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Abstract. We introduce a formal quantitative notion of “bit security”
for a general type of cryptographic games (capturing both decision and
search problems), aimed at capturing the intuition that a cryptographic
primitive with k-bit security is as hard to break as an ideal cryptographic
function requiring a brute force attack on a k-bit key space. Our new
definition matches the notion of bit security commonly used by cryp-
tographers and cryptanalysts when studying search (e.g., key recovery)
problems, where the use of the traditional definition is well established.
However, it produces a quantitatively different metric in the case of deci-
sion (indistinguishability) problems, where the use of (a straightforward
generalization of) the traditional definition is more problematic and leads
to a number of paradoxical situations or mismatches between theoreti-
cal/provable security and practical/common sense intuition. Key to our
new definition is to consider adversaries that may explicitly declare fail-
ure of the attack. We support and justify the new definition by proving
a number of technical results, including tight reductions between several
standard cryptographic problems, a new hybrid theorem that preserves
bit security, and an application to the security analysis of indistinguisha-
bility primitives making use of (approximate) floating point numbers.
This is the first result showing that (standard precision) 53-bit floating
point numbers can be used to achieve 100-bit security in the context of
cryptographic primitives with general indistinguishability-based security
definitions. Previous results of this type applied only to search problems,
or special types of decision problems.

1 Introduction

It is common in cryptography to describe the level of security offered by a (con-
crete instantiation of a) cryptographic primitive P by saying that P provides a
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certain number of bits of security. E.g., one may say that AES offers 110-bits
of security as a pseudorandom permutation [6], or that a certain lattice based
digital signature scheme offers at least 160-bits of security for a given setting of
the parameters. While there is no universally accepted, general, formal defini-
tion of bit security, in many cases cryptographers seem to have an intuitive (at
least approximate) common understanding of what “n bits of security” means:
any attacker that successfully breaks the cryptographic primitive must incur a
cost1 of at least T > 2n, or, alternatively, any efficient attack achieves at most
ε < 2−n success probability, or, perhaps, a combination of these two conditions,
i.e., for any attack with cost T and success probability ε, it must be T/ε > 2n.
The intuition is that 2n is the cost of running a brute force attack to retrieve
an n-bit key, or the inverse success probability of a trivial attack that guesses
the key at random. In other words, n bits of security means “as secure as an
idealized perfect cryptographic primitive with an n-bit key”.

The appeal and popularity of the notion of bit security (both in theory and in
practice) rests on the fact that it nicely sits in between two extreme approaches:

– The foundations of cryptography asymptotic approach (e.g., see [9,10]) which
identifies feasible adversaries with polynomial time computation, and success-
ful attacks with breaking a system with non-negligible probability.

– The concrete security approach [3,5], which breaks the adversarial cost into
a number of different components (running time, oracle queries, etc.), and
expresses, precisely, how the adversary’s advantage in breaking a crypto-
graphic primitive depends on all of them.

The foundational/asymptotic approach has the indubious advantage of simplic-
ity, but it only offers a qualitative classification of cryptographic functions into
secure and insecure ones. In particular, it does not provide any guidance on
choosing appropriate parameters and key sizes to achieve a desired level of secu-
rity in practice. On the other hand, the concrete security treatment delivers (pre-
cise, but) substantially more complex security statements, and requires carefully
tracking a number of different parameters through security reductions. In this
respect, bit security offers a quantitative, yet simple, security metric, in the form
of a single number: the bit security or security level of a primitive, typically
understood as the logarithm (to the base 2) of the ratio T/ε between the cost T
and advantage ε of the attack, minimized over all possible adversaries.

Capturing security level with a single number is certainly convenient and use-
ful: it allows for direct comparison of the security level of different instances of
the same primitive (or even between different primitives altogether), and it pro-
vides a basis for the study of tight reductions, i.e., constructions and reductions
that approximately preserve the security level. Not surprisingly, bit security is

1 For concreteness, the reader may think of the cost as the running time of the attack,
but other cost measures are possible, and everything we say applies to any cost
measure satisfying certain general closure properties, like the fact that the cost of
repeating an attack k times is at most k times as large as the cost of a single
execution.
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widely used. However, there is no formal definition of this term at this point, but
rather just an intuitive common understanding of what this quantity should cap-
ture. This understanding has led to some paradoxical situations that suggest that
the current “definitions” might not capture exactly what they are meant to.

It has been noted that only considering the adversary’s running time is a
poor measure of the cost of an attack [7,8]. This is especially true if moving to
the non-uniform setting, where an adversary may receive additional advice, and
the question of identifying an appropriate cost measure has been studied before
[6]. However, the paradoxical situations have not, to this day, been resolved
to satisfaction, and it seems that considering only the adversary’s resources is
insufficient to address this issue.

In order to explain the problems with the current situation, we first distin-
guish between two types of primitives with respect to the type of game that
defines their security (see Sect. 3 for a more formal definition): search primitives
and decision primitives. Intuitively, the former are primitives where an adversary
is trying to recover some secret information from a large search space, as in a key
recovery attack. The latter are games where the adversary is trying to decide if
a secret bit is 0 or 1, as in the indistinguishability games underlying the defini-
tion of pseudorandom generators or semantically secure encryption. For search
games, the advantage of an adversary is usually understood to be the probability
of finding said secret information, while for decision games it is usually consid-
ered to be the distinguishing advantage (which is equal to the probability that
the output of the adversary is correct, over the trivial probability 1

2 of a random
guess).

The Peculiar Case of PRGs. Informally, a PRG is a function f : {0, 1}n �→
{0, 1}m, where m > n, such that its output under uniform input is indistinguish-
able from the uniform distribution over {0, 1}m. In the complexity community
it is common knowledge according to [8] that a PRG with seed length n cannot
provide more than n/2 bits of security under the current definition of security
level. This is because there are non-uniform attacks that achieve distinguishing
advantage 2−n/2 in very little time against any such function. Such attacks were
generalized to yield other time-space-advantage trade-offs in [7]. This is very
counter-intuitive, as the best generic seed recovery attacks do not prevent n-bit
security (for appropriate cost measure), and thus one would expect n bits of
security in such a case to be possible.

The Peculiar Case of Approximate Samplers. Many cryptographic schemes,
in particular lattice based schemes, involve specific distributions that need to
be sampled from during their execution. Furthermore, security reductions may
assume that these distributions are sampled exactly. During the transition of
such a cryptographic scheme from a theoretical construction to a practical imple-
mentation, the question arises as to how such a sampling algorithm should be
implemented. In many cases, it is much more efficient or secure (against e.g.
side channel attacks) or even only possible to approximate the corresponding
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distribution rather than generating it exactly. In such a case it is crucial to
analyze how this approximation impacts the security of the scheme. Tradition-
ally, statistical distance has been employed to quantify this trade-off between
approximation and security guarantee, but it leads to the unfortunate situation
where the 53-bit precision provided by floating point numbers (as implemented
in hardware in commodity microprocessors) only puts a 2−53 bound on statisti-
cal distance, and results in a rather weak 53-bit security guarantee on the final
application. Proving better security using statistical distance methods seems
to require higher precision floating point numbers implemented in (substantially
slower) software libraries. In recent years a number of generic results have shown
improved analysis methods based on different divergences [2,15–17] and using
the conventional definition of bit security. Surprisingly, all of them apply exclu-
sively to search primitives (with the only exception of [2], which also considers
decision primitives with a specific property). This has led to the unnatural sit-
uation where it seems that decision primitives, like encryption, require higher
precision sampling than search primitives. This is counter-intuitive, because in
search primitives, like signature schemes, the distribution is often used to hide
a specific secret and a bad approximation may leak information about it. On
the other hand, it is commonly believed within the research community that
for encryption schemes the distribution does not necessarily have to be followed
exactly, as long as it has sufficient entropy, since none of the cryptanalytic attacks
seem to be able to take advantage of a bad approximation in this case [1]. How-
ever, a corresponding proof for generic decision primitives (e.g., supporting the
use of hardware floating point numbers, while still targeting 100-bit or higher
levels of security) has so far eluded the attempts of the research community.

1.1 Contribution and Techniques

We present a new notion of bit security associated to a general cryptographic
game. Informally, we consider a game in which an adversary has to guess an n-bit
secret string2 x. This captures, in a unified setting, both decision/indistinguish-
ability properties, when n = 1, and arbitrary search/unpredictability properties,
for larger n. The definition of bit security is quite natural and intuitive, building
on concepts from information theory, but we postpone its description to the end
of this section. For now, what matters is that a distinguishing feature of our
framework is to explicitly allow the adversary to output a special “don’t know”
symbol ⊥, rather than a random guess. So, we can talk about the probability
α that the adversary outputs something (other than ⊥), and the (conditional)
probability β that the output correctly identifies the secret. This makes little
difference for search problems, but for decision problems it allows the adversary
to express different degrees of confidence in its guess: admitting failure is more
informative than a random guess. We proceed by specializing our notion of bit

2 More generally, the adversary has to output a value satisfying a relation R(x, a)
which defines successful attacks. For simplicity, in this introduction, we assume R is
the identity function. See Definition 5 for the actual definition.
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security to the two important settings of search and decision problems and show
that:

– For the case of search primitives (large secret size n = |x|), this yields the
traditional notion of bit security, as the logarithm of the ratio T/ε between
the attack cost T , and the success probability ε = αβ. The fact that our
definition is consistent with the current one in the case of search primitives
gives us confidence in its validity, since in this case the traditional definition
is very intuitive and there are no paradoxes casting doubts about it.

– Surprisingly, for decision primitives (i.e., for n = 1), our definition yields a
different formula, which, instead of being linear the distinguishing advantage
δ = 2β − 1, is quadratic in δ. In other words, the bit security is the logarithm
of T/(αδ2). This is not entirely new, as a similar proposal was already put
forward in [11,14] in a more specific context, but has so far received very little
attention.

One of the implications of our new definition is that it seemingly resolves
the paradoxical situation about the bit security of pseudorandom generators
(PRGs) described in [7]. (The significance of the nonuniform attacks to one-way
functions described in [7] can already be addressed by an appropriate choice of
cost measure.) For the PRG case, an attack achieving distinguishing advantage
δ = 2−n/2 even in constant time does not necessarily contradict n-bit security. In
fact, [7] shows that for any algorithm distinguishing the output of any function
f : {0, 1}n �→ {0, 1}n+1 from uniform with distinguishing advantage δ must use
at least T = Ω(δ22n) resources (for a suitable definition of resources, similar
to the one-way function case). So, this shows that by our definition, there exist
PRGs with bit security log2(T/δ2) = n, as one would expect.

Of course, as definitions are arbitrary, it is not clear if changing a definition
is really solving any real problem, and our definition of bit security needs to be
properly supported and justified. Notice that a reduction A ≤ B showing that if
A is n-bit secure, then B is n/2-bit secure, may be interpreted in different ways:

– Either the construction of B from A is not optimal/tight, i.e., it incurs an
actual security degradation

– Or the construction is tight, but the reduction (i.e., the security proof) is not
– Or the definition of bit security is incorrect.

The last possibility is most delicate when reducing between different types of
cryptographic primitives (e.g., from search to decision) where the definition of bit
security may take different (and somehow arbitrary) forms. All these comments
apply equally well to tight reductions, mapping n-bit security to n-bit security.
We support and justify our definition by providing a collection of results (typi-
cally in the form of tight reductions3 between different cryptographic primitives),
which are the main technical contribution of this paper. For example,
3 In the context of this work, “tight” means that bit security is (approximately) pre-

served, up to small additive logarithmic terms corresponding to the polynomial
running time of an attack. More specifically, a reduction is tight if it maps a primitive
providing n-bit security, to another with security level n − O(log n). For simplicity,
we omit all the O(log n) in this introduction.



8 D. Micciancio and M. Walter

– We observe that the Goldreich-Levin hard-core predicate is tight according
to our definition, i.e., if f(x) is an n-bit secure one-way permutation,4 then
G(r, x) = (r, f(x), 〈r, x〉) is an n-bit secure PRG.

– There is a simple reduction showing that if G is an n-bit secure PRG, then
the same G (and also f) is an n-bit secure one-way function. (Interestingly,
the reduction is not completely trivial, and makes critical use of the special
symbol ⊥ in our definition. See Theorem4.)

Notice that, while both reductions are between different types of cryptographic
primitives (search and decision, with different bit security formulas), combining
them together gives a search-to-search reduction which uses the same security
definition on both sides. Since it would be quite counterintuitive for such a
simple reduction (from PRG to OWF) to increase the level of security from n/2
to n bits, this provides some confidence that our definition is on target, and the
Goldreich-Levin PRG is indeed as secure as the underlying one-way function.

Other technical results presented in this paper include:

– Approximate samplers: we give a proof in Sect. 5.3 that shows for the first
time that the sampling precision requirement is essentially the same for search
and decision primitives to maintain security. We do this by extending a result
from [15] for search primitives to decision primitives using our definition of
bit security.

– Hybrid argument: since our new definition of advantage no longer matches the
simple notion of statistical distance, the standard proof of the hybrid argu-
ment [12] (so ubiquitously used in cryptography and complexity) is no longer
valid. While the proof in our setting becomes considerably more involved, we
show (Theorem 7) that hybrid arguments are still valid.

– Additional examples about non-verifiable search problems (Theorem5), and
tight reductions for message-hiding encryption (Theorem 6), and multi-
message security (Corollary 1).

Beside increasing our confidence in the validity of our new bit security notion,
these reductions also start building a toolbox of techniques that can be used to
fruitfully employ the new definition in the analysis of both old and new cryp-
tographic primitives, and improve our theoretical understanding of the relation
between different cryptographic primitives by means of tight reductions. Finally,
they allow us to expand the use of divergence techniques [2,15–17] to bound the
floating point precision required to secure cryptographic primitives with indis-
tinguishability security properties.

We conclude this section with an informal overview of the new bit security
definition. As already mentioned, our definition is based on concepts from infor-
mation theory. In a purely information theoretic setting, the advantage of an
adversary A in discovering a secret X could be modeled by the mutual informa-
tion ε = I(A,X)/H(X), normalized by the entropy of the secret H(X) to ensure

4 The actual reduction holds for any one-way functions. Here we focus on permutations
just to emphasize the connection with PRGs. See Theorem 3.
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ε ≤ 1. Of course, this approach completely fails in the computational setting,
where the output of a one-way permutation f(X) is perfectly correlated with the
input X, but still we do not want to consider a trivial algorithm A(f(X)) = f(X)
as a successful attack (with advantage ε = I(A,X)/H(X) = 1 !) to the one-way
permutation input recovery problem: what the adversary knows (f(X)) identifies
the input X information theoretically, but it does not provide knowledge of it.
We adapt this definition to the computational setting by replacing A with a dif-
ferent random variable Y which equals (1) the secret X when A is successful (i.e.,
A = X), and (2) an independent copy X ′ of the secret (conditioned on X ′ �= X)
when A failed to output X. We find this definition intuitively appealing, and
we consider it the main conceptual contribution of this paper. But words are of
limited value when arguing about the validity of a new definition. We view the
technical results described above the most important evidence to support our
definition, and the main technical contribution of this work.

1.2 Related Work

While the informal concept of bit security is widely used in cryptography, not
many papers directly address the problem of its formal definition. Some of the
works that are perhaps most directly related to our are [6–8], which pinpoint
the shortcoming of the traditional definition. The work of Bernstein and Lange
[6] provides an extensive survey of relevant literature, and attempts to provide
a better definition. In [6, Appendix B] the authors analyze different measures
to address the underlying problems, and show how each of them can be used
to make partial progress towards a more sound definition of bit security, while
pointing out that none of them seem to solve the problem entirely. In contrast,
the definitions and results in this paper concern the definition of adversarial
advantage, which we consider to be orthogonal to any of the ideas presented in
[6]. So, we see our work as complementary to [6–8].

To the best of our knowledge there are only two works proposing an alterna-
tive definition of adversarial advantage for decision problems: the aforementioned
works of Goldreich and Levin [11,14] and the infamous HILL paper [13]. The lat-
ter primarily works with the traditional definition of adversarial advantage, but
presents the advantage function δ2 (note the lack of α) as an alternative, observ-
ing that many of their reductions are much tighter in this case. Our work can be
considered as a generalization of them, and supporting the definitional choices
made in [11,14]. In the last years, bit security has been the focus on a body of
work [2,15–17] aimed at optimizing the parameters and floating point precision
requirements of lattice cryptography. Our work resolves the main problem left
open in [15,17] of extending definitions and techniques from search to decision
problems, and support the secure use of standard precision floating point num-
bers in the implementation of cryptographic primitives (like encryption) with
indistinguishability security properties.
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2 Preliminaries

Notation. We denote the integers by Z and the reals by R. Roman and Greek
letters can denote elements from either set, while bold letters denote vectors over
them. Occasionally, we construct vectors on the fly using the notation (·)i∈S for
some set S (or in short (·)i if the set S is clear from context), where · is a function
of i. For a set S, we denote its complement by S̄. We denote the logarithm to
the base 2 by log and the one to the base e by ln.

Calligraphic letters are reserved for probability distributions and x ← P
means that x is sampled from the distribution P. For any x in the support of
P, we denote its probability under P by P(x). All distributions in this work are
discrete, and U(S) is the uniform distribution over the support S. If S is clear
from context, we simply write U instead of U(S). A probability ensemble {Pθ}θ

is a family of distributions indexed by a parameter θ (which may be a string
or a vector). We extend any divergence δ between distributions to probability
ensembles by δ({Pθ}θ, {Qθ}θ) = maxθ δ(Pθ,Qθ). For notational simplicity, we
do not make a distinction between random variables, probability distributions,
and probabilistic algorithms generating them.

Definition 1. The statistical distance between two distributions P and Q over
S is defined as ΔSD(P,Q) = 1

2

∑
x∈S |P(x) − Q(x)|.

2.1 Information Theory

For our definition, we need a few concepts from information theory.

Definition 2. The Shannon entropy of a random variable X is given by

H(X) = EX

[

log
1

Pr{X}
]

= −
∑

x

Pr[X = x] log Pr[X = x].

Definition 3. For two random variables X and Y , the conditional entropy of
X given Y is

H(X|Y ) = EY [H(X|Y )] =
∑

x,y

Pr[X = x, Y = y] log
Pr[Y = y]

Pr[X = x, Y = y]
.

Definition 4. The mutual information between two random variables X and Y is

I(X;Y ) = H(X) − H(X|Y ).

3 Security Games

In this section we formally define the bit security of cryptographic primitives
in a way that captures practical intuition and is theoretically sound. As the
security of cryptographic primitives is commonly defined using games, we start
by defining a general class of security games.
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Definition 5. An n-bit security game is played by an adversary A interacting
with a challenger X. At the beginning of the game, the challenger chooses a secret
x, represented by the random variable X ∈ {0, 1}n, from some distribution DX .
At the end of the game, A outputs some value, which is represented by the random
variable A. The goal of the adversary is to output a value a such that R(x, a),
where R is some relation. A may output a special symbol ⊥ such that R(x,⊥)
and R̄(x,⊥) are both false.

This definition is very general and covers a lot of standard games from the
literature. Some illustrative examples are given in Table 1. But for the crypto-
graphic primitives explicitly studied in this paper, it will be enough to consider
the simplest version of the definition where R = {(x, x)|x ∈ X} is the identity
relation, i.e., the goal of the adversary is to guess the secret x. We formally
define the indistinguishability game for two distributions because we refer to it
extensively throughout this work.

Table 1. Typical instantiations of security games covered by Definition 5. The security
parameter is denoted by κ. In the definition of digital signatures, the list Q of the
adversary’s queries are regarded as part of its output.

Game R n DX

Uninvertibility of one-way permutations {(x, y) | x = y} O(κ) U
Uninvertibility of one-way functions f {(x, y) | f(x) = f(y)} O(κ) U
2nd pre-image resistance for hash functions h {(x, y) | x �= y, h(x) = h(y)} O(κ) U
Indistinguishability of two distributions {(x, y) | x = y} 1 U
Unforgeability of signature scheme (K,S,V ) {(x, (m, σ, Q)) | (pk, sk) ←

K(x), V (pk, m, σ) = 1, m /∈ Q}
O(κ) K(U)

Definition 6. Let {D0
θ}θ, {D1

θ}θ be two distribution ensembles. The indistin-
guishability game is defined as follows: the challenger C chooses b ← U({0, 1}).
At any time after that the adversary A may (adaptively) request samples by send-
ing θi to C, upon which C draws samples ci ← Db

θi
and sends ci to A. The goal

of the adversary is to output b′ = b.

We loosely classify primitives into two categories according to their associated
security games: we call primitives, where the associated security game is a 1-bit
game (O(κ)-bit game), decision primitives (search primitive, respectively).

Note that we allow the adversary to always output ⊥, which roughly means
“I don’t know”, even for decision primitives. This is a crucial difference from
previous definitions that force the distinguisher to always output a bit. The
reason this is important is that in games, where the distinguisher is not able to
check if it produced the correct result, it is more informative to admit defeat
rather than guessing at random. In many cases this will allow for much tighter
reductions (cf. Sect. 5.2). Such a definition in the context of indistinguishability
games is not entirely new, as Goldreich and Levin [11,14] also allowed this type
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of flexibility for the distinguisher. To the best of our knowledge, this is the only
place this has previously appeared in the cryptographic literature.

Now we are ready to define the advantage. The definition is trying to cap-
ture the amount of information that the adversary is able to learn about the
secret. The reasoning is that the inverse of this advantage provides a lower
bound on the number of times this adversary needs to be run in order to extract
the entire secret. We use tools from information theory to quantify exactly this
information, in particular the Shannon entropy. Other notions of entropy might
be worth considering, but we focus on Shannon entropy as the most natural
definition that captures information. A straight-forward definition could try to
measure the mutual information between the random variables X (modeling the
secret) and A (modeling the adversary output, cf. Definition 5). Unfortunately,
the variable A might reveal X completely in an information theoretical sense,
yet not anything in a computational sense. To break any computationally hid-
den connection between X and A, we introduce another random variable Y ,
which indicates, when A actually achieves its goal and otherwise does not reveal
anything about the secret.

Definition 7. For any security game with corresponding random variable X
and A(X), the adversary’s advantage is

advA =
I(X;Y )
H(X)

= 1 − H(X|Y )
H(X)

where I(·; ·) is the mutual information, H(·) is the Shannon entropy, and
Y (X,A) is the random variable with marginal distributions Yx,a = {Y | X =
x,A = a} defined as

1. Yx,⊥ = ⊥, for all x.
2. Yx,a = x, for all (x, a) ∈ R.
3. Yx,a = {x′ ← DX | x′ �= x}, for all (x, a) ∈ R̄.

At first glance, the definition of Y might not be obviously intuitive, except
for case 1. For case 2, note that x completely determines the set R(x, ·) and
if the adversary finds an element in it, then it wins the game. Therefore, one
can think of R(x, ·) as a secret set, and finding any element in it as completely
breaking the scheme. Finally, the third case defines Y to follow the distribution
of the secret, but is conditioned on the event that it is incorrect. The intuition
here is that if an adversary outputs something, then his goal is to bias the secret
distribution towards the correct one, i.e. it will allow us to quantify how much
better A performs than random guessing.

With the definition of the advantage in place, the definition of bit security
follows quite naturally.

Definition 8. Let T : {A | A is any algorithm} �→ Z+ be a measure of resources
that is linear under repetition, i.e. T (kA) = kT (A), where kA is the k time
repetition of A. For any primitive, we define its bit security as minA log T (A)

advA .
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For convenience we will often write T (A) as TA or simply T if A is clear from
context. Note that we leave out a concrete definition of the resources on purpose,
since we focus on the advantage. Our definition can be used with many different
measures, for example running time, space, advice, etc., or combinations of them.

4 The Adversary’s Advantage

While the advantage as defined in the previous section captures the intuition
about how well an adversary performs, it seems too complex to be handled in
actual proofs or to be used in practice. A simple definition in terms of simple
quantities related to the adversary would be much more desirable. We begin by
defining the quantities of an adversary that we are interested in.

Definition 9. For any adversary A playing a security game, we define its out-
put probability as αA = Pr[A �= ⊥] and its conditional success probability as
βA = Pr[R(X,A)|A �= ⊥], where the probabilities are taken over the randomness
of the entire security game (including the internal randomness of A). Finally, in
the context of decision primitives, we also define A’s conditional distinguishing
advantage as δA = 2βA − 1. With all of these quantities, when the adversary A
is clear from context, we drop the corresponding superscript.

The goal of this section is to distill a simple definition of advantage in terms
of αA and βA by considering a broad and natural class of adversaries and games.

Theorem 1. For any n-bit security game with uniform secret distribution, let A
be an adversary that for any secret x ∈ {0, 1}n outputs ⊥ with probability 1 − α,
some value a such that R(x, a) with probability βα, and some value a such that
R̄(x, a) with probability (1 − β)α. Then

advA = α

(

1 − (1 − β) log(2n − 1) + H(Bβ)
n

)

(1)

where Bβ denotes the Bernoulli distribution with parameter β.

We defer the proof to AppendixA. Note that for large n we get advA ≈ αAβA,
which is exactly A’s success probability. Plugging this into Definition 8 matches
the well-known definition of bit security for search primitives. On the other hand,
for n = 1 this yields advA = αA(1 − H(BβA)) = αA(δA)2/(2 ln 2) + O(αA(δA)4)
by Taylor approximation, which, for our purposes, can be approximated by
αA(δA)2. This matches the definition of Levin [14], who proposed this defini-
tion since it yields the inverse sample complexity of noticing the correlation
between the adversary output and the secret. The fact that it can be derived
from Definition 7 suggests that this is the “right” definition of the adversary’s
advantage.

We now redefine the adversary’s advantage according to above observations,
which, combined with Definition 8 yields the definition of bit security we actually
put forward and will use throughout the rest of this work.
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Definition 10. For a search game, the advantage of the adversary A is

advA = αAβA

and for a decision game, it is

advA = αA(δA)2.

Note that assuming that Definition 10 is equivalent to 7 for all adversaries is
quite a leap as we only proved it for a subclass of them, and in fact, it is not true at
least for decision games. However, the following theorem shows that when used in
the context of bit security (Definition 8) for decision games, Definitions 10 and 7
are in fact equivalent, since we are quantifying over all adversaries.

Theorem 2. For any distinguisher D playing a decision game with advD = ζ
according to Definition 7, there is a distinguisher D′ such that TD = TD′

and
αD′

(δD′
)2 ≥ ζ/9 for the same game.

Before we prove Theorem 2, we observe that the distinguisher D′ that we
construct from D will run D and decide on its output depending on the result. As
such, D′ is essentially a distinguisher for the indistinguishability game (restricted
to one query) against the two distributions induced by the secret on D. We start
with a simple lemma that analyzes how well such a simple distinguisher does in
this game.

Lemma 1. Let Dx for x ∈ {0, 1} be two distributions over the same support
{a, b, c} and denote their probabilities by zx = Dx(z) for z ∈ {a, b, c}. Let Dz

be a distinguisher for the indistinguishability game instantiated with Dx that on
input z returns arg maxx(zx) and ⊥ otherwise. Then,

αDz (δDz )2 =
1
2

(z1 − z0)2

z1 + z0
.

We now prove Theorem 2 by showing that for any distinguisher D there is
an event z ∈ {⊥, 0, 1} such that αDz (δDz )2 ≈ advD.

Proof (of Theorem 2). Since advD is independent of the support/domain of D
(as long as it has size exactly 3), we identify {⊥, 0, 1} with a, b, c to highlight
this genericity.

With the same notation as in Lemma 1, we note that the conditional entropy
of the secret X given Y is

H(X|Y ) =
1
2

(H1(a0, a1) + H1(b0, b1) + H1(c0, c1))

where

H1(z0, z1) = z0 log
z0 + z1

z0
+ z1 log

z0 + z1
z1

= ((z0 + z1) log((z0 + z1) − z0 log z0 − z1 log z1.
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Setting z̄ = z1 − z0, H1 can be rewritten as

H1(z0, z̄) = (2z0 + z̄) log(2z0 + z̄) + z0 log z0 + (z0 + z̄) log(z0 + z̄).

We use the following bound on H1:

H1(z0, z̄) ≥ 2z0 for z̄ ≥ 0 (2)

H1(z0, z̄) ≥ 2z0 + z̄ − z̄2

z0
for |z̄| ≤ z0 (3)

where (2) follows from monotonicity in z̄ and (3) from Taylor approximation of
order 2 in z̄ at z̄ = 0. Since z̄ > z0 implies that (2) is larger than (3), these
bounds imply

H1(z0, z̄) ≥ max
(

2z0, 2z0 + z̄ − z̄2

z0

)

(4)

for all z̄ ∈ [−z0, 1 − z0]. In the following, we will apply the bound (3) for z̄ ∈
[−z0, 0] and (4) for z̄ ∈ [0, 1 − z0].

W.l.o.g. assume ā ≥ 0, b̄ ≤ 0 and c̄ ≤ 0 (note that
∑

z∈{a,b,c} z̄ = 0). Using
(3) and (4)

H(X|Y ) ≥ 1
2

[

max
(

2a0, 2a0 + ā − ā2

a0

)

+ 2b0 + b̄ − b̄2

b0
+ 2c0 + c̄ − c̄2

c0

]

= 1 +
1
2

[

max
(

−ā,− ā2

a0

)

− b̄2

b0
− c̄2

c0

]

which shows that

advD ≤ 1
2

[

−max
(

−ā,− ā2

a0

)

+
b̄2

b0
+

c̄2

c0

]

=
1
2

[

min
(

ā,
ā2

a0

)

+
b̄2

b0
+

c̄2

c0

]

≤ 3
2

max
[

min
(

ā,
ā2

a0

)

,
b̄2

b0
,
c̄2

c0

]

.

Note that if the maximum is attained by one of the latter two terms, since b̄

and c̄ are negative, we have αDb(δDb)2 ≥ b̄2

4b0
by Lemma 1 (and similarly for c).

So advD ≤ 6αDz (δDz )2 for one of z ∈ {b, c}.
Now assume the maximum is min(ā, ā2

a0
). If ā2

a0
≤ ā, then ā ≤ a0 and so

a0 + a1 ≤ 3a0. Again by Lemma 1, αDa(δDa)2 ≥ ā2

6a0
. Finally, if ā ≤ ā2

a0
then

a0 ≤ ā, which means a0 + a1 ≤ 3ā and so by Lemma 1, αDa(δDa)2 ≥ ā
6 . In both

cases we have advD ≤ 9αDa(δDa)2. 
�



16 D. Micciancio and M. Walter

5 Security Reductions

To argue that our definition is useful in a theoretical sense, we apply it to several
natural reductions, which arise when constructing cryptographic primitives from
other ones. As the novelty of our definition lies mostly with decision games,
we will focus on decision primitives that are built from search primitives (cf.
Sect. 5.1), search primitives that are built from decision primitives (cf. Sect. 5.2),
and finally decision primitives that are built from other decision primitives (cf.
Sect. 5.3).

Throughout this section we will refer to two distribution ensembles {D0
θ}θ and

{D1
θ}θ as κ-bit indistinguishable, if the indistinguishability game from Definition 6

instantiated with {D0
θ}θ and {D1

θ}θ is κ-bit secure.

5.1 Search to Decision

A classical way to turn a search primitive into a decision primitive is the
Goldreich-Levin hardcore bit [11].

Definition 11. Let f : X �→ Y be a function and b : X �→ {0, 1} be a pred-
icate. The predicate b is a κ-bit secure hardcore bit for f , if the distributions
(f(x), b(x)) and (f(x),U({0, 1})), where x ← U(X), are κ-bit indistinguishable.

Goldreich and Levin showed a way to construct a function with a hardcore
bit from any one-way function. In this setting, one would hope that if the one-
way function is κ-bit secure then also the hardcore bit is close to κ bit secure.
The next theorem due to Levin [14] establishes exactly such a connection.

Theorem 3 (adapted from [14]). Let f : {0, 1}n �→ {0, 1}k be a κ-bit secure
one-way function. Then b(x, r) = 〈x, r〉 mod 2 is a (κ − O(log n))-bit secure
hardcore bit for g(x, r) = (f(x), r).

This theorem was proven in [14], and all we did was to adapt the statement
from [14] to our notation/framework. So, we refer the reader to [14] for the
proof details, and move on to make some general observations. The proof for this
theorem assumes a distinguisher D for b and constructs from it an inverter A
for f , where advD = advA (and the running time is polynomially related). Such
security preserving reductions are information theoretically only possible with a
definition of advantage that is proportional to (δD)2 for decision primitives, if it is
proportional to αAβA for search primitives. This is because any inverter querying
a distinguisher with advantage δD and attempting to learn an (αAβA)-fraction
of a uniformly chosen n-bit secret, must make at least Ω(nαAβA/(δD)2) queries.
Denote the resources of D by TD and note that TA ≥ Ω(αAβA/(δD)2)TD is a
lower bound on the resources of A. The goal of the proof is to find an upper bound
on TA/advA = TA/αAβA ≥ Ω(TD/(δD)2). This is only possible by assuming
an upper bound on TD/(δD)2. If only a bound on TD/δD is assumed, then the
upper bound on TA/advA must contain a linear factor in 1/δD, which may be
as large as O(2n) and thus result in a dramatic loss in (nominal) security.
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5.2 Decision to Search

In the following subsections we show constructions and the corresponding reduc-
tions in the other direction. The first is just a straightforward converse to the
Goldreich-Levin theorem, showing that any PRG is also a OWF for the same
bit security. The second construction is presented as a very natural and straight-
forward way of turning a decision primitive into a search primitive. The third
reduction is one that naturally arises in cryptographic applications, for example
identification protocols.

PRGs Are One-Way Functions. While the following theorem is intuitively
trivial (and technically simple), as explained in the introduction it serves to jus-
tify our definition of bit security. The proof also illustrates the subtle difference
between an adversary that outputs ⊥ and one that outputs a random guess.

Theorem 4. If g is a PRG with κ-bit security, then it is also a (κ−4)-bit secure
one-way function.

Proof. Assume A is an attack to g as a one-way function with cost T , output
probability αA, and conditional success probability βA. We turn A into an adver-
sary D to g as a PRG by letting D(y) output 1 if G(A(y)) = y and ⊥ otherwise.
Assume that A has conditional success probability βA = 1. This is without loss
of generality because one-way function inversion is a verifiable search problem,
and A can be modified (without affecting its advantage) to output ⊥ when its
answer is incorrect. So, A has advantage αA, equal to its output probability.
Notice that D is successful only when the indistinguishability game chooses the
secret bit 1, and then A correctly inverts the PRG. So, the success probability of
D is precisely αDβD = αA/2. The output probability of D can be a bit higher,
to take into account the possibility that on secret bit 0, the challenger picks a
random string that belongs (by chance) to the image of the PRG, and A correctly
inverts it. But, in any case, it always belongs to the interval αD ∈ [1/2, 3/4] ·αA.
It follows that αD ≥ αA/2 and βD = (αA/2)/αD ≥ 2/3. So, D has advantage
at least αD(δD)2 = αD(2βD −1)2 ≥ αA/9. Since the two algorithms have essen-
tially the same cost, they achieve the same level of bit security, up to a small
constant additive term log 9 < 4. 
�

We remark that our proof differs from the standard text-book reduction
that pseudorandom generators are one-way functions in a simple, but crucial
way: when A(y) fails to invert G, instead of outputting 0 as a “best guess” at
the decision problem, it outputs ⊥ to explicitly declare failure. The reader can
easily check that the standard reduction has output probability αD = 1 and
(conditional) success probability βD ≤ (αA + 1)/2. So, the advantage of the
distinguisher in the standard proof is αD(2βD − 1)2 = (αA)2, resulting in a
substantial drop (log αA) in the bit security proved by the reduction.
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Secret Recovery. We proceed by giving a construction of a search primitive
from two distributions. We are not aware of any immediate applications, but this
simple example is supposed to serve as evidence that our definitions for search
and decision primitives behave nicely under composition. It also provides an
example of “non verifiable” search problem, i.e., a cryptographic problem with
exponentially large secret space defined by a game at the end of which A cannot
efficiently determine if the secret has been found. Differently from Theorem 4,
this time one cannot assume without loss of generality that the (hypothetical)
attacker to the search problem has conditional success probability β = 1.

Definition 12. Let D0,D1 be two distributions. We define the n-bit secret
recovery game as the following n-bit security game: the challenger X chooses
an n-bit secret x ← U({0, 1}n) and sends the vector c = (ci ← Dxi

)i≤n to A.
The adversary A attempts to guess x, i.e. R is the equality relation.

The next theorem shows that when instantiating the game with two indis-
tinguishable distributions, the secret recovery game enjoys essentially the same
bit security.

Theorem 5. If the κ-bit secret recovery game is instantiated with two κ-bit
secure indistinguishable distributions D0 and D1, and D0 is publicly sampleable,
then it is (κ − 1)-bit secure.

Proof. Let A be an adversary against the secret recovery game that recovers x
from the vector c with advantage advA = αAβA. We build a distinguisher D
against the indistinguishability of D0 and D1 with essentially the same resources
and advantage: D chooses a secret x ∈ {0, 1}κ uniformly at random, which is
non-zero with high probability (otherwise output ⊥) and constructs the vector
c by sampling D0 itself for every zero bit in x and querying its oracle for every
1 bit in x (which will return either samples from D0 or from D1). It sends c to
A and returns 1 iff A returns x, otherwise it outputs ⊥.

The resources of D are essentially the same as those of A, so we analyze its
advantage advD = αD(δD)2. The output probability of D, conditioned on x �= 0,
is almost exactly A’s success probability, but note that A is only presented with
the correct input distribution if D’s challenger returns samples from D1, which is
the case with probability 1

2 . So αD ≥ 1−2−κ

2 αAβA. Furthermore, D’s conditional
distinguishing advantage is δD ≥ 1−2−κ+1, because it only outputs the incorrect
value if A returned x even though c consisted of samples only from D0. Note
that in this case A has no information about x, which was chosen uniformly
at random and thus the probability of this event is at most 2−κ. Accordingly,
advD = αD(δD)2 ≥ (1−2−κ+1)2

2 αAβA ≈ advA/2. 
�

Indistinguishability Implies Message-Hiding. In our last example for this
section we show that IND-CCA secure encryption schemes enjoy a message hid-
ing property, which we first formally define.
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Definition 13. A private or public key encryption scheme is κ-bit message
hiding, if the following security game is κ-bit secure: the challenger chooses a
message m ∈ {0, 1}n uniformly at random and sends its encryption to A. The
adversary A attempts to guess m, while C provides it with encryption (in case
of private key schemes) and decryption oracles.

This property naturally arises in the context of constructions of identification
protocols from encryption schemes (see e.g. [4]), where a random message is
encrypted and identification relies on the fact that only the correct entity can
decrypt it. While it seems intuitively obvious that breaking message hiding is
no easier than distinguishing encrypted messages, showing that this is true in a
quantifiable sense for specific definitions of bit security is not as obvious. The
next theorem establishes this connection.

Theorem 6. If a scheme with message space larger than 2κ is κ-bit IND-CCA
secure, it is κ-bit message hiding.

Proof. Let A be an adversary that is able to extract a random message from
an encryption scheme with advantage advA = αAβA. We construct a IND-
CCA distinguisher D against the scheme with essentially the same resources and
advantage: D generates two messages m0,m1 ← {0, 1}m uniformly at random,
which are distinct with overwhelming probability (if not, output ⊥). It sends
them to the challenger, which encrypts one of them. Upon receiving the challenge
cipher text cb, D forwards it to A. Any queries to the encryption (in case of
private key encryption) or decryption oracle are simply forwarded to D’s own
oracles. If A returns a message in {m0,m1}, D returns the corresponding bit.
Otherwise, it outputs ⊥.

The resources of D are essentially the same as for A, so we focus on its advan-
tage. Note that conditioned on the event that m0 �= m1, D’s output probability
αD is at least as large as the success probability of A, so αD ≥ (1 − 2−κ)αAβA.
The conditional distinguishing advantage of D is δD ≥ 1 − 2−κ+1, since the
only way D will guess incorrectly is when A somehow outputs the wrong mes-
sage mb̄. Since A has no information about this message (which was chosen
uniformly at random), the probability of this happening is at most 2−κ. This
shows that D’s advantage in the indistinguishability game is advD = αD(δD)2 ≥
(1 − 2−κ)αAβA(1 − 2−κ+1)2 ≈ αAβA = advA, where the latter is A’s advantage
in the message hiding game. 
�

5.3 Decision to Decision

Finally, we turn to reductions between decision primitives. The results in this
section are very generic. The first establishes the validity of hybrid arguments
when using our definition of advantage for decision primitives. Our second result
extends a previous result for approximate sampling to any decision primitive
fitting our definition.
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The Hybrid Argument. This section is devoted to proving a general hybrid
argument for indistinguishability games using our definition of advantage. For-
mally, we prove the following lemma.

Lemma 2. Let Hi be k distributions and Gi,j be the indistinguishability game
instantiated with Hi and Hj. Further, let εi,j = maxA advA over all T -bounded
adversaries A against Gi,j. Then ε1,k ≤ 3k

∑k−1
i=1 εi,i+1.

Applying the lemma to our definition of bit security, we immediately get the
following theorem.

Theorem 7. Let Hi be k distributions. If Hi and Hi+1 are κ-bit indistinguish-
able for all i, then H1 and Hk are (κ − 2(log k + 1))-bit indistinguishable.

Proof. Let A be any adversary with resources TA (when attacking H1 and Hk).
By assumption, εi,i+1 ≤ TA/2κ (where εi,j is defined as in Lemma 2) for all
TA-bounded adversaries against Hi and Hi+1. By Lemma 2, εi,k ≤ 3k2TA/2κ

for all TA-bounded adversaries, in particular A. 
�
As a simple application, we get the following corollary.

Corollary 1. If a public key encryption scheme is κ-bit IND-CCA secure, then
it is (κ − 2(log k + 1))-bit IND-CCA secure in the k message setting.

In contrast to the standard hybrid argument, which simply exploits the tri-
angle inequality of statistical distance, we lose an additional factor of 3k in
the advantage in Lemma 2. In particular, consider the case where the bounds
εi,i+1 = ε are the same for all i. This means that ε1,k ≤ 3k2ε. Note that this
additional factor has only a minor impact on bit security. (See below for details.)
Still, one may wonder if this additional factor is an artifact of a non-tight proof
or if it is indeed necessary. Consider a distinguisher D that never outputs ⊥
(i.e. αD = 1). Its distinguishing advantage δD

i,j in game Gi,j is exactly the sta-
tistical distance between D(Hi) and D(Hj). Assume δD

i,i+1 = ε for all i, so D’s
advantage in the game Gi,j according to Definition 10 is ε2. The standard hybrid
argument, or equivalently triangle inequality for statistical distance, implies that
δD
1,k cannot be larger than – but may be as large as – kε. So, D’s advantage in

G1,k may be as large as k2ε2, which is k2 times as large as D’s advantage against
the individual hybrids. This seems to suggest that our argument is tight (up to
the constant factor 3). Either way, as Theorem 7 and Corollary 1 demonstrate,
this additional factor only affects the constant in front of the log term in the
number of hybrids, so, we believe, it is only of secondary importance and we
leave it as an open problem.

The rest of the subsection proves Lemma 2, where we make use of the follow-
ing notation. For some distinguisher D, let αD

P,Q be its output probability, βD
P,Q

its conditional success probability, δD
P,Q its conditional distinguishing advan-

tage, and advD
P,Q = αD

P,Q(δD
P,Q)2 its advantage against the distributions P,Q.
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Furthermore, let αD
P = Pr[D(P) �= ⊥] and γD

P = Pr[D(P) = 1] for any distri-
bution P. We can express the advantage of D against P and Q in terms of αD

P ,
αD

Q, γD
P , γD

Q :

αD
P,Q =

1
2
(αD

P + αD
Q)

βD
P,Q =

γD
P − γD

Q + αD
Q

αD
P + αD

Q

δD
P,Q = 2βD

P,Q − 1 =
2(γD

P − γD
Q ) + αD

Q − αD
P

αD
P + αD

Q

advD
P,Q =

(2(γD
P − γD

Q ) + αD
Q − αD

P )2

2(αD
P + αD

Q)
. (5)

We begin with the observation that for computationally indistuingishable
distributions the output probabilities of any bounded distinguisher D cannot
vary too much under the two distributions.

Lemma 3. Let P,Q be two distributions. If advD
P,Q ≤ ε for all T -bounded dis-

tinguishers, then we have αD
P ≤ 2αD

Q +3ε and αD
Q ≤ 2αD

P +3ε for any T bounded
distinguisher.

Proof. We prove the first claim. (The proof of the second claim is symmetri-
cal.) Fix any distinguisher D. Assume αD

P ≥ 2αD
Q, since otherwise we are done.

Consider an alternative distinguisher D′, which runs D and in the event that
D �= ⊥, outputs 1 and otherwise ⊥. Obviously, D′ is also T -bounded, and (set-
ting γD′

P = αD′
P , γD′

Q = αD′
Q in (5)) we get

advD′
P,Q =

(αD
P − αD

Q)2

2(αD
P + αD

Q)

≥ (αD
P − αD

Q)2

3αD
P

=
1
3

(

αD
P − 2αD

Q +
(αD

Q)2

αD
P

)

≥ 1
3

(
αD

P − 2αD
Q

)
.

The first claim now follows from ε ≥ advD′
P,Q. 
�

Proof (of Lemma 2). We fix any distinguisher D and drop the superfix of α, γ,
δ and adv for the rest of the proof. Furthermore, we will abbreviate Hi by i in
the subfixes of α, γ, δ, and adv.

Using induction, one can prove

k∑

i=1

advi,i+1 ≥ α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

adv1,k
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The proof proceeds by substituting in the definition of advi,i+1 from (5), applying
the induction hypothesis to the first k−1 terms of the sum, and then minimizing
over γk−1. Details can be found in AppendixB.

It remains to show that

α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

≥ 1
3k

.

We again proceed by induction and can thus assume that adv1,i ≤
3i

∑i−1
j=1 εj,j+1 for all i < k and symmetrically advi,k ≤ 3(k − i)

∑k−1
j=i εj,j+1

for all i > 1. By Lemma 3, this means that αi ≤ 2α1 + 9i
∑i−1

j=1 εj,j+1 for all

i < k and again αi ≤ 2αk + 9(k − i)
∑k−1

j=i εj,j+1 for all i > 1. We note that

α1 + 2
k−1∑

i=2

αi + αk = α1 + 2
	(k−1)/2
∑

i=2

αi + 2
k−1∑

	(k−1)/2
+1

αi + αk

and using the above inequalities, the two sums are bounded by

2
	(k−1)/2
∑

i=2

αi ≤ 2(k − 3)α1 + 3k2

	(k−1)/2
∑

i=1

εi,i+1

and

2
k−1∑

	(k−1)/2
+1

αi ≤ 2(k − 3)αk + 3k2
k−1∑

	(k−1)/2
+1

εi,i+1

respectively. This bounds the entire sum:

α1 + 2
k−1∑

i=2

αi + αk ≤ 2k(α1 + αk) + 3k2
k−1∑

i=1

εi,i+1

This in turn leads to the lower bound

α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

≥ 1

2k + 3k2
∑k−1

i=1 εi,i+1

α1+αk

The last step is noticing that we can assume that (α1 + αk) ≥ 6k
∑k−1

i=1 εi,i+1,
because (α1 +αk)/2 ≥ ε1,k and otherwise we would be done. Using this assump-
tion we have

α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

≥ 1
2k + 3k2

6k

≥ 1
3k

as desired. 
�
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Approximate Samplers. In this section we bridge the gap between search
and decision primitives making use of approximate samplers, for the first time by
extending a result from [15] to arbitrary decision primitives. It might be possible
to extend other results from the literature [2,16,17] to decision primitives using
our definition, but we leave that for future work. Our main result is given in
Theorem 8. Combining it with results from [15] it implies that approximating a
distribution with relative error bounded by 2−κ/2 (e.g., as provided by floating
point numbers with κ/2-bit mantissa) allows to preserve almost all of κ bits of
security.

Before introducing the result formally, we first need to cover some prelimi-
naries from [15].

Background. Using the same terminology as [15], let δ(P,Q) be some divergence
on probability distributions. A λ-efficient divergence satisfies three properties:

1. Sub-additivity for joint distributions: if (Xi)i and (Yi)i are two lists of discrete
random variables over the support

∏
i Si, then

δ((Xi)i, (Yi)i) ≤
∑

i

max
a

δ([Xi | X<i = a], [Yi | Y<i = a]),

where X<i = (X1, . . . , Xi−1) (and similarly for Y<i), and the maximum is
taken over a ∈ ∏

j<i Sj .
2. Data processing inequality: δ(f(P), f(Q)) ≤ δ(P,Q) for any two distributions

P and Q and (possibly randomized) algorithm f(·), i.e., the measure does not
increase under function application.

3. Pythagorean probability preservation with parameter λ ∈ R: if (Xi)i and (Yi)i

are two lists of discrete random variables over the support
∏

i Si and

δ((Xi | X<i = ai), (Yi | Y<i = ai)) ≤ λ

for all i and ai ∈ ∏
j<i Sj , then

ΔSD((Xi)i, (Yi)i) ≤
∥
∥
∥
∥

(

max
ai

δ((Xi | X<i = ai), (Yi | Y<i = ai))
)

i

∥
∥
∥
∥
2

.

As an example, the max-log distance ΔML(P,Q) = max|log P(x) − log Q(x)| is
λ-efficient for any λ ≤ 1

3 [15].

Main Result for Approximate Samplers. The next theorem states the main result
of this section. It shows that it suffices to approximate a distribution P up to
distance δ(P,Q) ≤ 2−κ/2 for an efficient divergence δ in order to maintain almost
κ bits of security.

Theorem 8. Let SP be a 1-bit secrecy game with black-box access to a probabil-
ity ensemble (Pθ)θ, and δ be a λ-efficient measure for any λ ≤ 1

4 . If SP is κ-bit
secure and δ(Pθ,Qθ) ≤ 2−κ/2, then SQ is (κ − 8)-bit secure.
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The remainder of this section is devoted to proving Theorem 8. We first
rewrite a lemma from [15], which we will use in our proof.

Lemma 4 (adapted from [15]). Let SP be any security game with black-
box access to a probability distribution ensemble Pθ. For any adversary A with
resources T that plays SP and event E over its output, denote γP = Pr[A ∈ E].
For the same event, denote by γQ the probability of E when A is playing SQ. If
T
γP

≥ 2k and δ(Pθ,Qθ) ≤ 2−k/2 for any 2−k/2-efficient δ, then T
γQ

≥ 2k−3.

From Lemma 4 we can derive a bound on the output probability of an adver-
sary when switching the distribution of the scheme.

Corollary 2. For any adversary A with resources T attacking SP and any event
E over A’s output, denote the probability of E by γP . Denote the probability of
E over A’s output when attacking SQ by γQ. If δ is

√
γQ/16T -efficient and

δ(Pθ,Qθ) ≤ √
γQ/16T , then 16γP ≥ γQ.

Proof. We use Lemma 4 and set k such that 2k−4 = T
γQ

. This implies that
T
γQ

≥ 2k−3 is false. Assuming towards a contradiction that 16γP < γQ, we see
that

2k−4 =
T

γQ
≤ T

16γP
contradicting Lemma 4. 
�

With this bound in place, we are ready for the main proof.

Proof (of Theorem 8). Fix any TA-bounded adversary A against SP , output
probability αA

P and conditional success probability βA
P . By assumption we have

αA
P(2βA

P −1)2 ≤ TA/2κ. Denote the output and conditional success probability of
A against SQ by αA

Q and βA
Q. Assume towards contradiction that αA

Q(2βA
Q−1)2 >

TA/2κ−8.
First we apply Corollary 2 to obtain αA

P ≥ 2−4αA
Q. Note that by assumption

√
αA

Q/16T > 2(−κ+4)/2 > 2−κ/2 ≥ δ(Pθ,Qθ) and that trivially
√

αA
Q/16T ≤ 1

4 .

We now consider the hypothetical modified games ŜP and ŜQ, which are
the same as SP and SQ with the only difference that the adversary has the
ability to restart the game with fresh randomness at any time. Consider the
adversary B against Ŝ that simply runs A until A �= ⊥ (restarting the game if
A = ⊥) and outputs whatever A returns. Let α = min(αA

P , αA
Q) and note that

B’s resources are TB < TA/α, its output probability is 1 and the (conditional)
success probability is βB

P = βA
P (or βB

Q = βA
Q) if playing ŜP (or ŜQ, respectively).

By the properties of δ and ΔSD, we have βB
P ≥ βB

Q −
√

TBδ(Pθ,Qθ) and so
2βB

P − 1 ≥ 2βB
Q − 1 − 2

√
TB/2κ. By assumption we also have that 2βA

P − 1 ≤
√

TA/αA
P2κ, which yields

√
TA

α2κ
≥

√
TA

αA
P2κ

≥ 2βB
Q − 1 − 2

√
TA

α2κ
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because βB
P = βA

P , and so

2βA
Q − 1 = 2βB

Q − 1 ≤ 3

√
TA

α2κ
.

If αA
Q ≤ αA

P , then α = αA
Q and the above inequality immediately yields the

contradiction. Otherwise, we can derive an upper bound on αA
P from it:

αA
P ≤ 9TA

2κ(2βA
Q − 1)2

<
αA

Q
24

where the latter inequality follows from the assumption. This contradicts our
lower bound above. 
�
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A Proof of Theorem1

Proof (of Theorem 1). From the definition of Y in Definition 7 we get for any
x, y ∈ {0, 1}n with y �= x

– Pr[Y = ⊥|X = x] = 1 − α
– Pr[Y = x|X = x] = αβ

– Pr[Y = y|X = x] = α(1−β)
2n−1 .

From this we compute

– Pr[Y = ⊥] = 1 − α
– Pr[Y = y] = Pr[Y = y|X = y]Pr[X = y] + Pr[Y = y|X �= y]Pr[X �= y] =

αβ
2n + 2n−1

2n

α(1−β)
2n−1 = α

2n .

Now we calculate the conditional entropy

H(X|Y ) =
∑

x,y

Pr[Y = y|X = x]Pr[X = x] log
Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=
∑

x

Pr[Y = ⊥|X = x]Pr[X = x] log
Pr[Y = ⊥]

Pr[Y = ⊥|X = x]Pr[X = x]

+ Pr[Y = x|X = x]Pr[X = x] log
Pr[Y = x]

Pr[Y = x|X = x]Pr[X = x]

+
∑

y �=x∧y �=⊥
Pr[Y = y|X = x]Pr[X = x] log

Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=
∑

x

1 − α

2n
log

(1 − α)2n

1 − α
+

αβ

2n
log

α2n

αβ2n

+ (2n − 1)
α(1 − β)

(2n − 1)2n
log

α2n(2n − 1)

2nα(1 − β)

= (1 − α)n + αβ log
1

β
+ α(1 − β) log

2n − 1

1 − β

= (1 − α)n + α((1 − β) log(2n − 1) + H(Bβ))



26 D. Micciancio and M. Walter

Finally, we compute the advantage

advA = 1 − H(X|Y )
n

= 1 − (1 − α) − α
(1 − β) log(2n − 1) + H(Bβ)

n

= α

(

1 − (1 − β) log(2n − 1) + H(Bβ)
n

)

.


�

B Missing Details of Proof for Lemma2

With the notation of Sect. 5.3, the goal of this section is to prove

k∑

i=1

advi,i+1 ≥ α1 + αk

α1 + 2
∑k−1

i=2 αi + αk

adv1,k.

By Eq. (5)

k∑

i=1

advi,i+1 =
k∑

i=1

(2(γi − γi+1) + αi+1 − αi)2

2(αi + αi+1)
.

Applying the induction hypothesis, this is lower bounded by

f(γk−1) =
(2(γ1 − γk−1) + αk−1 − α1)2

2(α1 + 2
∑k−2

i=2 αi + αk−1)
+

(2(γk−1 − γk) + αk − αk−1)2

2(αk−1 + αk)
.

Taking f ’s derivative

f ′(γk−1) =
2(2(γk−1 − γk) + αk − αk−1)

αk−1 + αk
− 2(2(γ1 − γk−1) + αk−1 − α1)

α1 + 2
∑k−2

i=2 αi + αk−1

Note that the second derivative is a positive constant, so if f has an extremum it
must be a minimum, and since it is a quadratic function, it is a global minimum.
Setting f ′(γk−1) = 0 and solving for 2γk−1, we get:

2γk−1

(

α1 + 2
k−1∑

i=2

αi + αk

)

= 2(γ1 + αk−1 − α1)(αk−1 + αk)

+ 2(γk + αk − αk−1)

(

α1 + 2
k−2∑

i=2

αi + αk

)

Plugging this into the terms of f :

(2(γ1 − γk−1) + αk−1 − α1) =
2(γ1 − γk) − α1 + αk)

(
α1 + 2

∑k−2
i=2 αi + αk

)

α1 + 2
∑k−1

i=2 αi + αk
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and

(2(γk−1 − γk) + αk − αk−1) =
(2(γ1 − γk) − α1 + αk)(αk−1 + αk)

α1 + 2
∑k−1

i=2 αi + αk

which yields that

f(γk−1) ≥
(2(γ1 − γk) − α1 + αk)2

(
α1 + 2

∑k−2
i=2 αi + αk

)2

(
α1 + 2

∑k−1
i=2 αi + αk

)2 (
α1 + 2

∑k−2
i=2 αi + αk

)

+
(2(γ1 − γk) − α1 + αk)2(αk−1 + αk)2
(
α1 + 2

∑k−1
i=2 αi + αk

)2

(αk−1 + αk)

=
(2(γ1 − γk) − α1 + αk)2
(
α1 + 2

∑k−1
i=2 αi + αk

)2

(

α1 + 2
k−1∑

i=2

αi + αk

)

=
(2(γ1 − γk) − α1 + αk)2
(
α1 + 2

∑k−1
i=2 αi + αk

)

=
α1 + αk(

α1 + 2
∑k−1

i=2 αi + αk

)adv1,k

as desired.
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