
Obfustopia Built on Secret-Key
Functional Encryption

Fuyuki Kitagawa1(B), Ryo Nishimaki2 , and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

2 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
nishimaki.ryo@lab.ntt.co.jp

Abstract. We show that indistinguishability obfuscation (IO) for all
circuits can be constructed solely from secret-key functional encryption
(SKFE). In the construction, SKFE need to be able to issue a-priori
unbounded number of functional keys, that is, collusion-resistant. Our
strategy is to replace public-key functional encryption (PKFE) in the
construction of IO proposed by Bitansky and Vaikuntanathan (FOCS
2015) with puncturable SKFE. Bitansky and Vaikuntanathan introduced
the notion of puncturable SKFE and observed that the strategy works.
However, it has not been clear whether we can construct puncturable
SKFE without assuming PKFE. In particular, it has not been known
whether puncturable SKFE is constructed from ordinary SKFE. In this
work, we show that a relaxed variant of puncturable SKFE can be con-
structed from collusion-resistant SKFE. Moreover, we show that the
relaxed variant of puncturable SKFE is sufficient for constructing IO.

In addition, we also study the relation of collusion-resistance and suc-
cinctness for SKFE. Functional encryption is said to be weakly-succinct
if the size of its encryption circuit is sub-linear in the size of functions.
We show that collusion-resistant SKFE can be constructed from weakly-
succinct SKFE supporting only one functional key.

By combining the above two results, we show that IO for all cir-
cuits can be constructed from weakly-succinct SKFE supporting only
one functional key.

1 Introduction

1.1 Backgrounds

Program obfuscation is now one of the central topics in cryptography. Program
obfuscation aims to turn programs “unintelligible” while preserving its func-
tionality. The theoretical study of program obfuscation was initiated by Barak
et al. [12]. They introduced virtual-black-box obfuscation as a formal defini-
tion of obfuscation. The definition of virtual black-box obfuscation is intuitive
and naturally captures the requirement that obfuscators hide information about
programs. However, Barak et al. showed that it is impossible to achieve virtual

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 603–648, 2018.
https://doi.org/10.1007/978-3-319-78375-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_20&domain=pdf
http://orcid.org/0000-0002-5144-4619

604 F. Kitagawa et al.

black-box obfuscation for all circuits. In order to avoid the impossibility result,
they also defined an weaker variant of obfuscation called indistinguishability
obfuscation (IO). Impossibility of IO for all circuits is not known.

Garg et al. [33] proposed the first candidate construction of IO for all circuits.
Subsequently, many works have shown that IO is powerful enough in the sense that
we can achieve a wide variety of cryptographic primitives based on IO though it is
weaker than virtual-black-box obfuscation [14,16,18,26,29,33,39,40,49,62].

While we know the usefulness of IO well, we know very little about how
to achieve IO. Although the first candidate construction was demonstrated, we
are still at the embryonic stage for constructing IO. All known constructions
of IO are based on a little-studied cryptographic tool called multi-linear maps
[4,5,8,10,11,24,32–34,51,52,56,60,65]. Moreover, security flaws were discovered
in some IO constructions [7,28,30,31,58].

Thus, constructing IO based on a standard assumption is still standing as a
major open question in the study of cryptography. As a stepping-stone for solving
the question, it is important to find a seemingly weaker primitive that implies
IO. As such a cryptographic primitive, we already have functional encryption.

Functional encryption is one of the most advanced cryptographic primitives
which enable a system having flexibility in controlling encrypted data [20,59,63].
In functional encryption, an owner of a master secret key MSK can generate a
functional decryption key skf for a function f belonging to a function family
F . By decrypting a ciphertext of a message m using skf , a holder of skf can
learn only a value f(m). No information about x except f(m) is revealed from
the ciphertext of m. This feature enables us to construct a cryptographic system
with fine-grained access control. In addition, it is known that functional encryp-
tion is a versatile building block to construct other cryptographic primitives. In
particular, we can construct IO for all circuits by using functional encryption
that satisfies certain security notions and efficiency requirements [2,3,15,17].

Bitansky and Vaikuntanathan [17] and Ananth and Jain [2] independently
showed that we can construct IO based on public-key functional encryption
(PKFE) which supports a single functional key and whose encryption circuit
size is sub-linear in the size of functions. A functional encryption scheme that
supports a single key is called a single-key scheme. A functional encryption
scheme that satisfies the efficiency property above is said to be weakly-succinct.

Bitansky et al. [15] subsequently showed that collusion-resistant secret-key
functional encryption (SKFE) is powerful enough to yield IO if we additionally
assume plain public key encryption. Collusion-resistant functional encryption
is functional encryption that can securely issue a-priori unbounded number of
functional keys.

From these results, we see that the combination of functional encryption with
some property and a public-key cryptographic primitive is sufficient for achieving
IO. This fact is a great progress as a stepping-stone for achieving IO based on a
standard assumption.

Obfustopia Built on SKFE 605

However, one natural question arises for this situation. The question is
whether we really need public-key primitives to construct IO or not. In other
words, we have the following fundamental question:

Is it possible to achieve IO for all circuits based solely on secret-key prim-
itives?

SKFE is the best possible candidate for a secret-key cryptographic primitive
that gives an affirmative answer to this question. However, Asharov and Segev [9]
gave a somewhat negative answer to the question. Their result can be seen as a
substantial evidence that SKFE is somewhat unlikely to imply IO as long as we
use black-box techniques.1 Although Komargodski and Segev [48] already showed
that we can construct IO for somewhat restricted class of circuits based on SKFE
via non-black-box construction, it is still open whether we can construct IO for
all circuits from SKFE bypassing the barrier with a non-black-box technique.

The real power of IO appears in the fact that it can transform secret-key
primitives into public-key ones. Therefore, solving the above problem is a key
advancement to discover the exact requirements for achieving IO.

1.2 Our Results

We give an affirmative answer to the question above. More precisely, we prove
the following theorem.

Theorem 1 (Informal). Assuming there exists sub-exponentially secure
collusion-resistant SKFE for all circuits. Then, there exists IO for all circuits.

Since our construction of IO is non-black-box, we can circumvent the impos-
sibility result shown by Asharov and Segev [9].

The security loss of our construction of IO is exponential in the input length
of circuits, but is independent of the size of circuits. Thus, if the input length
of circuits is poly-logarithmic in the security parameter, our construction of
IO incurs only quasi-polynomial security loss regardless of the size of circuits.
Therefore, we can obtain IO for circuits of polynomial size with input of poly-
logarithmic length from quasi-polynomially secure collusion-resistant SKFE for
all circuits. This is an improvement over the IO construction by Komargodski
and Segev [48]. They showed that IO for circuits of sub-polynomial size with
input of poly-logarithmic length is constructed from quasi-polynomially secure
collusion-resistant SKFE for all circuits.

We show Theorem 1 by using puncturable SKFE. The notion of puncturable
SKFE was introduced by Bitansky and Vaikuntanathan [17]. They showed that
in their construction of IO, the building block PKFE can be replaced with punc-
turable SKFE. However, it has been an open issue whether we can achieve punc-
turable SKFE without assuming the existence of PKFE.
1 More precisely, Asharov and Segev [9] introduced an extended model for black-box

reductions to include a limited class of non-black-box reductions into their impossi-
bility results.

606 F. Kitagawa et al.

We show how to construct puncturable SKFE that is sufficient for constructing
IO, based solely on SKFE. More precisely, we show the following theorem.

Theorem 2 (Informal). Assuming there exists collusion-resistant SKFE for
all circuits. Then, there exists single-key weakly-succinct puncturable SKFE for
all circuits.

Note that our definition of puncturable SKFE is slightly different from that
proposed by Bitansky and Vaikuntanathan. Our requirement for puncturable
SKFE looks weaker than that of Bitansky and Vaikuntanathan. However, they
are actually incomparable. In fact, we show that puncturable SKFE defined in
this paper is also sufficient for a building block of IO. See Sect. 2 for the details
of the notion of puncturable SKFE and the difference between our definition and
that of Bitansky and Vaikuntanathan.

This result makes a progress on the study of IO and functional encryption
as we note in the next paragraph.

Impacts on the hierarchy of cryptographic primitives. It is known that we can
classify cryptographic primitives into two hierarchies Minicrypt and Crypto-
mania since the beautiful work of Impagliazzo and Rudich [42] showed that
public-key encryption is not implied by one-way functions via black-box reduc-
tions. The terminologies, Minicrypt and Cryptomania, were introduced by
Impagliazzo [41]. In Minicrypt, one-way functions exist, but public-key encryp-
tion does not. In Cryptomania, public-key encryption also exists.

We have recently started to consider a new hierarchy called Obfustopia.
Garg et al. [35] introduced the term Obfustopia, which seems to indicate the
“world” where there exists IO. Garg et al. did not give a formal definition of
Obfustopia. In this paper, we explicitly define Obfustopia as the “world”
where there exists efficient IO for all circuits and one-way functions.2 It is known
that we can construct almost all existing cryptographic primitives which are
stronger than public-key encryption by using IO. This is the reason why we
consider the new hierarchy beyond Cryptomania.3

The landscape of Obfustopia is not clear while those of Minicrypt and
Cryptomania are. In particular, we do not know how to construct IO based
on standard assumptions. There has been significant effort to find out crypto-
graphic primitives that are in Obfustopia. That is, we have been asking what
kind of cryptographic primitive implies the existence of IO. We know that sub-
exponentially-secure succinct PKFE exists in Obfustopia [2,17].
2 Komargodski et al. [47] proved that IO implies one-way functions under a mild

complexity theoretic assumption. More specifically, the complexity assumption is
NP �⊆ io-BPP, where io-BPP is the class of languages that is decided by probabilistic
polynomial-time algorithms for infinitely many input sizes. Therefore, under the
assumption, we say that Obfustopia is the complexity spectrum where efficient IO
for all circuits exists.

3 Strictly speaking, it was known that there are stronger primitives than public-key
encryption before the candidate of obfuscation appeared. For example, public-key
encryption does not imply identity-based encryption [19].

Obfustopia Built on SKFE 607

It is natural to ask whether SKFE is also in Obfustopia or not since SKFE
seems to be a strong primitive as PKFE. Asharov and Segev [9] gave a somewhat
negative answer to this question. They showed that SKFE is unlikely to imply
IO as long as we use black-box techniques. They also showed that SKFE does
not imply any primitive in Cryptomania via black-box reductions. Moreover,
it was not known whether SKFE implies any primitive outside Minicrypt even
if we use it in a non-black-box manner before the work of Bitansky et al. [15].

Bitansky et al. showed that the combination of sub-exponentially secure
collusion-resistant SKFE and exponentially secure one-way functions implies
quasi-polynomially secure public-key encryption. This also implies that the above
combination yields quasi-polynomially secure succinct PKFE from their main
result showing that the combination of collusion-resistant SKFE and public-key
encryption implies succinct PKFE.

Komargodski and Segev [48] showed that quasi-polynomially secure IO for
circuits of sub-polynomial size with input of poly-logarithmic length can be
constructed from quasi-polynomially secure collusion-resistant SKFE for all cir-
cuits. In addition, they showed that by combining quasi-polynomially secure
collusion-resistant SKFE and sub-exponentially secure one-way functions, we
can construct quasi-polynomially secure succinct PKFE. However, in this con-
struction, the resulting PKFE supports only circuits of sub-polynomial size with
input of poly-logarithmic length though the building block SKFE supports all
polynomial size circuits.

These two results surely demonstrated that SKFE is stronger than we
thought. Nevertheless, we see that both two results involve degradation of secu-
rity level or functionality. Thus, it is still open whether SKFE implies a cryp-
tographic primitive other than those in Minicrypt without such degradation,
and especially SKFE is in Obfustopia or not.

We gives an affirmative answer to this question. More concretely, we can con-
struct sub-exponentially secure IO for all circuits from sub-exponentially secure
collusion-resistant SKFE for all circuits through our transformation by set-
ting security parameter appropriately. This result means that sub-exponentially
secure collusion-resistant SKFE exists in Obfustopia. In addition, by combin-
ing this result and the result by Garg et al. [33], we see that the existence of
sub-exponentially secure collusion-resistant PKFE for all circuits is equivalent
to that of sub-exponentially secure collusion-resistant SKFE for all circuits.

Collusion-resistance versus succinctness for SKFE. We also study the relation
of collusion-resistance and succinctness for SKFE.

Collusion-resistance and succinctness for functional encryption are seemingly
incomparable notions and implications between them are non-trivial. Therefore,
it is also a major concern whether we can transform a scheme satisfying one of
the two properties into a collusion-resistant and succinct one.

Such a transformation is already known for PKFE. Ananth et al. [3] showed
how to construct collusion-resistant and succinct PKFE from collusion-resistant
one. In addition, Garg and Srinivasan [36] and Li and Micciancio [50] showed a
transformation from single-key weakly-succinct PKFE to collusion-resistant one

608 F. Kitagawa et al.

with polynomial security loss. Their transformations preserve succinctness of the
building block scheme.4 From these results, collusion-resistance and succinctness
are equivalent for PKFE.

On the other hand, the situation is different for SKFE. While we know how
to construct collusion-resistant and succinct schemes from collusion-resistant
ones [3] similarly to PKFE, we do not know how to construct such schemes from
succinct ones even if sub-exponential security loss is permitted.

As stated above, some recent results including Theorem 1 show that SKFE is
a strong cryptographic primitive beyond Minicrypt if we consider non-black-
box reductions. However, one natural question arises for this situation. All of
those results assume collusion-resistant SKFE as a building block. Thus, while we
see that collusion-resistant SKFE is outside Minicrypt, it is still open whether
succinct SKFE is also a strong cryptographic primitive beyond Minicrypt since
we do not know how to construct collusion-resistant SKFE from succinct one.

Succinctness seems to be as powerful as collusion-resistance from the equiv-
alence of them in the PKFE setting. Therefore, it is natural to ask whether
succinct SKFE is also outside Minicrypt. If we have a transformation from suc-
cinct SKFE to collusion-resistant one without assuming public-key primitives,
we can solve the question affirmatively. Solving the question is an advancement
to understand the complexity of SKFE.

We solve the question by showing the following result.

Theorem 3 (Informal). Assume that there exists quasi-polynomially (resp.
sub-exponentially) secure single-key weakly-succinct SKFE for all circuits. Then,
there also exists quasi-polynomially (resp. sub-exponentially) secure collusion-
resistant SKFE for all circuits.

We note that our transformation incurs quasi-polynomial security loss. How-
ever, we can transform any quasi-polynomially secure single-key weakly-succinct
SKFE into quasi-polynomially secure collusion-resistant one, if we know the
security bound of the underlying single-key SKFE. In addition, if the under-
lying single-key scheme is sub-exponentially secure, then so does the resulting
collusion-resistant one.5

Our transformation preserves the succinctness of the underlying scheme. In
other words, if the building block single-key scheme is succinct (resp. weakly
succinct), the resulting collusion-resistant scheme is also succinct (resp. weakly
succinct).

Analogous to PKFE, we can transform collusion-resistant SKFE into
collusion-resistant and succinct one [3]. From this fact and Theorem 3, we dis-
cover that the existence of collusion-resistant SKFE and that of succinct one

4 The resulting scheme of the transformation proposed by Garg and Srinivasan is suc-
cinct even if the building block scheme is only weakly-succinct. The transformation
proposed by Li and Micciancio preserves succinctness of the building block scheme.

5 When transforming a sub-exponentially secure scheme, our transformation incurs
sub-exponentially security loss. However, we can transform any sub-exponentially
secure single-key scheme into a sub-exponentially secure collusion-resistant one.

Obfustopia Built on SKFE 609

are actually equivalent if we allow quasi-polynomial security loss. Due to this
equivalence, we see that succinct SKFE is also a strong cryptographic primitive
beyond Minicrypt similarly to collusion-resistant SKFE. Especially, we obtain
the following corollary from Theorems 1 and 3.

Corollary 1 (Informal). Assume that there exists sub-exponentially secure
single-key weakly-succinct SKFE for all circuits. Then, there exists IO for all
circuits.

From this result, we can remove the learning with errors (LWE) assumption
from recent state-of-the-art constructions of IO based on multi-linear maps and
(block-wise) local pseudorandom generators [52,55].

These works first construct single-key weakly-succinct SKFE based on multi-
linear maps and (block-wise) local pseudorandom generators. Then, assuming the
LWE assumption, they transform it into IO using the result by Bitansky et al. [15].
By relying on Corollary 1 instead of the result by Bitansky et al. [15] in their con-
struction, we can obtain IO based only on multi-linear maps and (block-wise) local
pseudorandom generators.

1.3 Organization

We provide the overview of this work using the majority of the remaining part
of this paper. For Theorem 1, we show only constructions and omit its security
proofs. See [45] for those omitted proofs. For Theorem 3, we provide only the
overview. See [44] for details of this result. The detailed organization is as follows.

In Sect. 2, we provide the overview of our construction of IO based on
collusion-resistant SKFE via puncturable SKFE. In Sect. 3, we also provide
the overview of how collusion-resistant SKFE is constructed based on weakly-
succinct SKFE. In Sect. 4, we provide notations and definitions of cryptographic
primitives. In Sect. 5, we formally define puncturable SKFE, and introduce secu-
rity and efficiency notions for it. We also discuss the difference between our
definition of puncturable SKFE and that of Bitansky and Vaikuntanathan [17]
in Sect. 5. In Sect. 6, we show the construction of single-key non-succinct punc-
turable SKFE. In Sect. 7, we show how to transform single-key non-succinct
puncturable SKFE into single-key weakly-succinct one. In Sect. 8, we then show
how to construct IO based on SKFE.

2 Overview: IO from Collusion-Resistant SKFE

We give an overview of our construction of IO based on SKFE in this section.
Our basic strategy is to replace PKFE in the construction of Bitansky and

Vaikuntanathan [17] with puncturable SKFE. Bitansky and Vaikuntanathan
observed that this strategy works. However, it is not known whether puncturable
SKFE is constructed from cryptographic primitives other than PKFE or IO.

In this work, we show that we can construct a relaxed variant of puncturable
SKFE that is a single-key scheme and weakly-succinct from collusion-resistant

610 F. Kitagawa et al.

SKFE. Moreover, we show that such a relaxed variant of puncturable SKFE is
sufficient for constructing IO.

We give an overview of the construction of Bitansky and Vaikuntanathan [17]
in Sect. 2.1 and explain why SKFE must be “puncturable” when we replace
PKFE with SKFE in their construction in Sect. 2.2. Next, we give an overview
of how to construct our puncturable SKFE scheme and IO in Sects. 2.3 and 2.4,
respectively.

2.1 Construction of IO Based on PKFE

The main idea of Bitansky and Vaikuntanathan is to design an obfuscator iOi

for circuits with i-bit input from an obfuscator iOi−1 for circuits with (i−1)-bit
input. If we can design such a bit extension construction, for any polynomial n,
we can construct an obfuscator iOn for circuits with n-bit input since we can
easily achieve iO1 for circuits with 1-bit input by outputting an entire truth
table of a circuit with 1-bit input. If you are familiar with the construction of
Bitansky and Vaikuntanathan [17], then you can skip this section.

When we construct IO based on the bit extension construction above, it is
important to avoid a circuit-size blow-up of circuits to be obfuscated at each
recursive step. In fact, if we allow a circuit-size blow-up, we can obtain the bit
extension construction by defining

iOi(C(x1 · · · xi)) := iOi−1(C(x1 · · · xi−1‖0))‖iOi−1(C(x1 · · · xi−1‖1)) .

However, this construction obviously incurs an exponential blow-up and thus
we cannot rely on this solution. Bitansky and Vaikuntanathan showed how to
achieve the bit extension construction without an exponential blow-up using
weakly-succinct PKFE.

In their construction, a functional key of PKFE should hide information
about the corresponding circuit. Such security notion is called function privacy.
However, it is not known how to achieve function private PKFE. Then, Bitansky
and Vaikuntanathan explicitly accommodated the technique for function private
SKFE used by Brakerski and Segev [25] to their IO construction based on PKFE.

We review their construction based on PKFE. For simplicity, we ignore the
issue of the randomness for encryption algorithms. It is generated by puncturable
pseudorandom function (PRF) in the actual construction.

iOi based on iOi−1 and PKFE works as follows. The construction addition-
ally uses plain secret key encryption (SKE) to implement the technique used
by Brakerski and Segev [25]. To obfuscate a circuit C with i-bit input, it first
generates a key pair (PKi,MSKi) of PKFE. Then, using MSKi, it generates a
functional key skC∗ tied to the following circuit C∗. C∗ has hardwired two SKE
ciphertexts CTske

0 and CTske
1 of plaintext C under independent keys K0 and K1,

respectively. C∗ expects as an input not only an i-bit string xi but also an SKE
key Kb. On those inputs, C∗ first obtains C by decrypting CTske

b by Kb and
outputs U(C,xi) = C(xi), where U(·, ·) is an universal circuit. Finally, the con-
struction obfuscates the following encryption circuit Ei−1 by iOi−1. Ei−1 has

Obfustopia Built on SKFE 611

hardwired PKi and Kb. On input (i − 1)-bit string xi−1, it outputs ciphertexts
Enc(PKi, (xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)), where Enc is the encryption
algorithm of PKFE. The resulting obfuscation of C is a tuple (skC∗ , iOi−1(Ei−1)).
Note that we always set the value of b as 0 in the actual construction. We set b
as 1 only in the security proof.

// Description of (simplified) C∗

Hard-Coded Constants: CTske
0 , CTske

1 .
Input: xi, Kb

1. Compute C = D(Kb,CTske
b).

2. Return U(C,xi).

// Description of (simplified) Ei−1
Hard-Coded Constants: PKi, Kb.
Input: xi−1 ∈ {0, 1}i−1

1. Compute CTi,xi

r←− Enc(PKi, (xi−1‖xi, Kb)).

2. Output CTi,0 and CTi,1.

When evaluating the obfuscated C on input xi = x1 · · · xi−1xi ∈ {0, 1}i,
we first invoke iO(Ei−1) on input xi−1 = x1 · · · xi−1 and obtain Enc(PKi,
(xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)). Then, by decrypting Enc(PKi,
(xi−1‖xi,Kb)) using skC∗ , we obtain C(xi).

Consequently, by using this bit extension construction, the obfuscation of a
circuit C with n-bit input consists of n functional keys sk1, · · · , skn each of which
is generated under a different master secret key MSKi, and pair of ciphertexts
of 0 and 1 under PK1 corresponding to MSK1. For any xn = x1 · · · xn ∈ {0, 1}n,
we can first compute a ciphertext of xn by repeatedly decrypting a ciphertext
of xi−1 = x1 · · · xi−1 by ski−1 and obtaining a ciphertext of xi = x1 · · · xi for
every i ∈ {2, · · · , n}. We can finally obtain C(xn) by decrypting the ciphertext
of xn by skn.

In this construction, each instance of PKFE needs to issue only one functional
key. This is a minimum requirement for functional encryption. However, for
efficiency, PKFE in the construction above should satisfy a somewhat strong
requirement, that is, weak-succinctness to avoid a circuit-size blow-up of circuits
to be obfuscated at each recursive step. Therefore, we need to use a single-key
weakly-succinct PKFE scheme in the IO construction above.

We can prove the security of the construction recursively. More precisely, we
can prove the security of iOi based on those of iOi−1, PKFE, and SKE. Note that
it is sufficient that PKFE satisfies a mild selective-security to complete the proof.
Their security proof relies on the argument of probabilistic IO formalized by
Canneti et al. [27], and thus the security loss of each recursive step is exponential
in i, that is 2i. This is the reason their building block PKFE must be sub-
exponentially secure.

2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE

The security proof of Bitansky and Vaikuntanathan relies on the fact that we can
use the security of PKFE even when its encryption circuit is publicly available.
Concretely, PKi is hardwired into obfuscated encryption circuit iOi−1(Ei−1) and
this encryption circuit is public when we use the security of PKFE under the
key pair (PKi,MSKi).

612 F. Kitagawa et al.

The above security argument might not work if ordinary SKFE is used
instead of PKFE. This intuition comes from the impossibility result shown by
Barak et al. [12]. In fact, Bitansky and Vaikuntanathan showed that it is impos-
sible to instantiate their IO by using SKFE. More precisely, they showed that
there exists a secure SKFE scheme such that their transformation results in
insecure IO if the SKFE scheme is used as the building block. This is why they
adopted PKFE as their building block. Therefore, in order to replace PKFE with
SKFE in the construction above, we need SKFE whose security holds even when
its encryption circuit is publicly available. As one of such primitives, Bitansky
and Vaikuntanathan proposed puncturable SKFE.

In puncturable SKFE defined by Bitansky and Vaikuntanathan, there are
a puncturing algorithm Punc and a punctured encryption algorithm PEnc in
addition to algorithms of ordinary SKFE. We can generate a punctured master
secret key MSK∗{m0,m1} at two messages m0 and m1 from a master secret key
MSK by using Punc. Puncturable SKFE satisfies the following two properties:
functionality preserving under puncturing and semantic security at punctured
point. Functionality preserving under puncturing requires that

Enc(MSK,m; r) = PEnc(MSK∗{m0,m1},m; r)

holds for any message m other than m0 and m1 and for any randomness r.
Semantic security at punctured point requires that

(MSK∗{m0,m1},Enc(MSK,m0)
c≈ (MSK∗{m0,m1},Enc(MSK,m1))

holds for all adversaries, where
c≈ denotes computational indistinguishability.

Bitansky and Vaikuntanathan showed that single-key weakly-succinct punc-
turable SKFE is also a sufficient building block for their IO construction
while ordinary SKFE is not. Note that weak-succinctness of puncturable SKFE
requires that not only the encryption circuit but also the punctured encryp-
tion circuit should be weakly-succinct. However, as stated earlier, there was no
instantiation of puncturable SKFE other than regarding PKFE as puncturable
SKFE at that point. In particular, it was not clear whether we can construct
puncturable SKFE based on ordinary SKFE.

2.3 Puncturable SKFE from SKFE

In this work, we show we can construct single-key weakly-succinct puncturable
SKFE from collusion-resistant SKFE. More specifically, we show the following
two results. First, we show how to construct single-key non-succinct puncturable
SKFE based only on one-way functions. In addition, we show that we can
transform it into single-key weakly-succinct one using collusion-resistant SKFE.
Our formalization of puncturable SKFE is different from that of Bitansky and
Vaikuntanathan [17] in several aspects. Nevertheless, we show that our punc-
turable SKFE is also sufficient for constructing IO.

Below, we give the overview of these two constructions.

Obfustopia Built on SKFE 613

Single-Key Non-Succinct Puncturable SKFE Based on One-Way
Functions. Our starting point is the SKFE variant of the single-key non-
succinct PKFE scheme proposed by Sahai and Seyalioglu [61]. It is constructed
from garbled circuit and SKE, which are implied by one-way functions. Their
construction is as follows.

Setup: A master secret key consists of 2s secret keys {Kj,α}j∈[s],α∈{0,1} of SKE,
where s is the length of a binary representation of functions supported by the
resulting SKFE scheme.

Enc: When we encrypt a message m, we first generates a garbled circuit ˜Um

with labels {Lj,α}j∈[s],α∈{0,1} by garbling an universal circuit U(·,m) into
which m is hardwired. Then, we encrypt Lj,α under Kj,α and obtain an SKE
ciphertext cj,α for every j ∈ [s] and α ∈ {0, 1}. The resulting ciphertext of
the scheme is (˜Um, {cj,α}j∈[s],α∈{0,1}).

KeyGen: A functional key skf for a function f consists of {Kj,f [j]}j∈[s], where
f [1] · · · f [s] is the binary representation of f and each f [j] is a single bit.

Dec: A decryptor who has a ciphertext (˜Um, {cj,α}j∈[s],α∈{0,1}) and a func-
tional key {Kj,f [j]}j∈[s] can compute {Lj,f [j]}j∈[s] by decrypting each cj,f [j]

by Kj,f [j] and obtain ˜Um({Lj,f [j]}j∈[s]) = U(f,m) = f(m).

In the construction above, we observe that if we use puncturable PRF instead of
SKE, the resulting scheme is puncturable in some sense. More specifically, a master
secret key now consists of 2s puncturable PRF keys {Sj,α}j∈[s],α∈{0,1}. When we
encrypt a message m, we first generate (˜Um, {Lj,α}j∈[s],α∈{0,1}) and encrypt each
label by using a puncturable PRF value. That is, cj,α ← Lj,α ⊕ FSj,α

(tag), where
F is puncturable PRF and tag is a public tag chosen in some way.

In this case, we can generate a punctured master secret key MSK∗{tag} at
a tag tag. Thus, we define an encryption algorithm in a tag-based manner. The
encryption algorithm Enc, givenMSK, tag, and m, outputs a ciphertext of m under
the tag tag. That is, Enc(MSK, tag,m) = (˜Um, {Lj,α ⊕ FSj,α

(tag)}j∈[s],α∈{0,1}).
A punctured master secret key MSK∗{tag} consists of 2s puncturable PRF keys
{S∗

j,α{tag}}j∈[s],α∈{0,1} all of which are punctured at tag.
By using MSK∗{tag}, we can generate a ciphertext of any message m under

a tag tag′ different from tag, that is, PEnc(MSK∗{tag}, tag′,m) = (˜Um, {Lj,α ⊕
FS∗

j,α{tag}(tag′)}j∈[s],α∈{0,1}). Then, we have

Enc(MSK, tag′,m; r) = PEnc(MSK∗{tag}, tag′,m; r)

for any tag tag and tag′ such that tag �= tag′, message m, and randomness r
due to the functionality preserving property of puncturable PRF. Namely, this
scheme satisfies functionality preserving under puncturing.

In addition, we can prove that Enc(MSK, tag,m0) and Enc(MSK, tag,m1) are
indistinguishable for adversaries that have MSK∗{tag} based on the security of
puncturable PRF. In other words, it satisfies semantic security at punctured tag.

This formalization is different from that proposed by Bitansky and
Vaikuntanathan. Nevertheless, our formalization of puncturable SKFE is suf-
ficient for constructing IO. In fact, when we construct IO, we set the tag same

614 F. Kitagawa et al.

as the message to be encrypted itself. Then, our formalization is conceptually
the same as that of Bitansky and Vaikuntanathan. Our tag-based definition is
well-suited for our constructions.

Achieving Weak-Succinctness via Collusion-Succinctness. We cannot
directly use the puncturable SKFE scheme above as a building block of IO since
it is non-succinct. We need to transform it into an weakly-succinct scheme while
preserving security and functionality.

We extend the work by Kitagawa et al. [46] that showed how to transform non-
succinct PKFE into weakly-succinct one using collusion-resistant SKFE. They
accomplished the transformationvia a collusion-succinct scheme.We try to accom-
modate their transformation techniques into the context of puncturable SKFE.

Collusion-succinctness requires that each size of the encryption circuit and
punctured encryption circuit is sub-linear in the number of functional keys that
the scheme can issue. Note that when we consider collusion-succinctness, the
size of these circuits can be polynomial of the size of functions.

We first show that we can construct collusion-succinct puncturable SKFE
based on single-key non-succinct puncturable SKFE and collusion-resistant
SKFE. Then, we transform the collusion-succinct scheme into an weakly-succinct
scheme via a transformation based on decomposable randomized encoding. The
latter transformation based on decomposable randomized encoding is similar
to that proposed by Bitansky and Vaikuntanathan [17] and that proposed by
Ananth et al. [3]. We give an illustration of our construction path in Fig. 1.

The general picture is similar to that of Kitagawa et al. [46] and we can
accomplish the latter transformation based on a known technique, but there is
a technical hurdle in the former transformation. The most biggest issue is how
to define punctured master secret keys and the punctured encryption algorithm.
We show the overview of the former transformation and explain the technical
hurdle below.

Construction of collusion-succinct scheme. Our goal of this step is to construct a
collusion-succinct scheme, that is, a scheme which supports q functional keys and
the size of whose encryption and punctured encryption circuits are sub-linear in
q, where q is an a-priori fixed polynomial. The key tool for achieving this goal
is strong exponentially-efficient IO (SXIO) proposed by Lin et al. [53].

SXIO is a relaxed variant of IO. SXIO is required that, given a circuit C
with n-bit input, it runs in 2γn · poly(λ, |C|)-time, where γ is a constant smaller
than 1, poly is some polynomial, and λ is the security parameter. We call γ the
compression factor since it represents how SXIO can compress the truth table of
the circuit to be obfuscated. SXIO with arbitrarily small constant compression
factor can be constructed from collusion-resistant SKFE [15].

We show how to construct collusion-succinct puncturable SKFE from single-
key non-succinct one and SXIO. To achieve a collusion-succinct scheme, we need
to increase the number of functional keys to some polynomial q while compressing
the size of its encryption circuits into sub-linear in q.

Obfustopia Built on SKFE 615

Fig. 1. Illustration of our construction path. pSKFE denotes puncturable SKFE.
Dashed lines denote known or trivial implications. White boxes denote our ingredi-
ents or goal. Purple boxes denote our core schemes. A transformation from an object
in a rectangle to one in a rectangle incurs only polynomial security loss. A transforma-
tion from an object in a rectangle to one in a circle incurs super-polynomial security
loss. (Color figure online)

The most naive way to increase the number of functional keys is to run
multiple instances of the single-key scheme. If we have q master secret keys
MSK1, · · · ,MSKq, we can generate q functional keys since we can generate one
functional key under each master secret key. In this case, to ensure that we can
decrypt a ciphertext using every functional key under different master secret keys
MSKi for every i ∈ [q], a ciphertext should be composed of q ciphertexts each of
which is generated under MSKi for every i ∈ [q]. In addition, when we generate a
punctured master secret key punctured at tag, we generate q punctured master
secret keys MSK∗

i {tag} for every i ∈ [q] all of which are punctured at tag.
In the naive construction above, we see that if the single-key scheme satisfies

functionality preserving under puncturing and semantic security at punctured
tag, then so does the resulting scheme since a ciphertext of the resulting scheme
consists of only those of the single-key scheme. However, if a ciphertext of the
resulting scheme consists of q ciphertexts of the single-key scheme, the encryption
time is obviously at least linear in q. Therefore, we cannot construct a collusion-
succinct scheme based on this naive idea.

We then consider to compress the encryption time by using SXIO. We extend
the technique used in some previous results [15,46,53]. Let sxiO be SXIO. We set
a ciphertext as a circuit computing q ciphertexts obfuscated by sxiO instead of
setting it as q ciphertexts themselves. Concretely, we obfuscate the following cir-
cuit E1Key using sxiO. E1Key has hardwired message m, tag tag, and puncturable
PRF key S, and on input i ∈ [q], it first generates MSKi pseudorandomly from
S and i, and then outputs a ciphertext of m under MSKi and tag. Note that
the master secret key of this scheme is now one puncturable PRF key S. In
other words, the scheme generates q master secret keys of the single-key scheme
from one puncturable PRF key. For the formal description of E1Key, see Fig. 4 in
Sect. 7.1.

616 F. Kitagawa et al.

Hard-Coded Constants: S, tag, m. // Description of (simplified) E1Key

Input: i ∈ [q]

1. Compute ri
Setup ← FS(i).

2. Compute MSKi ← Setup(1λ; ri
Setup).

3. Return CTi ← Enc(MSKi, tag, m).

The size of E1Key is independent of q since E1Key consists of one PRF evalu-
ation and setup and encryption procedure of the single-key scheme.6 Therefore,
the time needed to compute sxiO(E1Key) is bounded by 2γ log q · poly(λ, |m|) =
qγ · poly(λ, |m|) for some constant γ < 1 and polynomial poly, that is, sub-
linear in q. Namely, we succeeds in reducing the encryption time from linear to
sub-linear in q.

However, we need more complicated structure to compress the running-time
of a punctured encryption algorithm into sub-linear in q. The main reason is
that we cannot give master secret key S in the clear in the punctured encryption
circuit to reduce the security to that of the building block single-key scheme.

We first argue how to set a punctured master secret key. We cannot rely on
the trivial way that sets q punctured master secret keys of the single-key scheme
as a punctured master secret key since the size of the punctured encryption
circuit becomes linear in q in this trivial way.

Our solution is to set a punctured master secret key as also an obfuscated
circuit under SXIO. More precisely, we obfuscate the following circuit P1Key.
P1Key has hardwired tag tag and puncturable PRF key S. Note that S is the
master secret key thus is the same puncturable PRF key as that hardwired into
E1Key. On input i ∈ [q], P1Key first generates MSKi pseudorandomly from S and
i, and then outputs a punctured master secret key MSK∗

i {tag} of the single-key
scheme. For the formal description of P1Key, see Fig. 5 in Sect. 7.1.

// Description of (simplified) P1Key

Hard-Coded Constants: S, tag.
Input: i ∈ [q]

1. Compute ri
Setup ← FS(i).

2. Compute MSKi ← Setup(1λ; ri
Setup).

3. Return MSK∗
i {tag} ← Punc(MSKi, tag).

// Description of (simplified) PE1Key

Hard-Coded Constants: MSK∗{tag}, tag′, m.
Input: i ∈ [q]

1. Parse sxiO(P1Key) ← MSK∗{tag}.

2. Compute MSK∗
i {tag} ← sxiO(P1Key)(i).

3. Return CTi ← PEnc(MSK∗
i {tag}, tag′, m).

In addition, we define the punctured encryption algorithm as follows. On input
MSK∗{tag} that is sxiO(P1Key), tag tag′, and message m, the punctured encryp-
tion algorithm obfuscates the following circuit PE1Key using sxiO and outputs the
obfuscated circuit. PE1Key has hardwired MSK∗{tag}, tag′, and m, and on input

6 Strictly speaking, the domain of PRF is [q], and thus the size of E1Key depends on q
in logarithmic. However, it does not matter since logarithmic factor is absorbed by
sub-linear factor. We ignore this issue here for simplicity.

Obfustopia Built on SKFE 617

i ∈ [q], it first generates the i-th punctured key MSK∗
i {tag} by feeding i into

MSK∗{tag} = sxiO(PE1Key), and then outputs a ciphertext of m underMSK∗
i {tag}

and tag′ using the punctured encryption algorithm of the single-key scheme. If the
compression factor of sxiO is sufficiently small, we ensure that the running time of
this punctured encryption algorithm is sub-linear in q. For the formal description
of PE1Key, see Fig. 6 in Sect. 7.1.

We can prove the semantic security at punctured tag by the punctured pro-
gramming technique proposed by Sahai and Waters [62]. However, the construc-
tion above does not satisfy functionality preserving under puncturing. This is
because ciphertexts output by the encryption and punctured encryption algo-
rithms are different. The ciphertexts are obfuscation of different circuits E1Key

and PE1Key, respectively.
In fact, it seems difficult to avoid this problem as long as we use SXIO to

gain succinctness. To the best of our knowledge, how to achieve succinctness in
a generic way without using SXIO is not known.

Indistinguishability of functionality under puncturing. To overcome the problem
above, we introduce a relaxed variant functionality preserving property that is
compatible with the construction based on SXIO. We call it indistinguishability
of functionality under puncturing. Informally speaking, the property requires that

(MSK,MSK∗{tag},Enc(MSK, tag′,m))
c≈ (MSK,MSK∗{tag},PEnc(MSK∗{tag}, tag′,m))

holds for any tag tag and tag′ such that tag �= tag′, and message m, where
c≈

denotes computational indistinguishability. In other words, it requires that no
distinguisher can distinguish ciphertexts output by Enc and PEnc even given
both the master secret key and punctured master secret key.

We see that the collusion-succinct construction based on SXIO above satis-
fies indistinguishability of functionality under puncturing. This comes from the
security guarantee of SXIO and the fact that E1Key and PE1Key are functionally
equivalent as long as the above tag and tag′ are different.

Overall, we can construct collusion-succinct puncturable SKFE with indis-
tinguishability of functionality under puncturing from a single-key non-succinct
scheme and SXIO.

Transforming into an weakly-succinct scheme. As stated earlier, we can in turn
transform a collusion-succinct scheme into an weakly-succinct one using decom-
posable randomized encoding. This transformation is based on those proposed
by Bitansky and Vaikuntanathan [17] and Ananth et al. [3].

In this transformation, a ciphertext of the weakly-succinct scheme is a cipher-
text of the collusion-succinct scheme itself. Thus, if the collusion-succinct scheme
satisfies semantic security at punctured tag and indistinguishability of function-
ality under puncturing, then so does the weakly-succinct scheme. Therefore,
we can construct a single-key weakly-succinct puncturable SKFE with indistin-
guishability of functionality under puncturing.

618 F. Kitagawa et al.

Indistinguishability of functionality under puncturing looks to be insufficient
for constructing IO. Nevertheless, we show that we can replace PKFE in the con-
struction of IO proposed by Bitansky and Vaikuntanathan with our puncturable
SKFE that satisfies only indistinguishability of functionality under puncturing
if we allow more but asymptotically the same security loss.

2.4 IO from Puncturable SKFE

Finally, we give an overview of our IO construction below.
The construction of IO based on puncturable SKFE is almost the same as

that based on PKFE proposed by Bitansky and Vaikuntanathan [17]. It does not
depend on which functionality preserving property puncturable SKFE satisfies.
Recall that, in their construction, a key pair (PKi,MSKi) of PKFE is generated
and the circuit Ei−1 that has hardwired PKi is obfuscated at every recursive step.
In our construction based on puncturable SKFE, a master secret key MSKi of
puncturable SKFE is generated and Ei−1 that has hardwired MSKi is obfus-
cated at each recursive step. Concretely, we construct Ei−1 as a circuit that has
hardwired MSKi and an SKE key K, and on (i − 1)-bit input xi−1, it outputs
a ciphertext of (xi−1‖xi,K) for xi ∈ {0, 1} under MSKi and a tag xi−1, that
is, Enc (MSKi,xi−1, (xi−1‖xi,K)) for xi ∈ {0, 1}. In the proof, we replace MSKi

hardwired into Ei−1 with the tuple of a punctured master secret key MSK∗
i {j}

punctured at j ∈ {0, 1}i−1 and a ciphertext of (j‖xi,K) for xi ∈ {0, 1}, where
j is a string in {0, 1}i−1 that we focus on at that time.

Outline of Security Proof. We give an overview of the security proof of IO
based on puncturable SKFE. If the building block puncturable SKFE satisfies
functionality preserving under puncturing, the security proof is almost the same
as that of Bitansky and Vaikuntanathan. However, our puncturable SKFE satis-
fies only indistinguishability of functionality under puncturing, and thus we need
more complicated arguments. The first half of the following overview is similar to
that of Bitansky and Vaikuntanathan. The rest is an overview of proofs that we
additionally need due to indistinguishability of functionality under puncturing.

Analogous to IO based on PKFE, we can accomplish this proof recursively.
More precisely, we can prove the security of iOi based on those of iOi−1, punc-
turable SKFE, and plain SKE. We proceed the proof as follows. Note again that,
we ignore the issue of the randomness for the encryption algorithm and punc-
tured encryption algorithm for simplicity. It is generated by puncturable PRF
in the actual construction.

Suppose that we have two functionally equivalent circuits C0 and C1 both
of which expect an i-bit input. We show that no efficient distinguisher D can
distinguish iOi(C0) and iOi(C1). We consider the following sequence of hybrid
experiments. Below, for two hybrids H and H′, we write H ∼ H′ to denote that
the behavior of D does not change between H and H′.

In the first hybrid H0, D is given iOi(C0). Recall that iOi(C0) consists of skC∗

and iOi−1(Ei−1). C∗ has hardwired two SKE ciphertexts CTske
0 and CTske

1 of C0

Obfustopia Built on SKFE 619

under independent keys K0 and K1. On i-bit input xi and SKE key Kb, C∗ first
obtains C by decrypting CTske

b by Kb and outputs C(xi).
In the next hybrid H1, we change howCTske

1 hardwired in C∗ is generated. Con-
cretely, we generate CTske

1 as a ciphertext of C1 under the key K1. It holds that
H0 ∼ H1 due to the security of SKE.Then, in thenext hybridH2, we change the cir-
cuit Ei−1 so that, on (i−1)-bit inputxi−1, it outputs a ciphertext of (xi−1‖xi,K1)
instead of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

If we prove H1 ∼ H2, we also prove H0 ∼ H2 and almost complete the secu-
rity proof. This is because we can argue that the behavior of D does not change
between H2 and the hybrid where D is given iOi(C1) by a similar argument for
H0 ∼ H2.

Therefore, the main part of the proof is how we change the circuit Ei−1

from encrypting K0 in H1 to encrypting K1 in H2. As mentioned earlier, we
accomplish this task by relying on the argument of probabilistic IO formalized
by Canneti et al. [27].

Concretely, we consider 2i−1 + 1 intermediate hybrid experiments H1,j for
j ∈ {0, · · · , 2i−1} between H1 and H2. Between H1,j and H1,j+1, we change
Ei−1 so that on input j ∈ {0, 1}i−1, it outputs ciphertexts of (j‖xi,K1) instead
of (j‖xi,K0) for xi ∈ {0, 1}, where j is the binary representation of j. More
precisely, we construct Ei−1 in H1,j as follows. Ei−1 has hardwired MSKi, K0,
and K1. On (i − 1)-bit input xi−1,

– if xi−1 < j, it outputs a ciphertext of (xi−1‖xi,K1) for xi ∈ {0, 1} under
MSKi and a tag xi−1.

– Otherwise, it outputs a ciphertext of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi

and a tag xi−1.

We see that Ei−1 in H1 has the same functionality as Ei−1 in H1,0. In addition,
Ei−1 in H2 has the same functionality as Ei−1 in H1,2i−1 . Therefore, we have
H1 ∼ H1,0 and H2 ∼ H1,2i−1 from the security guarantee of iOi−1.

We show how to prove H1,j ∼ H1,j+1. For simplicity, we first assume that
puncturable SKFE satisfies functionality preserving under puncturing. In this
case, we show H1,j ∼ H1,j+1 by the following three steps.

(1) In the first step, we hardwire ciphertexts of (j‖xi,K0) under MSKi and a
tag j for xi ∈ {0, 1} in Ei−1. In addition, we replace hardwired MSKi in Ei−1

with MSK∗
i {j} that is a master secret key punctured at a tag j. On (i−1)-bit

input xi−1,
– if xi−1 = j, Ei−1 outputs hardwired ciphertexts of (j‖xi,K0) for xi ∈

{0, 1}.
– if xi−1 �= j, it generates ciphertexts of (xi−1‖xi,Kβ) under MSK∗

i {j}
and a tag xi−1 and outputs them, where β = 1 if xi−1 < j and β = 0
otherwise.

We see that this change does not affect the functionality of Ei−1 if puncturable
SKFE satisfies functionality preserving under puncturing. Thus, this step is
done by the security of iOi−1.

620 F. Kitagawa et al.

(2) In the second step, we change the hardwired ciphertexts to ciphertexts of
(j‖xi,K1) for xi ∈ {0, 1}. This is done by the semantic security at punctured
tag of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired cipher-
texts of (j‖xi,K1) for xi ∈ {0, 1}. Moreover, we change Ei−1 so that Ei−1 has
hardwired MSKi and use it to generate the output ciphertexts. This change
also does not affect the functionality of Ei−1, and thus we can accomplish this
step by relying on the security of iOi−1 again.

From the above, if puncturable SKFE satisfies functionality preserving under
puncturing, we have H1,j ∼ H1,j+1 for every j ∈ {0, · · · , 2i−1−1}. By combining
H1 ∼ H1,0 and H1,2i−1 ∼ H2, we obtain H1 ∼ H2.

Therefore, we complete the entire proof. In fact, in this case, the proof is
essentially the same as that for the case where PKFE is used as a building block
shown by Bitansky and Vaikuntanathan.

Additional hybrids for the case of indistinguishability of functionality under punc-
turing. Recall that our puncturable SKFE satisfies only indistinguishability of
functionality under puncturing. Thus, the above argument for steps 1 and 3 do
not work straightforwardly. This is because if puncturable SKFE satisfies only
indistinguishability of functionality under puncturing, the functionality of Ei−1

might change at each step of 1 and 3. Therefore, we cannot directly use the
security of iOi−1.

Nevertheless, even if puncturable SKFE satisfies only indistinguishability of
functionality under puncturing, we can proceed steps 1 and 3 by introducing
more additional hybrids. Since steps 1 and 3 are symmetric, we focus on pro-
ceeding the step 1. We can apply the following argument for the step 3. Below,
we let H0

1,j denote the hybrid experiment after applying the step 1 to H1,j .
To accomplish the step 1, we introduce the additional intermediate hybrids

H1,j,k for every k ∈ {0, · · · , 2i−1} \ {j} between H1,j and H0
1,j . Between H1,j,k

and H1,j,k+1, we change Ei−1 so that, on input k ∈ {0, 1}i−1, it outputs cipher-
texts under MSK∗

i {j} instead of ciphertexts under MSKi, where k is the binary
representation of k. More precisely, we construct Ei−1 in H1,j,k as follows. Ei−1

has hardwired MSK∗
i {j} in addition to MSKi, K0, and K1. On (i − 1)-bit input

xi−1, it runs as follows.

– If xi−1 < j, it sets β = 1 and β = 0 otherwise.
– If xi−1 < k and xi−1 �= j, it outputs a ciphertext of (xi−1‖xi,Kβ) under
MSK∗

i {j} and a tag xi−1, that is, PEnc (MSK∗
i {j},xi−1, (xi−1‖xi,Kβ)) for

xi ∈ {0, 1}.
– Otherwise (xi−1 ≥ k or xi−1 = j), it outputs a ciphertext of (xi−1‖xi,Kβ)

under MSKi and a tag xi−1, that is, Enc (MSKi,xi−1, (xi−1‖xi,Kβ)) for xi ∈
{0, 1}.

We see that Ei−1 in H1,j and H0
1,j have the same functionality as that in H1,j,0

and H1,j,2i−1 , respectively. In addition, Ei−1 in H1,j,j has the same functionality

Obfustopia Built on SKFE 621

as that in H1,j,j+1. Therefore, we have H1,j ∼ H1,j,0, H0
1,j ∼ H1,j,2i−1 , and

H1,j,j ∼ H1,j,j+1 from the security guarantee of iOi−1.
We can prove H1,j,k ∼ H1,j,k+1 for every k ∈ {0, · · · , 2i−1} \ {j} by three

steps again based on indistinguishability of functionality under puncturing.

(1) We hardwire ciphertexts of (k‖xi,Kβ) under MSKi and a tag k, that is,
Enc(MSKi,k, (k‖xi,Kβ)) for xi ∈ {0, 1} in Ei−1 in the first step. In addition,
we change Ei−1 so that it outputs the hardwired ciphertext of (k‖xi,K0) for
xi ∈ {0, 1} if the input is k. We see that this change does not affect the
functionality of Ei−1. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to a cipher-
text of (k‖xi,Kβ) under MSK∗

i {j}, that is PEnc(MSK∗
i {j},k, (k‖xi,Kβ)) for

xi ∈ {0, 1}. This is done by the indistinguishability of functionality under
puncturing of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired cipher-
texts of (k‖xi,K1) for xi ∈ {0, 1}. Namely, we change Ei−1 so that on input
k, Ei−1 generates ciphertexts of k under MSK∗

i {j} and outputs them. This
change does not affect the functionality of Ei−1, and thus we can accomplish
this step by relying on the security of iOi−1 again.

From these, H1,j,k ∼ H1,j,k+1 holds for every k ∈ {0, · · · , 2i−1} \ {j}. By
combining H1,j ∼ H1,j,0, H0

1,j ∼ H1,j,2i−1 , and H1,j,j ∼ H1,j,j+1, we obtain
H1,j ∼ H0

1,j .
Therefore, we obtain H1,j ∼ H0

1,j even if puncturable SKFE satisfies only
indistinguishability of functionality under puncturing. Overall, we can complete
the entire security proof.

We note that our security proof incurs more security loss than those of
Bitansky and Vaikuntanathan [17] and the case where puncturable SKFE satis-
fies functionality preserving under puncturing. Our security proof incurs roughly
22·i security loss while the latter proofs incurs 2i security loss when we prove
the security of iOi based on that of iOi−1. Nevertheless, this difference is not an
issue in the sense that if the building block primitives are roughly 2Ω(n2)-secure,
we can prove the security of our indistinguishability obfuscator, where n is the
input length of circuits to be obfuscated. This requirement is the same as that
of Bitansky and Vaikuntanathan.

3 Overview: Collusion-Resistant SKFE
from Weakly-Succinct One

In this section, we give a high-level overview of our technique for increasing the
number of functional decryption keys that an SKFE scheme supports. The basic
idea behind our proposed construction is that we combine multiple instances of a
functional encryption scheme and use functional decryption keys tied to a function
that outputs a re-encrypted ciphertext under a different encryption key. Several re-
encryption techniques have been studied in the context of functional encryption [2,
17,23,36,50], but we cannot directly use such techniques as we see below.

622 F. Kitagawa et al.

3.1 First Attempt: Applying Re-encryption Techniques
in the Public-Key Setting

It is natural to try using the techniques in the public-key setting. In particular,
it was shown that single-key weakly succinct PKFE implies collusion-resistant
PKFE by Garg and Srinivasan [36] and Li and Micciancio [50]. Their techniques
are different, but the core idea seems to be the same. Both techniques use func-
tional decryption keys for a re-encryption function that outputs a ciphertext
under a different encryption key.

We give more details of the technique by Li and Micciancio since it is our
starting point. It is unclear whether the technique by Garg and Srinivasan is
applicable in the secret-key setting since it seems that they use plain public-key
encryption in an essential way.

The main technical tool of Li and Micciancio is the PRODUCT construction.
Given two PKFE schemes, the PRODUCT construction combines them into a
new PKFE scheme. The most notable feature of the PRODUCT construction
is that the number of functional decryption keys of the resulting scheme is the
product of those of the building block schemes. For example, if we have a λ-key
PKFE scheme, by combining two instances of it via the PRODUCT construction,
we can construct a λ2-key PKFE scheme, where λ is the security parameter.

By applying the PRODUCT construction k times iteratively, we can con-
struct a λk-key PKFE scheme from a λ-key PKFE scheme. Note that we can in
turn construct a λ-key PKFE scheme by simply running λ instances of a single-
key PKFE scheme in parallel. Moreover, if the underlying single-key scheme
is weakly succinct, the running time of the λk-key scheme depends only on k
instead of λk. Thus, by setting k = ω(1), we can construct a λω(1)-key PKFE
scheme and achieve collusion-resistance from a single-key weakly succinct one.

Li and Micciancio proceeded with the above series of transformations via a
stateful variant of PKFE, and thus the resulting collusion-resistant scheme is also
a stateful scheme. Therefore, after achieving collusion-resistance, they converted
the stateful PKFE scheme into a standard PKFE scheme. For simplicity, we
ignore the issue here.

One might think that we can construct a collusion-resistant SKFE scheme
from a single-key SKFE scheme by using the PRODUCT construction. However,
we encounter several difficulties in the SKFE setting.

The PRODUCT construction involves the chaining of re-encryption by func-
tional decryption keys used in many previous works [2,17,23,36]. This technique
causes several difficulties when we adopt the PRODUCT construction in the
SKFE setting. This is also the reason why the building block single-key PKFE
scheme must satisfy (weak) succinctness property.

We now look closer at the technique of Li and Micciancio to see difficulties in the
SKFE setting. Let PKFE be a 2-key PKFE scheme. As stated above, for functional
key generation in this construction, we need state information called index, which
indicates how many functional keys generated so far and which master secret and
public key should be used to generate the next functional key. A simplified version
of the PRODUCT construction proposed by Li and Micciancio is as follows.

Obfustopia Built on SKFE 623

(2 × 2)-key scheme from 2-key scheme.

Setup: Generates PKFE key pairs (MPK,MSK) ← Setup(1λ) and (MPKi,MSKi)
← Setup(1λ) for i ∈ [2]. MPK is the master public key and (MSK,MSK1,
MSK2,MPK1,MPK2) is the master secret key of this scheme, respectively. In
the actual construction, we maintain (MPKi,MSKi) for i ∈ [2] as one PRF
key to avoid blow-ups.7

Functional Key: For n-th functional key generation, a positive integer n ∈ [4]
is interpreted as a pair of index (i, j) ∈ [2]× [2]. Generates two keys ski

E[MPKi]

← KG(MSK, E [MPKi], i) and sk
(i,j)
f ← KG(MSKi, f, j) where E is a re-

encryption circuit described below. A functional key is (ski
E[MPKi], sk

(i,j)
f).

Encryption: A ciphertext is ctpre ← Enc(MPK,m).
Decryption: First, applies the decryption algorithm with MPK, that is,

ctpost ← Dec(ski
E[MPKi], ctpre). Next, applies it with MPKi, f(m) ←

Dec(sk(i,j)
f , ctpost).

The description of E defined at the functional key generation phase is as in the
figure below. Re-encryption circuit E [MPKi] takes as an input a message m and
outputs ctpost ← Enc(MPKi,m) by using a hard-wired master public-key MPKi.

Hard-Coded Constants: MPKi. // Description of (simplified) E
Input: m

1. Return ctpost ← Enc(MPKi, m).

Using the master secret-key MSK1, we can generate two functional keys
sk1,1

f1
, sk1,2

f2
since PKFE is a 2-key scheme. Similarly, we can generate two func-

tional keys using MSK2. Moreover, since MSK is also a master secret-key of
the 2-key scheme, we can generate two functional keys skE[MPK1] and skE[MPK2]

using MSK at the functional key generation step. By these combinations, we can
generate 2 × 2 keys

(skE[MPK1], sk
1,1
f1

), (skE[MPK1], sk
1,2
f2

), (skE[MPK2], sk
2,1
f3

), (skE[MPK2], sk
2,2
f4

).

This is generalized to the case where the underlying schemes are a p-key
scheme and q-key scheme for any p and q. That is, for n-th functional key
generation where n ≤ p · q, n is interpreted as (i, j) ∈ [p]× [q]. Thus, by applying
the PRODUCT construction to a λ-key scheme k times iteratively, we can obtain
a λk-key scheme. Note again that we can construct a λ-key weakly succinct SKFE
scheme from a single-key weakly succinct one by simple parallelization.

7 In fact, (MPKi,MSKi) for i ∈ [2] are generated at the functional key generation
phase by computing ri ← PRF(K, i) and (MPKi,MSKi) ← Setup(1λ; ri), where K is
a PRF key and is stored as a part of the master secret key.

624 F. Kitagawa et al.

While such a re-encryption technique is widely used in the context of PKFE,
it is difficult to use it directly in the SKFE setting. The main cause of the
difficulty is the fact that we have to release a functional key implementing the
encryption circuit in which a master secret key of an SKFE scheme is hardwired
to achieve the re-encryption by functional decryption keys. The fact seems to be
a crucial problem for the security proof since skf might leak information about
f . In the PKFE setting, this issue does not arise since an encryption key is
publicly available.

3.2 Second Attempt: Applying Techniques in a Different Context
of SKFE

To solve the above issue, we try using a technique in the secret-key setting but
in a different context from the collusion-resistance.

Brakerski et al. [23] introduced a new re-encryption technique by functional
decryption keys in the context of multi-input SKFE [38]. They showed that
we can overcome the difficulty above by using the security notion of function
privacy [25].

By function privacy, we can hide the information about a master-secret key
embedded in a re-encryption circuit E [MSK∗]. With their technique, we embed a
post-re-encrypted ciphertext ctpost as a trapdoor into a pre-re-encrypted cipher-
text ctpre in advance in the simulation for the security proof. By embedding
this trapdoor, we can remove MSK∗ from the re-encryption circuit E when we
reduce the security of the resulting scheme to that of the underlying scheme
corresponding to MSK∗.

Their technique is useful, but it incurs a polynomial blow-up of the running
time of the encryption circuit for each application of a construction with the re-
encryption procedure by a functional decryption key. This is because it embeds
a ciphertext into another ciphertext (we call this nested-ciphertext-embedding).

Such a nest does not occur with the technique of Li and Micciancio in the
PKFE setting since a post-re-encrypted ciphertext as a trapdoor is embedded in
a functional decryption key. One might think we can avoid the issue of nested-
ciphertext embedding by embedding ciphertexts in a functional key. However,
this is not the case because the number of ciphertext queries is not a-priori
bounded in the secret-key setting.

In fact, we obtain a new PRODUCT construction by accommodating the
function privacy and nested-ciphertext-embedding technique to the PRODUCT
construction of Li and Micciancio. However, if we use our new PRODUCT con-
struction in a naive way, each application of the new PRODUCT construction
incurs a polynomial blow-up of the encryption time. In general, k applications
of our new PRODUCT construction with nested-ciphertext-embedding incur a
double exponential blow-up λ2O(k)

.
Thus, in a naive way, we can apply our new PRODUCT construction iteratively

only constant times. This is not sufficient for our goal since we must apply our new
PRODUCT construction ω(1) times to achieve collusion-resistant SKFE.

Obfustopia Built on SKFE 625

3.3 Our Solution: Sandwiched Size-Shifting

To solve the difficulty of size blow-up, we propose a new construction tech-
nique called “sandwiched size-shifting”. In this new technique, we use a hybrid
encryption methodology to reduce the exponential blow-up of the encryption time
caused by our new PRODUCT construction with nested-ciphertext-embedding.

A hybrid encryption methodology is used in many encryption schemes. In
particular, Ananth et al. [1] showed that a hybrid encryption construction is use-
ful in designing adaptively secure functional encryption from selectively secure
one without any additional assumption. In fact, Brakerski et al. [23] also used a
hybrid encryption construction to achieve an input aggregation mechanism for
multi-input SKFE.

In this study, we propose a new hybrid encryption construction for functional
encryption to reduce the encryption time of a functional encryption scheme with-
out any additional assumption. Our key tool is a single-ciphertext collusion-
resistant SKFE scheme called 1CT, which is constructed only from one-way
functions. The notable features of 1CT are as follows.

1. The size of a master secret key of 1CT is independent of the length of a
message to be encrypted.

2. The encryption is fully succinct.
3. The size of a functional decryption key is only linear in the size of a function.

The drawback of 1CT is that we can release only one ciphertext. However, this
is not an issue for our purpose since a master secret key of 1CT is freshly chosen
at each ciphertext generation in our hybrid construction.

1CT is based on a garbled circuit [64]. A functional decryption key is a
garbled circuit of f with encrypted labels by a standard secret-key encryption
scheme.8 A ciphertext consists of a randomly masked message and keys of the
secret-key encryption scheme that corresponds to the randomly masked message.
Thus, we can generate only one ciphertext since if two ciphertexts are generated,
then labels for both bits are revealed and the security of the garbled circuit is
completely broken. Note that 1CT is selectively secure. In fact, this construction
is a flipped variant of the single-key SKFE by Sahai and Seyalioglu [61].

We then modify the SKFE variant of the hybrid construction proposed by
Ananth et al. [1].9 We use 1CT as data encapsulation mechanism and a q-key
weakly succinct SKFE scheme SKFE as key encapsulation mechanism. In our
hybrid construction, the encryption algorithm of SKFE encrypts only short values
(concretely, a one-time master secret-key of 1CT), which are independent of the
length of a message to be encrypted. A one-time encryption key (short and fixed
length) of 1CT is encrypted by SKFE.

8 Each pair of labels is shuffled by a random masking.
9 Their goal is to construct an adaptively secure scheme. They used adaptively secure

single-ciphertext functional encryption that is non-succinct as data encapsulation
mechanism.

626 F. Kitagawa et al.

That is, by this hybrid construction, a real message part is shifted onto
1CT, whose ciphertext has the full succinctness property. In other words, we can
separate the blow-up due to recursion from nested-ciphertext-embedding part.
Therefore, we call our new hybrid construction technique “size-shifting”.

The third property of 1CT is also important. The size of a functional key
of 1CT affects the encryption time of the hybrid construction. This is because
a functional key for f of the hybrid construction consists of a functional key
of SKFE for a function G, which generates a functional key of 1CT for f . A
simplified description of G is below. Due to the third property of 1CT, the
hybrid construction preserves weak succinctness.

Hard-Coded Constants: f . // Description of (simplified) G
Input: 1CT.MSK

1. Return 1CT.skf ← 1CT.KG(1CT.MSK, f).

Moreover, from the above construction of the key generation algorithm, the
number of issuable functional keys of the resulting scheme is minimum of those
of building block SKFE and 1CT. Therefore, since 1CT is collusion-resistant, if
SKFE supports q functional keys, then so does the resulting scheme, where q is
any fixed polynomial of λ.

Thus, we can apply the hybrid construction after each application of our new
PRODUCT construction, preserving the weak succinctness and the number of
functional keys that can be released.

The size-shifting procedure is “sandwiched” by each our new PRODUCT
construction. As a result, we can reduce the blow-up of the encryption time after
k iterations to k · λO(1) if the underlying single-key scheme is weakly succinct
while the naive k iterated applications of our new PRODUCT construction incurs
λ2O(k)

size blow-up. Therefore, we can iterate our new PRODUCT construction
ω(1) times via the size-shifting and construct a collusion-resistant SKFE scheme
based only on a single-key (weakly) succinct SKFE scheme.10

Our analysis is highly non-trivial though our transformation consists of rela-
tively simple transformations. We believe that it is better to achieve non-trivial
results by using simple techniques than complex ones.

Figure 2 illustrates how to construct our building blocks. An illustration of
our sandwiched size-shifting procedure is described in Fig. 3.

10 While we can reduce the blow-up of the encryption time, we cannot reduce the
security loss caused by each iteration step. As a result, λω(1) security loss occurs after
ω(1) times iterations. This is the reason our transformation incurs quasi-polynomial
security loss.

Obfustopia Built on SKFE 627

Fig. 2. Our building blocks. Green boxes denote our core schemes used in our iterated
construction in Fig. 3. (Color figure online)

4 Preliminaries

We define some notations and cryptographic primitives.

4.1 Notations

We write x
r←− X to denote that an element x is chosen from a finite set X

uniformly at random and y ← A(x; r) to denote that the output of an algorithm
A on an input x and a randomness r is assigned to y. When there is no need to
write the randomness explicitly, we omit it and simply write y ← A(x).

Throughout this paper, λ denotes a security parameter. poly denotes an
unspecified polynomial. A function f(λ) is a negligible function if f(λ) tends to
0 faster than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote

Fig. 3. An illustration of our iteration technique, in which our size-shifting proce-
dure is sandwiched. For k-th iteration, first, we apply the size-shifting procedure to a
λk−1-key weakly succinct SKFE scheme with expanded ciphertexts incurred by nested-
ciphertext-embedding (the result of (k − 1)-th iteration). Second, we apply our new
PRODUCT construction to increase the number of issuable keys.

628 F. Kitagawa et al.

that f(λ) is a negligible function. PPT stands for probabilistic polynomial time.
Let [�] denote the set of integers {1, · · · , �}.

4.2 Standard Cryptographic Tools

In this section, we review standard cryptographic tools, pseudorandom function
(PRF), puncturable PRF, secret-key encryption (SKE), garbling scheme, and
decomposable randomized encoding.

Definition 1 (Pseudorandom functions). For sets D and R, let {FS(·) :
D → R|S ∈ {0, 1}λ} be a family of polynomially computable functions. We say
that F is pseudorandom if for any PPT adversary A, it holds that

AdvprfF,A(λ) = |Pr[AFS(·)(1λ) = 1 : S
r←− {0, 1}λ]

− Pr[AR(·)(1λ) = 1 : R r←− U]| = negl(λ) ,

where U is the set of all functions from D to R. Moreover, for some concrete
negligible function ε(·), we say that F is ε-secure if for any PPT A the above
indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 4 ([37]). If one-way functions exist, then for all efficiently com-
putable functions n(λ) and m(λ), there exists a pseudorandom function that
maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ) and R := {0, 1}m(λ)).

Definition 2 (Puncturable pseudorandom function). For sets D and R,
a puncturable pseudorandom function PPRF consists of a tuple of algorithms
(F,Punc) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size sub-
set {xi}i∈[k] of D, and for all x ∈ D \ {xi}i∈[k], we have Pr[FS(x) = FS∗(x) :
S ← {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k])] = 1.

Pseudorandomness at punctured points: For all polynomial size subset
{xi}i∈[k] of D, and any PPT adversary A, it holds that

Pr[A(S∗, {FS(xi)}i∈[k]) = 1] − Pr[A(S∗, Uk) = 1] = negl(λ) ,

where S
r←− {0, 1}λ, S∗ ← Punc(S, {xi}i∈[k]), and U denotes the uniform

distribution over R.
Moreover, for some concrete negligible function ε(·), we say that PPRF is ε-
secure if for any A the above indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 5 ([21,22,37,43]). If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable pseudoran-
dom function that maps n(λ) bits to m(λ) bits (i.e., D := {0, 1}n(λ) and
R := {0, 1}m(λ)).

Definition 3 (Secret key encryption). An SKE scheme SKE is a two tuple
(E,D) of PPT algorithms.

Obfustopia Built on SKFE 629

– The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈ M,
outputs a ciphertext c, where M is the plaintext space of SKE.

– The decryption algorithm D, given a key K and a ciphertext c, outputs a
message m̃ ∈ {⊥} ∪ M. This algorithm is deterministic.

Correctness: We require D(K,E(K,m)) = m for every m ∈ M and key K ∈
{0, 1}λ.

CPA security: We define the security game between a challenger and an adver-
sary A as follows.
1. The challenger generates K

r←− {0, 1}λ and chooses the challenge bit b
r←−

{0, 1}. Then, the challenger sends 1λ to A.
2. A may make polynomially many encryption queries adaptively. A sends

(m0,m1) ∈ M × M to the challenger. Then, the challenger returns c ←
E(K,mb).

3. A outputs b′ ∈ {0, 1}.
In this game, we define the advantage of the adversary A as

AdvcpaSKE,A(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

For a negligible function ε(·), We say that SKE is ε-secure if for any PPT A,
we have AdvcpaSKE,A(λ) < ε(λ)Ω(1).

Theorem 6 ([54]). If there exist one-way functions, there exists CPA-secure
SKE.

Definition 4 (Garbling scheme). Let {Cn}n∈N be a family of circuits where
each circuit in Cn takes an n-bit input. A circuit garbling scheme GC is a two
tuple (Grbl,Eval) of PPT algorithms.

– The garbling algorithm Grbl, given a security parameter 1λ and a circuit C ∈
Cn, outputs a garbled circuit ˜C, together with 2n labels {Lj,α}j∈[n],α∈{0,1}.

– The evaluation algorithm, given a garbled circuit ˜C and n labels {Lj}j∈[n],
outputs y.

Correctness: We require Eval(˜C, {Lj,xj
}j∈[n]) = C(x) for every n ∈ N, C ∈ Cn,

and x ∈ {0, 1}n, where (˜C, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C) and xj is the
j-th bit of x for every j ∈ [n].

Security: Let Sim be a PPT simulator. We define the following game between
a challenger and an adversary A as follows.
1. The challenger chooses the challenge bit b

r←− {0, 1} and sends security
parameter 1λ to A.

2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger.
3. If b = 0, the challenger computes (˜C, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C)

and returns (˜C, {Lj,xj
}j∈[n]) to A. Otherwise, the challenger returns

(˜C, {Lj}j∈[n]) ← Sim(1λ, |C|, C(x)).
4. A outputs b′ ∈ {0, 1}.

630 F. Kitagawa et al.

In this game, we define the advantage of A as

AdvgcGC,A,Sim(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

For a concrete negligible function ε(·), We say that GC is ε-secure if there
exists a PPT Sim such that for any PPT A, we have AdvgcGC,A,Sim(λ) <

ε(λ)Ω(1).

Theorem 7 ([13,57,64]). If there exist one-way functions, there exists secure
garbling scheme for any polynomial size circuits.

Definition 5 (Decomposable randomized encoding). Let c ≥ 1 be an inte-
ger constant. A c-local decomposable randomized encoding RE, given security
parameter 1λ and a function f of size s and n-bit input, outputs a function
̂f : {0, 1}n × {0, 1}ρ → {0, 1}μ with the following properties. ρ and μ are polyno-
mials bounded by s · polyRE(λ, n), where polyRE is a fixed polynomial.

Correctness: There is a polynomial time decoder that, given ̂f(x; r), outputs
f(x) for any x ∈ {0, 1}n and r ∈ {0, 1}ρ.

Decomposability: Computation of ̂f can be decomposed into computation of
μ functions. That is, there exist μ functions ̂f1, · · · , ̂fμ such that ̂f(x; r) =
(̂f1(x; r), · · · , ̂fμ(x; r)). Each ̂fi depends on a single bit of x at most and c

bits of r. We write ̂f(x; r) = (̂f1(x; rS1), · · · , ̂fμ(x; rSμ
)), where Si denotes

the subset of bits of r that ̂fi depends on.
Security: Let Sim be a PPT simulator. We define the following game between

a challenger and an adversary A as follows.
1. The challenger chooses a bit b

r←− {0, 1} and sends security parameter 1λ

to A.
2. A sends a function f of size s and n-bit input and an input x ∈ {0, 1}n

to the challenger.
3. If b = 0, the challenger computes ̂f ← RE(1λ, f), generates r ←

{0, 1}ρ, and returns ̂f(x; r) to A. Otherwise, the challenger returns
Sim(1λ, s, f(x)).

4. A outputs b′ ∈ {0, 1}.
In this game, we define the advantage of A as

AdvreRE,Sim,A(λ) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

For a negligible function ε(·), we say that RE is ε-secure if there exists a PPT
Sim such that for any PPT A, we have AdvreRE,Sim,A(λ) < ε(λ)Ω(1).

It is known that a decomposable randomized encoding can be based on one-
way functions.

Theorem 8 ([6,64]). If there exist one-way functions, there exists secure
decomposable randomized encoding for all polynomial size functions.

Obfustopia Built on SKFE 631

4.3 Secret-Key Functional Encryption

We review the definition of ordinary secret-key functional encryption (SKFE).

Definition 6 (Secret-key functional encryption). An SKFE scheme SKFE
is a four tuple of PPT algorithms (Setup,KG,Enc,Dec). Below, let M and F be
the message space and function space of SKFE, respectively.

– The setup algorithm Setup, given a security parameter 1λ, outputs a master
secret key MSK.

– The key generation algorithm KG, given a master secret key MSK and a func-
tion f ∈ F , outputs a functional decryption key skf .

– The encryption algorithm Enc, given a master secret key MSK and a message
m ∈ M, outputs a ciphertext CT.

– The decryption algorithm Dec, given a functional decryption key skf and a
ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M.

Correctness: We require Dec(KG(MSK, f),Enc(MSK,m)) = f(m) for every
m ∈ M, f ∈ F , and MSK ← Setup(1λ).

Next, we introduce selective-message message privacy for SKFE schemes.

Definition 7 (Selective-message message privacy). Let SKFE be an SKFE
scheme whose message space and function space are M and F , respectively. Let
q be a polynomial of λ. We define the selective-message message privacy game
between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses
the challenge bit b

r←− {0, 1}. Then, the challenger sends security parameter
1λ to A.

2. A sends {(m�
0,m

�
1)}�∈[p] to the challenger, where p is an a-priori unbounded

polynomial of λ.
3. The challenger generates ciphertexts CT(�) ← Enc(MSK,m�

b)(� ∈ [p]) and
sends them to A.

4. A may adaptively make key queries q times at most. For a key query f ∈ F
from A, the challenger generates skf ← KG(MSK, f), and returns skf to A.
Here, f needs to satisfy f(m�

0) = f(m�
1) for all � ∈ [p].

5. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advsm-mp
SKFE,A(λ) = 2|Pr[b = b′] − 1

2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

A is said to be valid if each function query f made by A satisfies that f(m�
0) =

f(m�
1) for all � ∈ [p] in the above game. For a negligible function ε(·), We say

that SKFE is (q, ε)-selective-message message private if for any valid PPT A, we
have Advsm-mp

SKFE,A(λ) < ε(λ)Ω(1).

632 F. Kitagawa et al.

We further say that an SKFE scheme is ε-secure collusion-resistant SKFE if
it is (q, ε)-selective-message message private for any polynomial q.

Next, we define the succinctness for SKFE.

Definition 8 (Succinctness). Let F be a function family. Let s and n be the
maximum size and input length of functions contained in F , respectively. We
say that SKFE for F is weakly succinct if the size of the encryption circuit is
bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant.

4.4 Indistinguishability Obfuscation

We review the definition of indistinguishability obfuscation (IO).

Definition 9 (Indistinguishability obfuscation). A PPT algorithm iO is
an indistinguishability obfuscator (IO) for a circuit class {Cλ}λ∈N if it satisfies
the following two conditions.

Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs
x, we have that Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

Indistinguishability: for any PPT distinguisher D, there exists a negligible
function negl(·) such that the following holds: for all security parameters λ ∈
N, for all pairs of circuits C0, C1 ∈ Cλ of the same size and such that C0(x) =
C1(x) for all inputs x, then

|Pr
[

D(iO(1λ, C0)) = 1
]

− Pr
[

D(iO(1λ, C1)) = 1
]

| = negl(λ) .

We further say that iO is ε-secure, for some concrete negligible function ε(·),
if for any PPT distinguisher the above advantage is smaller than ε(λ)Ω(1).

4.5 Strong Exponentially-Efficient Indistinguishability Obfuscation

We next define strong exponentially-efficient IO (SXIO).

Definition 10 (Strong exponentially-efficient indistinguishability
obfuscation). Let γ < 1 be a constant. A PPT algorithm sxiO is a γ-
compressing strong exponentially-efficient indistinguishability obfuscator (SXIO)
for a circuit class {C}λ∈N if it satisfies the functionality and indistinguishability
in Definition 9 and the following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input
(1λ, C) is at most 2nγ · poly(λ, |C|) for every λ ∈ N and circuit C ∈ {Cλ}λ∈N

with input length n.

We have the following theorem.

Theorem 9 ([15]). Assuming there exists ε-secure collusion-resistant SKFE for
all circuits, where ε(·) is a negligible function. Then, for any constant γ < 1, there
exists ε-secure γ-compressing SXIO for polynomial-size circuits with logarithmic
size input.

Obfustopia Built on SKFE 633

5 Puncturable Secret-Key Functional Encryption

We introduce puncturable secret-key functional encryption (puncturable SKFE).
The notion of puncturable SKFE was introduced by Bitansky and

Vaikuntanathan [17]. They showed that in their construction of IO, the building
block PKFE can be replaced with puncturable SKFE. However, it has been open
whether we can achieve puncturable SKFE without assuming PKFE.

In this work, we answer the question affirmatively. We show how to construct
a relaxed variant of puncturable SKFE scheme that is single-key weakly-succinct.
Our relaxed variant is sufficient for constructing IO. Our construction consists
of two steps.

1. We prove that a single-key non-succinct puncturable SKFE scheme is con-
structed only from one-way functions.

2. We prove that we can transform the non-succinct scheme into an weakly-
succinct one by using SXIO.

We can construct SXIO based on standard (i.e., not puncturable) SKFE by
Theorem 9. Thus, we can construct our puncturable SKFE from standard SKFE.

5.1 Syntax

Our definition of puncturable SKFE introduced below is slightly different from
that proposed by Bitansky and Vaikuntanathan [17]. However, we show that
puncturable SKFE defined in this paper is also a sufficient building block of IO.
We state differences between our definition and theirs after describing the syntax
and security of our puncturable SKFE.

Definition 11 (Puncturable secret-key functional encryption). A punc-
turable SKFE scheme pSKFE is a tuple (Setup,KG,Enc,Dec,Punc,PEnc) of six
PPT algorithms. Below, let M, F , and T be the message space, function space,
and tag space of pSKFE, respectively. In addition, let q be a polynomial denoting
the upper bound of the number of issuable functional keys.

– The setup algorithm Setup, given a security parameter 1λ, outputs a master
secret key MSK.

– The key generation algorithm KG, given a master secret key MSK, function
f ∈ F , and an index i ∈ [q], outputs a functional key skf .

– The encryption algorithm Enc, given a master secret key MSK, a tag tag, and
a message m ∈ M, outputs a ciphertext CT.

– The decryption algorithm Dec, given a functional key skf , a tag tag, and a
ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M.

– The puncturing algorithm Punc, given a master secret key MSK and a tag tag,
outputs a punctured master secret key MSK∗{tag}

– The punctured encryption algorithm PEnc, given a punctured master secret
key MSK∗, a tag tag′, and a message m, outputs a ciphertext CT.

Correctness: For every m ∈ M, f ∈ F , i ∈ [q], tag ∈ T , andMSK ← Setup(1λ),
we require that Dec (KG (MSK, f, i) , tag,Enc (MSK, tag,m)) = f(m).

634 F. Kitagawa et al.

5.2 Security

In this section, we introduce two variants of security. Their difference is the
functionality of punctured encryption algorithms.

Definition 12 (Secure puncturable SKFE). Let pSKFE = (Setup,KG,Enc,
Dec,Punc,PEnc) be puncturable SKFE. Below, let M, F , and T be the message
space, function space, and tag space of pSKFE, respectively. In addition, let q
be a polynomial denoting the upper bound of the number of issuable functional
keys. We say that pSKFE is secure puncturable SKFE if it satisfies the following
properties.

Functionality preserving under puncturing:
For every m ∈ M, (tag, tag′) ∈ T × T such that tag �= tag′, randomness
r, MSK ← Setup(1λ), and MSK∗{tag} ← Punc(MSK, tag), it holds that

PEnc(MSK∗{tag}, tag′,m; r) = Enc(MSK, tag′,m; r) .

Semantic security at punctured tag: We define punctured semantic secu-
rity game between a challenger and an adversary A as follows.
1. The challenger generates a master secret key MSK ← Setup(1λ) and

chooses a challenge bit b
r←− {0, 1}. The challenger sends security param-

eter 1λ to A.
2. A sends (m0,m1) ∈ M × M, tag ∈ T , and {fi}i∈[q] ∈ Fq to the chal-

lenger. We require that for every i ∈ [q] it holds that fi(m0) = fi(m1).
3. The challenger computes CT ← Enc(MSK, tag,mb), skfi

← KG(MSK,
fi, i) for every i ∈ [q], and MSK∗{tag} ← Punc(MSK, tag).
Then, the challenger returns (MSK∗{tag},CT, {skfi

}i∈[q]) to A.
4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvsspSKFE,A(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

A is said to be valid if fi(m0) = fi(m1) holds for every i ∈ [q] in the above
game. We say that pSKFE satisfies semantic security at punctured tag if for
any valid PPT A, we have AdvsspSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ε-semantic security at punctured tag,
for some concrete negligible function ε(·), if for any valid PPT A the above
advantage AdvsspSKFE,A(λ) is smaller than ε(λ)Ω(1).

In addition, we say that pSKFE is ε-secure puncturable SKFE if it satisfies func-
tionality preserving under puncturing and ε-semantic security at punctured tag.

Instead of functionality preserving under puncturing, we can consider a
relaxed variant which we call indistinguishability of functionality under punc-
turing. This property requires that any PPT distinguisher cannot distinguish
ciphertexts output by Enc and PEnc even given both master secret key and
punctured master secret key. The formal definition is as follows.

Obfustopia Built on SKFE 635

Definition 13 (Indistinguishability of functionality under puncturing).
Let pSKFE = (Setup,KG,Enc,Dec,Punc,PEnc) be puncturable SKFE whose mes-
sage space and tag space are M and T , respectively. We define indistinguisha-
bility of functionality game between a challenger and an adversary A as follows.

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses
a challenge bit b

r←− {0, 1}. The challenger sends security parameter 1λ to A.
2. A sends m ∈ M and (tag, tag′) ∈ T ×T such that tag �= tag′ to the challenger.
3. The challenger first computes MSK∗{tag} ← Punc(MSK, tag). Then, the

challenger computes CT ← Enc(MSK, tag′,m) if b = 0, and otherwise
CT ← PEnc(MSK∗{tag}, tag′,m).
Then, the challenger returns (MSK,MSK∗{tag},CT) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvifpSKFE,A(λ) = 2|Pr[b = b′] − 1
2
| = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

We say that pSKFE satisfies indistinguishability of functionality under punctur-
ing if for any PPT A, we have AdvifpSKFE,A(λ) = negl(λ).

We further say that pSKFE satisfies ε-indistinguishability of functionality
under puncturing, for some concrete negligible function ε(·), if for any PPT
A the above advantage AdvifpSKFE,A(λ) is smaller than ε(λ)Ω(1).

Definition 14 (Secure puncturable SKFE with indistinguishability of
functionality). Let pSKFE be puncturable SKFE. Let ε1(·) and ε2(·) be some
negligible functions. If pSKFE satisfies ε1-semantic security at punctured tag and
ε2-indistinguishability of functionality under puncturing, then we say that pSKFE
is (ε1, ε2)-secure puncturable SKFE with indistinguishability of functionality.

5.3 Efficiency

We introduce the notion of succinctness for puncturable SKFE.

Definition 15 (Succinctness). Let F be a function family. Let s and n be the
maximum size and input length of functions contained in F , respectively.

Weakly-succinct: Puncturable SKFE for F is said to be weakly-succinct if
the size of both the encryption circuit and punctured encryption circuit are
bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant. We call γ the
compression factor.

Collusion-succinct: Puncturable SKFE for F is said to be collusion-succinct
if the size of both the encryption circuit and punctured encryption circuit are
bounded by qγ ·poly(n, λ, s), where q is the upper bound of issuable functional
decryption keys and γ < 1 is a fixed constant. We call γ the compression
factor.

636 F. Kitagawa et al.

5.4 Difference from the Definition of Bitansky and Vaikuntanathan

There are three main differences between our definition of puncturable SKFE
and that of Bitansky and Vaikuntanathan [17]. Two are about syntax. The other
is about security.

Syntactical differences are as follows.

Tag-based encryption and decryption: In the definition of Bitansky and
Vaikuntanathan, a master secret key is punctured at two messages. Their
semantic security requires that no PPT adversary can distinguish ciphertexts
of these two messages given the punctured master secret key.
We adopt the tag based syntax for the encryption and decryption algo-
rithms while Bitansky and Vaikuntanathan do not. A tag-based definition is
well-suited for our non-succinct puncturable SKFE scheme. When our non-
succinct scheme encrypts a message, it generates a garbled circuit of an uni-
versal circuit into which the message is hardwired, and then masks labels of
the garbled circuit by a string generated by puncturable PRF. A tag fed to
the encryption algorithm is used as an input to puncturable PRF. See Sect. 6
for details.
In our construction of IO in Sect. 8, we use an input to an obfuscated circuit
as a tag for ciphertexts of puncturable SKFE. Therefore, our IO construction
is not significantly different from the IO construction based on puncturable
SKFE by Bitansky and Vaikuntanathan from the syntactical point of view
though ours is based on tag-based puncturable SKFE.

Index based key generation: We define the key generation algorithm as a
stateful algorithm. In other words, for the i-th invocation, we need to feed
an index i to the key generation algorithm in addition to a master secret
key and a function. This is because we transform a non-succinct scheme into
an weakly-succinct one via a collusion-succinct scheme whose key generation
algorithm is stateful in Sect. 7.
We note that our stateful collusion-succinct scheme is just an intermediate
scheme to achieve IO. We also emphasize the fact that the index-based key
generation is not an issue to construct IO because our main building block
is a single-key weakly-succinct puncturable SKFE scheme. For a single-key
scheme, we do not need any state for key generation because it can issue only
a single functional key.
Below, we omit the index of single-key schemes in the syntax for simplicity.

Functionality under puncturing. In addition to the syntactic differences above,
there is a difference about security. We defined indistinguishability of functional-
ity under puncturing in Definition 13. The reason why we introduce the relaxed
notion of functionality preserving property is that our weakly-succinct scheme
does not satisfy functionality preserving under puncturing in Definition 12 but
the relaxed one. Our non-succinct scheme satisfies functionality preserving under
puncturing.

Obfustopia Built on SKFE 637

One might think that puncturable SKFE satisfying indistinguishability of
functionality under puncturing is not sufficient to construct IO. This is not the
case. We show that indistinguishability of functionality under puncturing suffices
for constructing IO and our weakly-succinct scheme satisfies the property.

6 Single-Key Non-Succinct Puncturable SKFE

We show we can construct a single-key (non-succinct) puncturable SKFE scheme
assuming only one-way functions. This construction is similar to that of single-
key non-succinct PKFE proposed by Sahai and Seyalioglu [61]. Their construc-
tion is based on garbling scheme and public-key encryption. In our construc-
tion, we use puncturable PRF instead of public-key encryption, and, as a result,
achieve the puncturable property. We recall that we can realize both garbling
scheme and puncturable PRF assuming only one-way functions. We give the
construction below.

Let GC = (Grbl,Eval) be garbling scheme, and PPRF = (F,PuncF) be
puncturable PRF. Using GC and PPRF, we construct puncturable SKFE
OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc, 1Key.PEnc)
supporting only one functional key as follows. Note that the tag space of OneKey
is the same as the domain of PPRF. In addition, the index space of OneKey is
[1], and thus we omit the index from the description by assuming the index is
always fixed to 1. Below, we assume that we can represent every function f by
an s-bit string (f [1], · · · , f [s]).

Construction. The scheme consists of the following algorithms.

1Key.Setup(1λ) :
– Generate Sj,α

r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}.
– Return MSK ← {Sj,α}j∈[s],α∈{0,1}.

1Key.KG(MSK, f) :
– Parse {Sj,α}j∈[s],α∈{0,1} ← MSK and (f [1], · · · , f [s]) ← f .
– Return skf ← (f, {Sj,f [j]}j∈[s]).

1Key.Enc(MSK, tag,m) :
– Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
– Compute (˜U, {Lj,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·,m)).
– For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← F(Sj,α, tag) and cj,α ←

Lj,α ⊕ Rj,α.
– Return CT ← (˜U, {cj,α}j∈[s],α∈{0,1}).

1Key.Dec(skf , tag,CT) :
– Parse (f, {Sj}j∈[s]) ← skf and (˜U, {cj,α}j∈[s],α∈{0,1}) ← CT.
– For every j ∈ [s], compute Rj ← F(Sj , tag) and Lj ← cj,f [j] ⊕ Rj .
– Return y ← Eval(˜U, {Lj}j∈[s]).

1Key.Punc(MSK, tag) :
– Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
– For every j ∈ [s] and α ∈ {0, 1}, compute S∗

j,α{tag} ← PuncF(Sj,α, tag).
– Return MSK∗{tag} ← {S∗

j,α{tag}}j∈[s],α∈{0,1}.

638 F. Kitagawa et al.

1Key.PEnc(MSK∗, tag′,m)
– Parse {S∗

j,α}j∈[s],α∈{0,1} ← MSK∗.
– Compute (˜U, {Lj,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·,m)).
– For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← FS∗

j,α
(tag′) and cj,α ←

Lj,α ⊕ Rj,α.
– Return CT ← (˜U, {cj,α}j∈[s],α∈{0,1}).

Then, we have the following theorem.

Theorem 10. Let GC be δ-secure garbling scheme, and PPRF δ-secure punc-
turable PRF, where δ(·) is some negligible function. Then, OneKey is δ-secure
single-key puncturable SKFE.

See [45] for the formal proof of this theorem.

7 From Non-Succinct Puncturable SKFE
to Weakly-Succinct One

In this section, we show how to transform single-key non-succinct puncturable
SKFE into single-key weakly-succinct one using SXIO. Note that the resulting
scheme satisfies only indistinguishability of functionality under puncturing prop-
erty even if we start the transformation with a non-succinct scheme satisfying
functionality preserving under puncturing property.

The transformation consists of 2 steps. First, we show how to construct
collusion-succinct puncturable SKFE from single-key non-succinct puncturable
SKFE and SXIO. Then, we give the transformation from collusion-succinct punc-
turable SKFE to weakly-succinct one.

In fact, the intermediate collusion-succinct scheme satisfies only indistin-
guishability of functionality under puncturing property. This is because we adopt
a construction technique similar to that proposed by Lin et al. [53] (and extended
by Bitansky et al. [15] and Kitagawa et al. [46]), and thus we use an obfuscated
encryption circuit of the building block scheme by SXIO as a ciphertext of the
resulting scheme. This fact is the reason the resulting weakly-succinct scheme
satisfies only indistinguishability of functionality under puncturing property.

7.1 From Non-Succinct to Collusion-Succinct by Using SXIO

For any q which is a fixed polynomial of λ, we show how to construct a punc-
turable SKFE scheme whose index space is [q] based on a single-key puncturable
SKFE scheme. The resulting scheme is collusion-succinct, that is, the running
time of both the encryption algorithm and the punctured encryption algorithm
are sub-linear in q. We show the construction below.

Let OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc,
1Key.PEnc) be puncturable SKFE that we constructed in Sect. 6. Let sxiO be SXIO
andPPRF = (F,PuncF) puncturable PRF. UsingOneKey, sxiO, andPPRF, we con-
struct puncturable SKFE CollSuc = (CS.Setup,CS.KG,CS.Enc,CS.Dec,CS.Punc,
CS.PEnc) as follows. We again note that q is a fixed polynomial of λ. Let the tag
space of CollSuc be T . Then, the tag space of OneKey is also T .

Obfustopia Built on SKFE 639

Construction. The scheme consists of the following algorithms.

CS.Setup(1λ) :
– Generate S

r←− {0, 1}λ and return MSK ← S.
CS.KG(MSK, f, i) :

– Parse S ← MSK.
– Compute ri

Setup ← FS(i) and MSKi ← 1Key.Setup(1λ; ri
Setup).

– Compute 1Key.skf ← 1Key.KG(MSKi, f) and return skf ← (i, 1Key.skf).
CS.Enc(MSK, tag,m) :

– Parse S ← MSK.
– Generate SEnc

r←− {0, 1}λ and return CT ← sxiO(E1Key[S, SEnc, tag,m]).
The circuit E1Key is defined in Fig. 4.

CS.Dec(skf , tag,CT) :
– Parse (i, 1Key.skf) ← skf .
– Compute CTi ← CT(i) and return y ← 1Key.Dec(1Key.skf , tag,CTi).

CS.Punc(MSK, tag) :
– Parse S ← MSK.
– Generate SPunc

r←− {0, 1}λ and compute ˜P ← sxiO(P1Key[S, SPunc, tag]).
The circuit P1Key is defined in Fig. 5.

– Return MSK∗{tag} ← ˜P.
CS.PEnc(MSK∗, tag′,m) :

– Parse ˜P ← MSK∗.
– Generate SEnc

r←− {0, 1}λ and return CT ← sxiO(PE1Key[˜P, SEnc, tag
′,m]).

The circuit PE1Key is defined in Fig. 6.

Fig. 4. The description of E1Key.

Then, we have the following theorem.

Theorem 11. Let δ(·) be some negligible function. Let OneKey be δ-secure
single-key puncturable SKFE constructed in Sect. 6. Let sxiO be δ-secure γ-
compressing SXIO, where γ is a sufficiently small constant such that γ < 1. Let
PPRF be δ-secure puncturable PRF. Then, CollSuc is (δ, δ)-secure puncturable
SKFE with indistinguishability of functionality that is collusion-succinct with
compression factor γ̂, which is a constant smaller than 1.

640 F. Kitagawa et al.

Fig. 5. The description of P1Key.

Fig. 6. The description of PE1Key.

See [45] for the formal proof of this theorem.
The requirement for γ and the concrete value of γ̂ is determined in the

efficiency analysis in the proof of Theorem 11. We can make γ̂ smaller than 1 by
using SXIO with sufficiently small compression factor γ as the building block.
Such SXIO is constructed from collusion-resistant SKFE [15].

7.2 From Collusion-Succinct to Weakly-Succinct

In this section, we show how to construct a single-key weakly-succinct punc-
turable SKFE scheme from a collusion-succinct one.

This transformation is based on those proposed by Bitansky and
Vaikuntanathan [17] and Ananth et al. [3], and thus utilizes a decomposable ran-
domized encoding. The difference is that we must consider puncturing and punc-
tured encryption algorithms since we construct a puncturable SKFE scheme.
In fact, we show their construction works for puncturable SKFE schemes. In
addition, we consider semantic security defined in the weakly selective security
manner while they considered selective security. Below, we give the construction.

Obfustopia Built on SKFE 641

We construct single-key puncturable SKFE WeakSuc = (WS.Setup,WS.KG,
WS.Enc,WS.Dec,WS.Punc,WS.PEnc). Let s and n be the maximum size and
input length of functions supported by WeakSuc. Let RE be c-local decompos-
able randomized encoding, where c is a constant. We suppose that the number
of decomposed encodings of RE for a function of size s is μ. Then, μ is a poly-
nomial bounded by s · polyRE(λ, n), where polyRE(λ, n) is a fixed polynomial.
We also suppose that the randomness space of RE is {0, 1}ρ, where ρ is a poly-
nomial bounded by s · polyRE(λ, n). Let CollSuc = (CS.Setup,CS.KG,CS.Enc,
CS.Dec,CS.Punc,CS.PEnc) be puncturable SKFE whose index space and tag
space are [μ] and T , respectively. Let SKE = (E,D) be SKE and PRF PRF. In
the scheme, we use PRF : {0, 1}λ × ({0, 1}λ × [ρ]) → {0, 1}. Using CollSuc, RE,
SKE, and PRF, we construct WeakSuc as follows. The tag space of WeakSuc is T .

WS.Setup(1λ) :
– Return MSK ← CS.Setup(1λ).

WS.KG(MSK, f) :
– Generate K

r←− {0, 1}λ and t ← {0, 1}λ.
– Compute ̂f ← RE(1λ, f) and decomposed encodings ̂f1, · · · ̂fμ together

with sets of integers (R1, · · · , Rμ). Ri indicates which bit of a randomness
̂fi depends on for every i ∈ [μ]. Note that Ri ⊆ [ρ] and |Ri| = c for every
i ∈ [μ].

– Generate CTske
i ← E(K, 0| ̂fi(·,·)|), and compute skEni

← CS.KG(MSK,

Endre[̂fi, Ri, t,CT
ske
i], i) for every i ∈ [μ]. Endre defined in Fig. 7.

– Return skf ← (skEn1 , · · · , skEnμ
).

WS.Enc(MSK, tag,m) :
– Generate Sencd ← {0, 1}λ.
– Return CT ← CS.Enc(MSK, tag, (m,Sencd,⊥)).

WS.Dec(skf , tag,CT) :
– Parse (skEn1 , · · · , skEnμ

) ← skf .
– For every i ∈ [μ], compute ei ← CS.Dec(skEni

, tag,CT).
– Decode y from (e1, · · · , eμ).
– Return y.

WS.Punc(MSK, tag) :
– Return MSK∗{tag} ← CS.Punc(MSK, tag).

WS.PEnc(MSK∗, tag′,m) :
– Generate Sencd ← {0, 1}λ.
– Return CT ← CS.PEnc(MSK∗, tag′, (m,Sencd,⊥)).

Then, we have the following theorem.

Theorem 12. Let δ(·) be negligible function. Let CollSuc be (δ, δ)-secure punc-
turable SKFE with indistinguishability of functionality that can issue μ functional
keys and is collusion-succinct with compression factor γ, where γ < 1 is a con-
stant. Let RE, SKE, and PRF be δ-secure decomposable randomized encoding,
SKE, and PRF, respectively. Then, WeakSuc be (δ, δ)-secure single-key punc-
turable SKFE with indistinguishability of functionality that is weakly-succinct
with compression factor γ′, where γ′ is a constant such that γ < γ′ < 1.

See [45] for the formal proof of this theorem.

642 F. Kitagawa et al.

Fig. 7. The description of Endre.

8 Indistinguishability Obfuscation from SKFE

We show how to obtain IO based on SKFE via puncturable SKFE.

8.1 IO from Collusion-Resistant SKFE

We construct IO from puncturable SKFE satisfying only indistinguishability of
functionality under puncturing. Formally, we have the following theorem.

Theorem 13. Let δ(λ) = 2−λε

, where ε < 1 is a constant. Assuming there
exists (δ, δ)-secure single-key weakly-succinct puncturable SKFE with indistin-
guishability of functionality for all circuits. Then, there exists secure IO for all
circuits.

We omit the formal proof of it. See Sect. 2.4 for the overview of it. In [45], we
formally prove it by first providing the construction of IO based on puncturable
SKFE, and then analyzing its security and efficiency.

In addition, by combining Theorems 9, 10, 11, and 12, we also obtain the
following theorem.

Theorem 14. Assuming there exists δ-secure collusion-resistant SKFE for all
circuits, where δ(·) is a negligible function. Then, there exists (δ, δ)-secure single-
key weakly-succinct puncturable SKFE with indistinguishability of functionality
for all circuits.

In order to obtain Theorem 14, we also use δ-secure PRF, puncturable PRF,
plain SKE, garbling scheme, and decomposable randomized encoding as building
blocks. From Theorems 4, 5, 6, 7, and 8, all of these primitives are implied by
δ-secure one-way functions thus implied by δ-secure collusion-resistant SKFE for
all circuits.

From Theorems 13 and 14, we obtain the following main theorem.

Obfustopia Built on SKFE 643

Theorem 15. Let δ(λ) = 2−λε

, where ε < 1 is a constant. Assuming there exists
δ-secure collusion-resistant SKFE for all circuits. Then, there exists secure IO
for all circuits.

Remark 1 (IO for circuits with input of poly-logarithmic length). The security
loss of our IO construction is exponential in the input length of circuits, but is
independent of the size of circuits. Thus, if the input length of circuits is poly-
logarithmic in the security parameter, our IO construction incurs only quasi-
polynomial security loss regardless of the size of circuits. Therefore, we can
obtain IO for circuits of polynomial size with input of poly-logarithmic length
from quasi-polynomially secure collusion-resistant SKFE for all circuits. This is
an improvement over the IO construction by Komargodski and Segev [48]. They
showed that IO for circuits of sub-polynomial size with input of poly-logarithmic
length is constructed from quasi-polynomially secure collusion-resistant SKFE
for all circuits.

Komargodski and Segev also showed that the combination of their IO and
sub-exponentially secure one-way functions yields succinct and collusion-resistant
PKFE for circuits of sub-polynomial size with input of poly-logarithmic length. We
observe that our IO for circuits of polynomial size with input of poly-logarithmic
length leads to succinct and collusion-resistant PKFE for circuits of polynomial
size with input of poly-logarithmic length by combining sub-exponentially secure
one-way functions from the result of Komargodski and Segev.

8.2 Collusion-Resistant SKFE from Weakly-Succinct One

We also show that collusion-resistant SKFE is constructed from single-key
weakly-succinct SKFE. Formally, we have the following theorem.

Theorem 16. Let δ(λ) = λ−ζ , where ζ = ω(1). Assuming there exists (1, δ)-
selective-message message private SKFE for all circuits that is weakly succinct.
Then, there exists δ′-secure collusion-resistant SKFE for all circuits, where
δ′(λ) = λ−ζ1/2

.11

In [44], we formally showTheorem16. See Sect. 3 for the overview for this result.
Theorem 16 states that if the underlying single-key scheme is sub-exponentially

secure, then so is the resulting scheme. Therefore, from Theorems 15 and 16, we
have the following corollary.

Corollary 2. Assuming there exists sub-exponentially secure single-key weakly-
succinct SKFE for all circuits. Then, there exists IO for all circuits.

Acknowledgement. The first and third authors are supported by NTT Secure
Platform Laboratories, JST CREST JPMJCR14D6, JST OPERA, JSPS KAKENHI
JP16H01705, JP16J10322, JP17H01695.

11 We can slightly generalize the result. By setting η = ζ1/c in the construction for any

constant c > 1, we can achieve δ′(λ) = λ−ζ1/c

.

644 F. Kitagawa et al.

References

1. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

3. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

5. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: ACM CCS 2014, pp. 646–658 (2014)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

7. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: 44rd International Colloquium on
Automata, Languages, and Programming, ICALP 2017, Warsaw, Poland, 10–14
July 2017 (2017, to appear)

8. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

9. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: 56th FOCS, pp. 191–209 (2015)

10. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

11. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

13. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
CCS 2012, pp. 784–796 (2012)

14. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: 47th ACM STOC, pp. 439–448 (2015)

https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Obfustopia Built on SKFE 645

15. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 15

16. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

17. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: 56th FOCS, pp. 171–190 (2015)

18. Boneh, D., Gupta, D., Mironov, I., Sahai, A.: Hosting services on an untrusted
cloud. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 404–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 14

19. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th FOCS, pp. 283–292 (2008)

20. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

21. Boneh, D., Waters, B.: Constrained pseudorandom functions and their appli-
cations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42045-0 15

22. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

23. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

24. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 1

25. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 12

26. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling
and indistinguishability obfuscation for RAM programs. In: 47th ACM STOC,
pp. 429–437 (2015)

27. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

28. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-46803-6_14
https://doi.org/10.1007/978-3-662-46803-6_14
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10

646 F. Kitagawa et al.

29. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: 48th ACM STOC, pp. 1115–1127 (2016)

30. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

31. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

32. Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT attacks on obfusca-
tion with linear overhead. Cryptology ePrint Archive, Report 2016/1070

33. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49 (2013)

34. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

35. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 6

36. Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with poly-
nomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 16

37. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

38. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

39. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 24

40. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 12

41. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, 19–22 June 1995, pp. 134–147 (1995)

42. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61 (1989)

43. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM CCS 2013, pp. 669–684 (2013)

44. Kitagawa, F., Nishimaki, R., Tanaka, K.: From single-key to collusion-resistant
secret-key functional encryption by leveraging succinctness. Cryptology ePrint
Archive, Report 2017/638

https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-642-55220-5_12

Obfustopia Built on SKFE 647

45. Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation for all
circuits from secret-key functional encryption. Cryptology ePrint Archive, Report
2017/361

46. Kitagawa, F., Nishimaki, R., Tanaka, K.: Simple and generic constructions of
succinct functional encryption. Cryptology ePrint Archive, Report 2017/275 (to
appear in PKC 2018)

47. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th FOCS, pp. 374–383 (2014)

48. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

49. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: 47th ACM STOC, pp. 419–428 (2015)

50. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 443–468. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 17

51. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

52. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

53. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 17

54. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

55. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

56. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: 57th FOCS, pp. 11–20 (2016)

57. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

58. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

59. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

60. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

61. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS 2010, pp. 463–472 (2010)

https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28

648 F. Kitagawa et al.

62. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: 46th ACM STOC, pp. 475–484 (2014)

63. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

64. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167 (1986)

65. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-46803-6_15

	Obfustopia Built on Secret-Key Functional Encryption
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Organization

	2 Overview: IO from Collusion-Resistant SKFE
	2.1 Construction of IO Based on PKFE
	2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE
	2.3 Puncturable SKFE from SKFE
	2.4 IO from Puncturable SKFE

	3 Overview: Collusion-Resistant SKFE from Weakly-Succinct One
	3.1 First Attempt: Applying Re-encryption Techniques in the Public-Key Setting
	3.2 Second Attempt: Applying Techniques in a Different Context of SKFE
	3.3 Our Solution: Sandwiched Size-Shifting

	4 Preliminaries
	4.1 Notations
	4.2 Standard Cryptographic Tools
	4.3 Secret-Key Functional Encryption
	4.4 Indistinguishability Obfuscation
	4.5 Strong Exponentially-Efficient Indistinguishability Obfuscation

	5 Puncturable Secret-Key Functional Encryption
	5.1 Syntax
	5.2 Security
	5.3 Efficiency
	5.4 Difference from the Definition of Bitansky and Vaikuntanathan

	6 Single-Key Non-Succinct Puncturable SKFE
	7 From Non-Succinct Puncturable SKFE to Weakly-Succinct One
	7.1 From Non-Succinct to Collusion-Succinct by Using SXIO
	7.2 From Collusion-Succinct to Weakly-Succinct

	8 Indistinguishability Obfuscation from SKFE
	8.1 IO from Collusion-Resistant SKFE
	8.2 Collusion-Resistant SKFE from Weakly-Succinct One

	References

