[KD[E],AE]
to that of a simple adversary; the proof is in the full version of this paper [12],
and is based on the idea of splitting the cases of where the adversary forges on
a fresh (N, i) pair and where it does not, and the latter can be handled using
Lemma 5 above. Handling the former is the harder part, which we deal with
below. We discuss the bound however below, and give an overview of the proof.

Lemma 7. Let n ≥ 16 be an integer and let k ∈ {n, 2n}. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural KDF. Let AE be an AE scheme of key length n + k, and
let AE = KtE[KD[E],AE]. Let A0 be a d-repeating adversary that makes at most
q ≤ 2(1−ε)n−4 encryption/verification queries and p ≤ 2n−5 ideal-cipher queries.
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Suppose that using AE to encrypt A0’s encryption queries and decrypt its verifi-
cation queries would need to make L ≤ 2n−5 ideal-cipher queries. Then, we can
construct an adversary A1 and a simple adversary A2, both d-repeating, such
that

Advmu-auth
AE,E

(A0) ≤ Advmu-auth
KtE[KD[k],AE],E(A1) + Advmu-auth

AE,E
(A2)

+
2

2n/2
+

48(L + p)q + 36q2

2n+k
+

2(a + d)L + 2(a + d)p + 6dq

2k
,

where a = �1.5/ε� − 1. Any query of A1 or A2 is also a query of A0.

Handling simple adversaries. Lemma 8 below shows that the AE scheme
KtE

[
KD[E],SIV[GMAC+[H,E],CTR[E]]

]
has good authenticity against simple

adversaries, for any 2-unpredictable, natural KDF KD[E]. See the full version [12]
for the proof. Note that here we can handle both regular and weakly regular hash
functions. (If we instead consider just regular hash functions, we can slightly
improve the bound, but the difference is inconsequential.)

Lemma 8. Fix 0 < ε < 1 and let a = �1.5/ε� − 1. Let n ≥ 128 be an integer,
and let k ∈ {n, 2n}. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that
we will model as an ideal cipher. Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n

be a hash function that is either c-regular or weakly c-regular. Let KD[E] be a
natural, 2-unpredictable KDF. Let AE = SIV[GMAC+[H,E],CTR[E]] and AE =
KtE[KD[E],AE]. Let A be a d-repeating, simple adversary that makes at most
p ≤ 2(1−ε)n−8 ideal-cipher queries, and q ≤ 2(1−ε)n−8 encryption/verification
queries whose total block length is at most L ≤ 2(1−ε)n−8. Then

Advmu-auth
AE,E

(A) ≤ 3
2n/2

+
11q

2n
+

288(L + p)q + 36q2 + 48c(L + p + q)L
2n+k

+
(8a + 7a2 + 3d)q

2k
+

(na + 6a + 6d)L + 6(a + d)p
2k

.

Discussion. The bound in Lemma 8 consists of three important terms q
2n , pd

2k
,

and naL
2k

, each corresponding to an actual attack. Let us revisit these, as this
will be helpful in explaining the proof below. First, since the IV length is
only n-bit long, even if an adversary simply outputs q verification queries in
a random fashion, it would get an advantage about q

2n . Next, for the term pd
2k

,
consider an adversary that picks a long enough message M and then makes
encryption queries (1, N,M,A), . . . , (d,N,M,A) of the same nonce N and asso-
ciated data, for answers C1, . . . , Cd respectively. (Recall that the adversary is
d-repeating, so it cannot use the nonce N in encryption queries for more than d
users.) By picking p candidate master keys K1, . . . , Kp and comparing Ci with
AE.E(Kj , N,M,A) for all i ≤ d and j ≤ p, the adversary can recover one master
key with probability about pd

2k
.

Finally, for the term naL
2k

, consider the following attack. The adversary
first picks a nonce N and p candidate keys K1, . . . , Kp, and then queries
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R0,j ← EK(Kj , pad(N, 0)), . . . , R5,j ← E(Kj , pad(N, 5)) for every j ≤ p.
Let Kj

in ‖ Kj
out ← KD.Map(R0,j , . . . , R5,j). Now, if some Kj is the master

key of some user i then Kj
in ‖ Kj

out will be the session key of that user i for
nonce N . The adversary then picks an arbitrary ciphertext C, and then com-
putes Mj ← CTR[E].D(Kj , C) and Vj ← E−1(Kj

out, T ) for each j ≤ p, where T
is the IV of C. The goal of the adversary is to make a sequence of q verification
queries (1, N,C,A), . . . , (q,N,C,A), for an �-block associated data A that it will
determine later. (Recall that in verification queries, the adversary can reuse a
nonce across as many users as it likes.) To maximize its chance of winning, the
adversary will iterate through every possible string A∗ of block length �, and let
count(A∗) denote the number of j’s that xor(H(Kj

in,Mj , A
∗), N) = Vj . Then it

picks A as the string to maximize count(A). The proof of Lemma 8 essentially
shows that with very high probability, we have count(A) ≤ na(� + |C|n) ≤ naL

q ,
and thus the advantage of this attack is bounded by naL

2k
.

Proof ideas. We now sketch some ideas in the proof of Lemma 8. First consider
an adversary that does not use the encryption oracle. Assume that the adver-
sary does not repeat a prior ideal-cipher query, or make redundant ideal-cipher
queries. For each query EK(Y ) of answer Y , create an entry (prim,K,X, Y,+).
Likewise, for each query E−1

K (Y ) of answer X, create an entry (prim,K,X, Y,−).
Consider a verification query (i,N,C,A). Let Ki be the secret master key
of user i, and let Kin ‖ Kout be the session key of user i for nonce N . Let
T be the IV of C. The proof examines several cases, but here we only dis-
cuss a few selective ones. If there is no entry (prim,Ki,X, Y, ·) such that
X ∈ {pad(N, 0), . . . , pad(N, 5)} then given the view of the adversary, the ses-
sion key Kin ‖ Kout still has at least k + n − 1 bits of (conditional) min-entropy.
In this case, the chance that AE.D(Kin ‖ Kout, N,C,M) returns a non-⊥ answer
is roughly 1/2n. Next, suppose that there is an entry (prim,K,X, Y,−) such
that K = Ki and X ∈ {pad(N, 0), . . . , pad(N, 5)}. By using some balls-into-
bins analysis,3 we can argue that it is very likely that there are at most 6a
entries (prim,K∗,X∗, Y ∗,−) such that X∗ ∈ {pad(N, 0), . . . , pad(N, 5)}. Hence
the chance this case happens is at most 6a/2k.

Now consider the case that there are entries (prim,Ki, pad(N, 0), R0,+), . . . ,
(prim,Ki, pad(N, 5), R5,+), and (prim,Kout, V, T,−), with V ∈ 0{0, 1}n−1 and
Kin‖Kout ← KD.Map(R0, . . . , R5). This corresponds to the last attack in the dis-
cussion above. We need to bound Pr[Bad], where Bad is the the event (i) this case
happens, and (ii) V = xor(H(Kin,M,A), N), where M ← CTR[E].D(Kout, C).
This is highly non-trivial because somehow the adversary already sees the keys
Ki and Kin ‖ Kout, and can adaptively pick (C,A), as shown in the third attack
above.

To deal with this, we consider a fixed (i∗, N∗, C∗, A∗). There are at most p
septets T of entries (prim,K, pad(N∗, 0), R∗

0,+), . . . , (prim,K, pad(N∗, 5), R∗
5,+)

3 We note that this is not the classic balls-into-bins setting, because the balls are
thrown in an inter-dependent way. In the full version [12], we give an analysis of this
biased balls-into-bins setting.
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and (prim, J, U, T ∗,−), with U ∈ 0{0, 1}n−1 and J ′ ‖ J ← KD.Map(R∗
0, . . . , R

∗
5).

We then show that the chance that there are n�a such septets T such that
xor(H(J ′(T ),M∗(T ), A∗), N∗) = U(T ) is at most 21−(3�n+2n), where � = |C∗|n+
|A∗|n ≥ 2 and M∗(T ) ← CTR[E].D(J(T ), C∗). Hence, regardless of how the
adversary picks (i,N,C,A) from all possible choices of (i∗, N∗, C∗, A∗), the chance
that there are na(|C|n + |A|n) septets T such that xor(H(J ′(T ),M(T ), A), N) =
U(T ), where M(T ) ← CTR[E].D(J(T ), C), is at most

∞∑

�=2

∑

(i∗,N∗,C∗,A∗)
|C∗|n+|A∗|n=�

21−(3n�+2n) ≤
∞∑

�=2

22n�+2n · 21−(3n�+2n) =
∞∑

�=2

2
2n�

≤ 1
2n

.

Thus Pr[Bad] ≤ 1
2n + na·E[|A|n+|C|n]

2k
.

Now we consider the general case where the adversary A might use the
encryption oracle. Clearly if for each encryption query (i,N,M,A), we grant
the adversary the session key KD[E](Ki, N), where Ki is the master key of
user i, then it only helps the adversary. Recall that here the adversary is simple,
so it cannot query Enc(i,N,M,A) and later query Vf(i,N,C ′, A′). We also let
the adversary compute up to L + p ideal-cipher queries, so that the encryption
oracle does not have to give the ciphertexts to the adversary. Effectively, we can
view that A is in the following game G0. It is given access to E/E−1 and an
oracle Eval(i,N) that generates KD[E](i,N). Then it has to generate a list of
verification queries. The game then tries to decrypt those, and returns true only
if some gives a non-⊥ answer.

To remove the use of the Eval oracle, it is tempting to consider the vari-
ant G1 of game G0 where Eval instead implements KD[k], and then bound
the gap between G0 and G1 by constructing a d-repeating adversary A distin-
guishing KD[E] and KD[k]. However, this approach does not work because it is
impossible for A to correctly simulate the processing of the verification queries.
Instead, we define game G1 as follows. Its Eval again implements KD[k], but
after the adversary produces its verification queries, the game tries to program
E so that the outputs of Eval are consistent with KD[E] on random master
keys K1,K2, · · · ←$ {0, 1}n+k. (But E still has to remain consistent with its
past ideal-cipher queries.) Of course it is not always possible, because the fake
Eval might have generated some inconsistency. In this case, the game returns
false, meaning that the adversary loses. If there is no inconsistency, then after
the programming, the game processes the verification queries as in G0.

To bound the gap between G0 and G1, we will construct a d-repeating adver-
sary A distinguishing KD[E] and KD[k], but additionally, it wants to be granted
the master keys after it finishes querying. Note that Lemma 5 applies to this
key-revealing setting. Now, after the adversary A finishes querying, it is granted
the master keys and checks for inconsistency between the outputs of Eval and
the ideal-cipher queries. If there is inconsistency then A outputs 0, indicating
that it has been dealing with KD[k]. Otherwise, it has to simulate the process-
ing of the verification queries. However, although it knows the keys now, it can
no longer queries E. Instead, A tries to sample an independent blockcipher Ẽ,
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subject to (1) Ẽ and E agree on the outputs of the past ideal-cipher queries, and
the outputs of Eval are consistent with KD[Ẽ] on the master keys K1,K2, . . ..
It then processes the verification queries using this blockcipher Ẽ instead of E.

Although the game G1 above does not completely remove the use of the
Eval oracle, it still creates some sort of independence between the sampling of
the master keys, and the outputs that the adversary A receives, allowing us to
repeat several proof ideas above.

Handling general adversaries. Combining Lemmas 7 and 8, we immedi-
ately obtain the following result.

Lemma 9. Fix 0 < ε < 1 and let a = �1.5/ε� − 1. Let n ≥ 128 be an integer,
and let k ∈ {n, 2n}. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that
we will model as an ideal cipher. Let H : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n

be a hash function that is either c-regular hash or weakly c-regular. Let KD[E]
be a natural, 2-unpredictable KDF. Let AE = SIV[GMAC+[H,E],CTR[E]] and
AE = KtE[KD[E],AE]. Let A be a d-repeating adversary that makes at most
p ≤ 2(1−ε)n−8 ideal-cipher queries, and q ≤ 2(1−ε)n−8 encryption/verification
queries whose total block length is at most L ≤ 2(1−ε)n−8. Then we can construct
a d-repeating adversary A such that

Advmu-auth
AE,E

(A) ≤ Advmu-auth
KtE[KD[k],AE],E(A) +

5
2n/2

+
11q

2n
+

336(L + p)q + 72q2

2n+k

+
48c(L + p + q)L

2n+k
+

(8a + 7a2 + 9d)q + (na + 8a + 8d)L + 8(a + d)p
2k

.

Moreover, any query of A is also a query of A.

6.3 Unwinding Mu-Mrae Security

The following Theorem 6 concludes the mu-mrae security of AE scheme AE =
KtE[KD[E],SIV[GMAC+[H,E],CTR[E]]]; the proof is in the full version of this
paper [12]. Note that here we can handle both regular and weakly regular hash
functions. (If we instead consider just regular hash functions, we can slightly
improve the bound, but the difference is inconsequential.)

Theorem 6 (Security of AES-GCM-SIV). Let n ≥ 128 be an integer, and
let k ∈ {n, 2n}. Fix 0 < ε < 1 and let a = �1.5n/(n − 1)ε� − 1. Let E :
{0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher.
Let H : {0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}n be a c-AXU hash function. Moreover,
either H is c-regular, or weakly c-regular. Let KD[E] be a natural, 2-unpredictable
KDF. Let AE = SIV[GMAC+[H,E],CTR[E]] and AE = KtE[KD[E],AE]. Let A be
a d-repeating adversary that makes at most p ≤ 2(1−ε)n−8 ideal-cipher queries,
and q ≤ 2(1−ε)n−8 encryption/verification queries whose total block length is at
most L ≤ 2(1−ε)n−8 and encryption queries of at most B blocks per (user, nonce)
pair. Then,
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Advmu-mrae
AE,E

(A) ≤ 10
2n/2

+
(17a + 4a2 + 24d + na)L + (22a + 13d)p

2k

+
(48c + 30)LB

2n
+

(303 + 108c)L2 + (192 + 96c)Lp

2n+k
.

We note that one way that d can be kept small is by choosing nonces randomly,
or at least with sufficient entropy. Then, by a classical balls-into-bins analysis, if
q is quite smaller than 2nl, where nl is the nonce length, which holds in practice
for nl = 96, then the value d is bounded by a constant with high probability.
We also point out that if d cannot be bounded, then our security bound still
gives very meaningful security guarantees if k = 2n (i.e., this would have us use
AES-256). As there is a matching attack in the unbounded d case, which just
exploits key collisions, this suggests the need to increase the key length to 256
bits in the multi-user case. However, many uses in practice will have d bounded,
and for these 128-bit keys will suffice.
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