
Efficient Designated-Verifier
Non-interactive Zero-Knowledge

Proofs of Knowledge

Pyrros Chaidos1(B) and Geoffroy Couteau2

1 National and Kapodistrian University of Athens, Athens, Greece
pchaidos@di.uoa.gr

2 Karsruhe Institute of Technology, Karlsruhe, Germany

Abstract. We propose a framework for constructing efficient designated-
verifier non-interactive zero-knowledge proofs (DVNIZK) for a wide class of
algebraic languages over abelian groups, under standard assumptions. The
proofs obtained via our framework are proofs of knowledge, enjoy statisti-
cal, and unbounded soundness (the soundness holds even when the prover
receives arbitrary feedbacks on previous proofs). Previously, no efficient
DVNIZK system satisfying any of those three properties was known. Our
framework allows proving arbitrary relations between cryptographic prim-
itives such as Pedersen commitments, ElGamal encryptions, or Paillier
encryptions, in an efficient way. For the latter, we further exhibit the first
non-interactive zero-knowledge proof system in the standard model that
is more efficient than proofs obtained via the Fiat-Shamir transform, with
still-meaningful security guarantees and under standard assumptions. Our
framework has numerous applications, in particular for the design of effi-
cient privacy-preserving non-interactive authentication.
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1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth
of a statement, without revealing anything beyond the fact that the statement
is true. After their introduction in the seminal work of Goldwasser, Micali, and
Rackoff [34], they have proven to be a fundamental primitive in cryptography.
Among them, non-interactive zero-knowledge proofs (NIZK proofs), where the
proof consists of a single flow from the prover to the verifier, are of particular
interest, in part due to their tremendous number of applications in cryptographic
primitives and protocols, and in part due to the theoretical and technical chal-
lenges that they represent.
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For almost two decades after their introduction in [10], NIZKs coexisted in
two types: inefficient NIZKs secure under standard assumptions (such as doubly
enhanced trapdoor permutations [30]) in the common reference string model, and
practically efficient NIZKs built from the Fiat-Shamir heuristic [31,47], which
are secure in the random oracle model [6] (hence only heuristically secure in
the standard model). This state of affairs changed with the arrival of pairing-
based cryptography, from which a fruitful line of work (starting with the work
of Groth, Ostrovsky, and Sahai [37,38]) introduced increasingly more efficient
NIZK proof systems in the standard model. That line of work culminated with the
framework of Groth-Sahai proofs [39], which provided an efficient framework of
pairing-based NIZKs for a large class of useful languages. Yet, one decade later,
pairing-based NIZKs from the Groth-Sahai framework remain the only known
efficient NIZK proof system in the standard model. Building efficient NIZKs in the
standard model, without pairing-based assumptions, is a major open problem,
and research in this direction has proven elusive.

1.1 Designated-Verifier Non-interactive Zero-Knowledge

Parallel to the research on NIZKs, an alternative promising line of research
has focused on designated-verifier non-interactive zero-knowledge proof systems
(DVNIZKs). A DVNIZK retains most of the security properties of a NIZK, but
is not publicly verifiable: only the owner of some secret information (the desig-
nated verifier) can check the proof. Nevertheless, DVNIZKs can replace publicly
verifiable NIZKs in a variety of applications. In addition, unlike their publicly-
verifiable counterpart, it is known that efficient DVNIZKs secure in the standard
model for rich classes of languages can be constructed without pairing-based
assumptions [17,23,43,49]. However, to date, research in DVNIZKs has attracted
less attention than NIZKs, the previously listed papers being (to our knowledge)
the only existing works on this topic, and several important questions have been
left open. We list the main open questions below.

Proofs Versus Arguments. A non-interactive zero-knowledge argument sys-
tem is a NIZK in which the soundness property is only required to hold against
computationally bounded adversaries. In a NIZK proof system, however, sound-
ness is required to hold even against unbounded adversaries.

Currently, while several DVNIZK argument systems have been designed in
the standard model without pairing-based assumptions, efficient DVNIZK proof
systems without pairings remain an open question. In fact, to our knowledge,
the only known constructions of (possibly inefficient) DVNIZK proofs rely on
publicly-verifiable NIZK proofs.

Soundness Versus Knowledge Extraction. A non-interactive zero-
knowledge proof (or argument) system is a NIZK of knowledge if it guarantees
that, when the prover succeeds in convincing the verifier, he must know a wit-
ness for the truth of the statement. This is in constrast with the standard sound-
ness notion, which only guarantees that the statement is true. Formally, this is
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ensured by requiring the existence of an efficient simulator that can extract a
witness from the proof.

Non-interactive zero-knowledge proofs of knowledge are more powerful than
standard NIZKs, and the knowledge-extractability property is crucial in many
applications. In particular, they are necessary for the very common task of prov-
ing relations between values committed with a perfectly hiding commitment
scheme, and they are a core component in privacy-preserving authentication
mechanisms [4]. Currently, all known DVNIZK argument systems are not argu-
ments of knowledge. Designing efficient DVNIZKs of knowledge without pairing-
based assumptions remains an open question.

Bounded Soundness Versus Unbounded Soundness. The classical sound-
ness security notion for non-interactive zero-knowledge proof systems states that
if the statement is not true, no malicious prover can possibly convince the ver-
ifier of the truth of the statement with non-negligible probability. While this
security notion is sufficient for publicly-verifiable NIZKs, it turns out to be insuf-
ficient when considering designated-verifier NIZKs, and corresponds only to a
passive type of security notion. Indeed, the verification of a DVNIZK involves a
secret value, known to the verifier. The fact that a DVNIZK satisfies the stan-
dard soundness notion does not preclude the possibility for a malicious prover to
learn this secret value, e.g. by submitting a large number of proofs and receiving
feedback on whether the proof was accepted or not. Intuitively, this is the same
type of issue as for encryption schemes indistinguishable against chosen-plaintext
attacks, which can be broken if the adversary is given access to a decryption ora-
cle, or for signature schemes secure against key-only or known-message attacks,
which can be broken if the adversary is given access to a signing oracle. Here, an
adversary could possibly break the soundness of a DVNIZK if it is given access
to a verification oracle.

In practice, this means that as soon as a proof system with bounded sound-
ness is used for more than a logarithmic number of proofs, the soundness property
is no longer guaranteed to hold. This calls for a stronger notion of soundness,
unbounded soundness, which guarantees security even against adversaries that
are given arbitrary access to a verification oracle.

Designing a DVNIZK with unbounded soundness has proven to be highly
non-trivial. In fact, apart from publicly-verifiable NIZKs (which can be seen as
particular types of DVNIZKs where the secret key of the verifier is the empty
string), the only known construction of DVNIZK claiming to satisfy unbounded
soundness is the construction of [23], where the claim is supported by a proof of
security in an idealized model. However, we found this claim to be flawed: there
is an explicit attack against the unbounded soundness of any protocol obtained
using the compiler of [23], which operates by using slightly malformed proofs
to extract the verification key. In the full version of this work [16], we describe
our attack, and identify the flaw in the proof of Theorem 5 in [23, Appendix A].
We have notified the authors of our finding and will update future versions
of this work with their reply. To our knowledge, in all current constructions,
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the common reference string and the public key must be refreshed after a loga-
rithmic number of proofs.

1.2 Our Contribution

In this work,we first introduce a framework for designated-verifierNIZKs on group-
dependent languages, in the spirit of the Groth-Sahai framework forNIZKs on lan-
guages related to pairing-friendly elliptic curves. Our framework only requires that
the underlying abelian group on which it is instantiated has order M , where ZM

is the plaintext-space of an homomorphic cryptosystem with specific properties,
and allows to prove a wide variety statements formulated in terms of the oper-
ation associated to this abelian group. In particular, we do not need to rely on
pairings. The DVNIZKs obtained with our framework are efficient, as they only
require a few group elements and ciphertexts. The zero-knowledge property of our
schemes reduces to the IND-CPA security of the underlying encryption scheme.
Additionally, our DVNIZKs enjoy the following properties: they are (adaptively)
knowledge-extractable; their knowledge-extractability holds statistically ; their
knowledge-extractability is unbounded. We stress that previously, no efficient con-
struction of DVNIZK in the standard model satisfying any of the above properties
was known. The third property, unbounded soundness, was only claimed to hold
for the construction of [23], and this claim was formalized with a proof in an ideal-
ized model, but as previously mentioned, we found this claim to be flawed. We also
point out that in the Groth-Sahai framework, witness extraction is limited either
to statements about group elements, or to statements about exponents committed
in a bit-by-bit fashion (making the proof highly inefficient). In contrast, our proof
system allows to efficiently extract large exponents, without harming the efficiency
of the proof. In addition to the above properties, our DVNIZKs satisfy some other
useful properties: they are multi-theorem [30], randomizable [3], and same-string
zero-knowledge [27] (i.e., the common reference string used by the prover and the
simulator are the same).

Second, our framework comes with a dual variant, where the role of the
encryption scheme and the abelian group are reversed, to prove statements, not
about elements of the abelian group, but about the underlying homomorphic
encryption scheme. This dual variant leads to DVNIZKs satisfying adaptive sta-
tistical unbounded soundness, but not knowledge-extractability (i.e. the dual
variant does not give proofs of knowledge).

Third, we show that if one is willing to give up unbounded soundness for
efficiency, our techniques can be used to construct extremely efficient DVNIZKs
with bounded-soundness. The DVNIZKs that we obtain this way are more effi-
cient than any previously known construction of non-interactive zero-knowledge
proofs, even when considering NIZKs in the random oracle model using the Fiat-
Shamir transform: the proofs we obtain are shorter than the proofs obtained via
the Fiat-Shamir transform by almost a factor two. To our knowledge, this is the
first example of a NIZK construction in the standard model which (conditionally)
improves on the Fiat-Shamir paradigm.
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Instantiating the Encryption Scheme. Informally, the security properties
we require from the underlying scheme are the following: it must be additively
homomorphic, with plaintext space ZM , random source ZR, and gcd(M,R) = 1,
and it must be decodable, which means that a plaintext m can be efficiently
recovered from an encryption of m with random coin 0. A natural candidate for
the above scheme is the Paillier encryption scheme [45] (and its variants, such
as Damg̊ard-Jurik [26]). This gives rise to efficient DVNIZK proofs of knowledge
over abelian groups of composite order (e.g. subgroups of F∗

p, with order a prime
p = k · n + 1 for a small k and an RSA modulus n, or composite-order ellip-
tic curves), as well as efficient DVNIZKs for proving relations between Paillier
ciphertexts (using the dual variant of our framework). Alternatively, the scheme
can also be instantiated with the more recent Castagnos-Laguillaumie encryption
scheme [15] to get DVNIZKs over prime-order abelian groups.

Our framework captures many useful zero-knowledge proofs of knowledge
that are commonly used in cryptography. This includes DVNIZK proofs of knowl-
edge of a discrete logarithm, of correctness of a Diffie-Hellman tuple, of multi-
plicative relationships between Pedersen commitments or ElGamal ciphertexts
(or variants thereof), among many others. Our results show that, in the settings
where a designated-verifier is sufficient, one can build efficient non-interactive
zero-knowledge proofs of knowledge for most statements of interest, under well-
known assumptions and with strong security properties, without having to rely
on pairing-friendly groups.

1.3 Our Method

It is known that linear relations (i.e., membership in linear subspaces) can be
non-interactively verified, using the homomorphic properties of cryptographic
primitives over abelian groups. Indeed, DVNIZK proofs for linear languages can
be constructed, e.g., from hash proof systems [33,41]. In [39], pairings provide
exactly the additional structure needed to evaluate degree-two relations, which
can be easily generalized to arbitrary relations.

An alternative road was taken in [23] and subsequent works, to obtain
non-interactive zero-knowledge proofs for a wide variety of relations, in the
designated-verifier setting. To illustrate, let us consider a prover interacting
with a verifier, with a common input (g1, g2, h1, h2) ∈ G

4 in some group G

of order p, where p is a λ-bit prime. The prover wants to show that (h1, h2)
have the same discrete logarithm in the basis (g1, g2), i.e., there exists x such
that (h1, h2) = (gx

1 , gx
2 ). The standard interactive zero-knowledge proof for this

statement proceeds as follows:1

1. The prover picks r
$← {0, 1}3λ, and sends (a1, a2) ← (gr

1, g
r
2).

2. The verifier picks and sends a uniformly random challenge e
$← Zp.

3. The prover computes and sends d ← e · x + r. The verifier accepts the proof
if and only if (gd

1 , gd
2) = (he

1a1, h
e
2a2).

1 More formally, this proof only satisfies zero-knowledge against honest verifiers, but
this property is sufficient for the construction of [23].
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The idea of [23] is to squash this interactive protocol into a (designated-verifier)
non-interactive proof, by giving the challenge to the prover in advance. As know-
ing the challenge before sending the first flow gives the prover the ability to
cheat, the challenge is encrypted with an additively homomorphic encryption
scheme. That way, the prover cannot see the challenge; yet, he can still compute
an encryption of the value d homomorphically, using the encryption of e. The
verifier, who is given the secret verification key, can decrypt the last flow and
perform the above check. Thus, the proof is a tuple (a1, a2, cd), where cd is an
encryption of d computed from (x, r) and an encryption ce of the challenge e.

Although natural, this intuitive approach has proven quite tough to analyze.
In [23], the authors had to rely on a new complexity-leveraging-type assumption
tailored to their scheme, which (informally) states that the simulator cannot
break the security of the encryption scheme, even if he is powerful enough to
break the problem underlying the protocol (in the above example, the discrete
logarithm problem over G). Even in the bounded setting, analyzing the sound-
ness guarantees of the protocols obtained by this compilation technique (and
its variants) is non-trivial, and it has been the subject of several subsequent
works [17,43,49]. Additionally, in the unbounded setting, where we must give
an efficient simulator that can successfully answer to the proofs submitted by
any malicious prover, this compilation technique breaks down. Furthermore, for
DVNIZKs constructed with this method, soundness holds only computationally,
and security does not guarantee that the simulator can extract a witness for the
statement.

Our core idea to overcome all of the above issues is to implement the same
strategy in a slightly different way: rather than encrypting the challenge e as the
plaintext of an homomorphic encryption scheme, we encrypt it as the random
coin of an encryption scheme which is also homomorphic over the coins. To
understand how this allows us to improve over all previous constructions, suppose
that we have an encryption scheme Enc which is homomorphic over both the
plaintext and the random coins, with plaintext space ZM and random source
ZR, and that M is coprime to R. Consider the previously described protocol
for proving equality of two discrete logarithms. Given an encryption Enc(0; e) of
0, where the challenge is the random coin, a prover holding (x, r) can compute
and send Enc(x; ρ) and Enc(r;−eρ), for some random ρ. This allows the verifier,
who knows e, to compute Enc(x · e + r; 0), from which she can extract d =
x · e + r mod M (note that the verifier only needs to know e; unlike in previous
work, she does not need to know the decryption key of Enc). Observe that the
extracted value depends only on e modulo M . At the same time, however, the
ciphertext E(0; e) only leaks e modulo R, even to an unbounded adversary. By
picking e to be sufficiently large (e > MR), as M is coprime to R, the verifier can
ensure that this leaks no information (statistically) about e mod M . Therefore,
we can use a statistical argument to show that the prover cannot cheat when the
verification using d succeeds. To allow for efficient simulation of the verifier, we
simply give to the simulator the secret key of the scheme, which will allow him to
extract all encrypted values, and to check the validity of the equations, without
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knowing e mod M . As the simulator is able to extract the values encrypted
with Enc, the scheme can be proven to be (statistically) knowledge-extractable.
Contrary to previous constructions, the verification key is a random coin rather
than the secret key of an encryption scheme. The secret key is only used to
extract information in the simulated game.

Example: DVNIZK Proof of Knowledge of a Discrete Logarithm. We
illustrate our method with the classical example of proving knowledge of a dis-
crete logarithm. For concreteness, we describe an explicit protocol using the
Paillier encryption scheme; therefore, this section assumes some basic knowl-
edge of the Paillier encryption scheme. All necessary preliminaries can be found
in Sect. 2. Let G be a group of order n, where n = p · q is an RSA modulus (i.e.,
a product of two strong primes). Let g be a generator of G, and let T be a group
element. A prover P wishes to prove to a verifier V that he knows a value t ∈ Zn

such that gt = T .
Let h ← un mod n2, where u denotes an arbitrary generator of Jn, the sub-

group of elements of Z∗
n with Jacobi symbol 1. The Paillier encryption of a mes-

sage m ∈ Zn with randomness r ∈ Zϕ(n)/2 is Enc(m; r) = (1 + n)mhr mod n2.
The public key of the DVNIZK is E = he ∈ Z

∗
n2 , for a random e � n · ϕ(n)/2;

observe that this is exactly Enc(0; e). The secret key is e. The DVNIZK proceeds
as follows:

The prover P picks x
$← Zn and a Paillier random coin r, and computes

X ← gx, T ′ ← (1 + n)thr mod n2, and X ′ ← (1 + n)xE−r mod n2. The verifier
V computes D ← T eX mod n2 and D′ ← (T ′)eX ′ mod n2. Then, she checks
that D′ is of the form (1+n)d mod n2. If so, V computes d mod n from D′, and
checks that D = gd. V accepts iff both checks succeeded.

Let us provide an intuition of the security of this scheme. Correctness fol-
lows easily by inspection. Zero-knowledge comes from the fact that T ′ hides t,
under the IND-CPA security of Paillier. For statistical knowledge extractability,
note E only reveals e mod ϕ(n) to an unbounded adversary, which leaks (sta-
tistically) no information on e mod n as ϕ(n) is coprime to n. This ensures the
value t′ encrypted in T ′ must be equal to t, otherwise the verification equations
would uniquely define e mod n, which is statistically unknown to the prover. The
simulator knows ϕ(n) (but not e mod n) and gets t by decrypting T ′.

1.4 Applications

A natural application of non-interactive zero-knowledge proofs of knowledge is
the design of privacy-preserving non-interactive authentication schemes. This
includes classical authentication protocols, but also P-signatures [4] and their
many applications, such as anonymous credentials [4], group signatures [20],
electronic cash [19], or anonymous authentication [48]. Our framework can lead
to a variety of efficient new constructions of designated-verifier variants for the
above applications without pairings, whereas all previous constructions either
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had to rely on the random oracle model, or use pairing-based cryptography.2 In
many scenarios of non-interactive authentication, the designated-verifier prop-
erty is not an issue.

In addition, the aforementioned applications build upon the Groth-Sahai
framework for NIZKs. However, Groth-Sahai NIZKs only satisfy a restricted
notion of extractability, called f -extractability in [4]. As a result, construc-
tions of privacy-preserving authentication mechanisms from Groth-Sahai NIZKs
require a careful security analysis. Our framework leads to fully extractable
zero-knowledge proofs, which could potentially simplify this. We note that our
DVNIZKs are additionally randomizable, which has applications for delegatable
anonymous credential schemes [3].

Other potential applications of our framework include round-efficient two-
party computation protocols secure against malicious adversaries, electronic
voting (see e.g. [17]), as well as designated-verifier variants of standard crypto-
graphic primitives, such as verifiable encryption [13], or verifiable pseudorandom-
functions [5]. Potential applications to the construction of adaptive oblivious
transfers can also be envisioned: in [35], the authors mention that an adap-
tive oblivious transfer protocol can be designed by replacing the interactive
zero-knowledge proofs of the protocol of [14] by non-interactive one. They raise
two issues to this approach, namely, that Groth-Sahai proofs are only witness-
indistinguishable for the required class of statements, and that they only satisfy
a weak form of extractability. None of these restrictions apply to our DVNIZK
constructions.

1.5 Related Work

Non-interactive zero-knowledge proofs were first introduced in [10]. Efficient
publicly-verifiable non-interactive zero-knowledge proofs can be constructed in
the random oracle model [31,32,47], or in the non-programmable random oracle
model [42] (using a common reference string in addition). The latter construction
was improved in [21]. In the standard model, the main construction of efficient
publicly-verifiable NIZKs is the Groth-Sahai framework [39].

Designated-verifier non-interactive zero-knowledge arguments where first
introduced in [46], where it was shown that the existence of semantically secure
encryption implies the existence of DVNIZK arguments with bounded soundness;
however, the construction is highly inefficient and therefore only of theoretical
interest. Furthermore, even putting aside efficiency consideration, the construc-
tion is inherently limited to arguments (as opposed to proofs) with bounded
soundness (as opposed to unbounded soundness).

2 These applications typically require a proof-friendly signature scheme, but
designated-verifier variants of such scheme can easily be constructed (without pair-
ings) from algebraic MACs [18,40], by committing to the secret key of the MAC
and proving knowledge of the committed value with a DVNIZK; such statements are
naturally handled by our framework.
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Designated-verifier NIZKs for linear languages can be constructed from hash
proof systems [22,33,41]. Such NIZKs are perfectly zero-knowledge and statis-
tically adaptively sound, but are not proofs of knowledge and are restricted to
very specific statements, captured by linear equations.

Efficient designated-verifier NIZKs for more general statements were first
described in [23]. The authors describe a general compiler that converts any
three-round (honest-verifier) zero-knowledge protocol satisfying some (mild)
requirements into a DVNIZK. However, the construction has several drawbacks:
the soundness only holds under a very specific complexity-leveraging assump-
tion, and only against adversaries making at most O(log λ) proofs (as already
mentioned, the paper claims that the construction enjoy unbounded soundness
as well, but this claim is flawed, see the full version [16]). In addition, the proofs
obtained with this compiler are not proofs of knowledge.

In subsequent works [17,49], variations of the compilation technique of [23]
are described, where the complexity-leveraging assumption was replaced by more
standard assumptions (although achieving a more restricted type of soundness)
by relying on encryption schemes with additional properties. Eventually, [43]
removes some of the constraints of the constructions of [17], and provides new
protocols that can be compiled using the transformation. However, all the con-
structions obtained in these papers are only computationally sound, do not enjoy
unbounded soundness, and are not proofs of knowledge; this strongly limits their
scope, and in particular, prevents them from being used in the previously dis-
cussed applications.

1.6 Organization

In Sect. 2, we introduce our notation, and necessary primitives. We refer the
reader to the full version of this work [16] for classical preliminaries on com-
mitments and cryptosystems. Section 2 also describes the notion of a DVNIZK-
friendly encryption scheme, which is central to our framework. In Sect. 3, we
introduce our framework for building DVNIZKs of knowledge over an abelian
group, illustrate it with practical examples, and prove its security. In Sect. 4, we
describe the dual variant of our framework for proving statements over plaintexts
of a DVNIZK-friendly encryption scheme. In the full version of this work [16],
we additionally describe optimizations on the efficiency of DVNIZKs for rela-
tions between plaintexts of a DVNIZK-friendly scheme, by eschewing unbounded
soundness, as well as our attack on the unbounded soundness of [23].

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic poly-
nomial time algorithm (PPT, also denoted efficient algorithm) runs in time
polynomial in the (implicit) security parameter λ. A positive function f is neg-
ligible if for any polynomial p there exists a bound B > 0 such that, for any
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integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with over-
whelming probability when its probability is at least 1 − negl(λ) for a negligible
function negl. Given a finite set S, the notation x

$← S means a uniformly ran-
dom assignment of an element of S to the variable x. We represent adversaries
as interactive probabilistic Turing machines; the notation A O indicates that the
machine A is given oracle access to O. Adversaries will sometime output an
arbitrary state st to capture stateful interactions.

Abelian Groups and Modules. We use additive notation for groups for
convenience, and write (G, ) for an abelian group of order k. When it is clear
from the context, we denote 0 its neutral element (otherwise, we denote it 0G).
We denote by • the scalar-multiplication algorithm (i.e. for any (x,G) ∈ Zk ×G,
x • G = G G . . . G, where the sum contains x terms). Observe that we can
naturally view G as a Zk-module (G, , •), for the ring (Zk,+, ·). For simplicity,
we write G for (−1) • G. We use lower case to denote elements of Zk, upper
case to denote elements of G, and bold notations to denote vectors. We extend
the notations ( , ) to vectors and matrices in the natural way, and write x•G
to denote the scalar product x1 • G1 . . . xt • Gt (where x,G are vectors of
the same length t). For a vector v, we denote by vᵀ its transpose. By GGen(1λ),
we denote a probabilistic efficient algorithm that, given the security parameter
λ, generates an abelian group G such that the best known algorithm for solving
discrete logs in G takes time 2λ. In the following, we write (G, k) $← GGen(1λ).
Additionally, we denote by GGen(1λ, k) a group generation algorithm that allows
us to select the order k beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also
a prime. We call RSA modulus a product n = pq of two strong primes. We
denote by ϕ Euler’s totient function; it holds that ϕ(n) = (p − 1)(q − 1). We
denote by Jn the cyclic subgroup of Z∗

n of elements with Jacobi symbol 1 (the
order of this group is ϕ(n)/2), and by QRn the cyclic subroup of squares of Z∗

n

(which is also a subgroup of Jn and has order ϕ(n)/4). By Gen(1λ), we denote a
probabilistic efficient algorithm that, given the security parameter λ, generates a
strong RSA modulus n and secret parameters (p, q) where n = pq, such that the
best known algorithm for factoring n takes time 2λ. In the following, we write
(n, (p, q)) $← Gen(1λ).

2.1 Encryption Schemes

The formal definition of an IND-CPA-secure public-key encryption scheme is
recalled in the full version [16], but in short, a public-key encryption scheme S is
a triple of PPT algorithms (S.KeyGen, S.Enc, S.Dec), where S.KeyGen generates
a pair (ek, dk) with an encryption key and a decryption key, decryption (with dk,
deterministically) is the reverse operation of encryption (with ek, randomized),
and no adversary can distinguish encryptions of one of two messages of its choice
(IND-CPA security).
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In this work, we will focus on additively homomorphic encryption schemes,
which are homomorphic for both the message and the random coin. More for-
mally, we require that the message space M and the random source R are
integer sets (ZM ,ZR) for some integers (M,R), and that there exists an effi-
cient operation ⊕ such that for any (ek, sk) $← KeyGen(1λ), any (m1,m2) ∈ Z

2
M

and (r1, r2) ∈ Z
2
R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2, it holds that

C1 ⊕ C2 = S.Encek(m1 + m2 mod M ; r1 + r2 mod R). We say an encryption
scheme is strongly additive if it satisfies these requirements. Note that the exis-
tence of ⊕ implies (via a standard square-and-multiply method) the existence
of an algorithm that, on input a ciphertext C = S.Encek(m; r) and an integer
ρ ∈ Z, outputs a ciphertext C ′ = S.Encek(ρm mod M ; ρr mod R). We denote
by ρ � C the external multiplication of a ciphertext C by an integer ρ, and by
	 the operation C ⊕ (−1) � C ′ for two ciphertexts (C,C ′). We will sometimes
slightly abuse these notations, and write C ⊕ m (resp. C 	 m) for a plaintext m
to denote C ⊕ S.Encek(m; 0) (resp. C 	 S.Encek(m; 0)).

A simple observation on strongly additively homomorphic encryption
schemes is that IND-CPA security implies that R must either be equal to 0
mod M , or unknown given ek. Otherwise, an IND-CPA adversary would set
(m0,m1) = (0, 1) and check if R � C equals S.Encek(0; 0) or S.Encek(R; 0).

The Paillier Encryption Scheme. The Paillier encryption scheme [45] is
a well-known additively homomorphic encryption scheme over Zn for an RSA
modulus n. We describe here a standard variant [25,43], where the random coin
is an exponent over Jn rather than a group element. Note that the exponent
space of Jn is Zϕ(n)/2, which is a group of unknown order; however, it suffices
to draw exponents at random from Zn/2 to get a distribution statistically close
from uniform over Zϕ(n)/2.

– KeyGen(1λ): run (n, (p, q)) $← Gen(1λ), pick g
$← Jn, set h ← gn mod n2,

and compute δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return
ek = (n, h) and dk = δ;

– Enc(ek,m; r): given m ∈ Zn, for a random r
$← Zn/2, compute and output

c ← (1 + n)m · hr mod n2;
– Dec(dk, c): compute x ← cdk mod n and c0 ← [c · x−n mod n2]. Return m ←

(c0 − 1)/n.

Note that knowing dk is equivalent to knowing the factorization of n. The
IND-CPA security of the Paillier encryption scheme reduces to the decisional
composite residuosity (DCR) assumption, which states that it is computationally
infeasible to distinguish random n’th powers over Z

∗
n2 from random elements of

Z
∗
n2 .3 It is also strongly additive, where the homomorphic addition of ciphertexts

is the multiplication over Z
∗
n2 .

3 In the variant we consider here, we must restrict our attention to elements of Z
∗
n2

which have Jacobi symbol 1 when reduced modulo n as g ∈ Jn, but this can be
checked in polynomial time anyway.
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The ElGamal Encryption Scheme. We recall the additive variant of the
famous ElGamal cryptosystem [28], over an abelian group (G, ) of order k.

– KeyGen(1λ): pick G
$← G, pick s

$← Zk, set G ← s•G, and return ek = (G,H)
and dk = s;

– Enc(ek,m; r): given m ∈ Zk, for a random r
$← Zk, output C ← (r • G, (m •

G) (r • H));
– Dec(dk,C): parse C as (C0, C1), and compute M ← C1 (dk • C0). Compute

the discrete logarithm m of M in base G, and return m.

The IND-CPA security of the ElGamal encryption scheme reduces to the
decisional Diffie-Hellman (DDH) assumption over G, which states that it is com-
putationally infeasible to distinguish tuples of the form (G,H, x • G, x • H) for
random x from uniformly random 4-tuples over G. It is also strongly additive
(and the homomorphic operation is the vector addition over G). However, the
decryption procedure is not efficient in general, as it requires to compute a dis-
crete logarithm. For the decryption process to be efficient, the message m must
be restricted to come from a subset of Zk of polynomial size.

DVNIZK-Friendly Encryption Scheme. We say that a strongly additive
encryption scheme is DVNIZK -friendly, when it satisfies the following additional
properties:

– Coprimality Property: we require that the size M of the plaintext space and
the size R of the random source are coprime4, i.e., gcd(M,R) = 1;

– Decodable: for any (ek, sk) $← KeyGen(1λ), the function fek : m 
→ Encek(m; 0)
must be efficiently invertible (i.e., there is a PPT algorithm, which is given
ek, computing f−1

ek on any value from the image of fek).

One can observe that the Paillier cryptosystem is DVNIZK-friendly
(gcd(n, ϕ(n)) = 1, and any message m can be efficiently recovered from
Encek(m; 0) = (1 + n)m mod n2), while the ElGamal cryptosystem is not (it
satisfies none of the above properties). Other DVNIZK-friendly cryptosystems
include variants of the Paillier cryptosystem [12,22,24–26], and the more recent
Castagnos-Laguillaumie cryptosystem [15], with prime-order plaintext space. For
simplicity, we will also assume that all prime factors of the size M of the plain-
text space of a DVNIZK-friendly cryptosystem are of superpolynomial size; our
results can be extended to cryptosystems with a small plaintext space (or a
plaintext space with small prime factors), but at a cost in efficiency. Note that
by the homomorphic property, the decodability property implies that a plaintext
can always be recovered from a ciphertext if the random coin is known.

2.2 Non-interactive Zero-Knowledge Proof Systems

In the definitions below, we focus on proof systems for NP-languages that admit
an efficient (polynomial-time) prover. For an NP-language L , we denote RL

4 In view of our previous observation on IND-CPA security for strongly additive cryp-
tosystems, this implies that R is secret.
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its associated relation, i.e., a polynomial-time algorithm which satisfies L =
{x | ∃w, |w|= poly(|x|) ∧ RL (x,w) = 1}. It is well known that non-interactive
proof systems cannot exist for non-trivial languages in the plain model [44]; our
constructions will be described in the common reference string model. For concise-
ness, the common reference string is always implictly given as input to all algo-
rithms. We note that all of our constructions can be readily adapted to work in the
registered public-key model as well, a relaxation of the common reference string
model introduced by Barak et al in [2].

While languages are naturally associated to statements of membership, the
constructions of this paper will mainly consider statements of knowledge. We
write St(x) = K{w : R(x,w) = 1} to denote the statement “I know a witness
w such that R(x,w) = 1” for a word x and a polytime relation R. Similarly,
we write St(x) = ∃{w : R(x,w) = 1} to denote the existential statement “there
exists a witness w such that R(x,w) = 1”.

Definition 1 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive zero-knowledge (NIZK) proof system Π between for a family of lan-
guages L = {Lcrs}crs is a quadruple of probabilistic polynomial-time algorithms
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) such that

– Π.Setup(1λ), outputs a common reference string crs (which specifies the lan-
guage Lcrs),

– Π.KeyGen(1λ), outputs a public key pk and a verification key vk,
– Π.Prove(pk, x, w), on input the public key pk, a word x ∈ Lcrs, and a witness

w, outputs a proof π,
– Π.Verify(pk, vk, x, π), on input the public key pk, the verification key vk, a word

x, and a proof π, outputs b ∈ {0, 1},
which satisfies the completeness, zero-knowledge, and soundness properties
defined below.

We assume for simplicity that once it is generated, the common ref-
erence string crs is implicitly passed as an argument to the algorithms
(Π.KeyGen,Π.Prove,Π.Verify). In the above definition of NIZK proof systems, we
let the key generation algorithm generate a verification key vk which is used by
the verifier to check the proofs. We call publicly verifiable non-interactive zero-
knowledge proof system a NIZK proof system in which vk is set to the empty
string (or, equivalently, in which vk is made part of the public key). Otherwise,
we call it a designated-verifier non-interactive zero-knowledge proof system.

Definition 2 (Completeness). A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs

satisfies the (perfect, statistical) completeness property if for crs
$← Π.Setup(1λ),

for every x ∈ Lcrs and every witness w such that Rcrs(x,w) = 1,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
π ← Π.Prove(pk, x, w)

: Π.Verify(pk, vk, x, π) = 1
]

= 1 − μ(λ)

where μ(λ) = 0 for perfect completeness, and μ(λ) = negl(λ) for statistical
completeness.
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We now define the zero-knowledge property.

Definition 3 (Composable Zero-Knowledge). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the (perfect, statistical) composable zero-knowledge
property if for any crs

$← Π.Setup(1λ), there exists a probabilistic polynomial-time
simulator Sim such that for any stateful adversary A ,

∣∣∣∣∣∣Pr

⎡
⎣ (pk, vk) $← Π.KeyGen(1λ),

(x,w) ← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Π.Prove(pk, x, w)

⎤
⎦ −

Pr

⎡
⎣ (pk, vk) $← Π.KeyGen(1λ),

(x,w) ← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Sim(pk, vk, x)

⎤
⎦

∣∣∣∣∣∣ ≤ μ(λ)

where μ(λ) = 0 for perfect composable zero-knowledge, and μ(λ) = negl(λ) for
statistical composable zero-knowledge. If the composable zero-knowledge property
holds against efficient (PPT) verifiers, the proof system satisfies computational
composable zero-knowledge.

The composable zero-knowledge property was first introduced in [36]. It
strenghtens the standard zero-knowledge definition, in that it explicitly states
that the trapdoor of the simulator is exactly the verification key vk of the veri-
fier. This strong security property guarantees that the same common reference
string can be used for many different proofs, as the same trapdoor is used for
simulating all proofs, which enhances the proof system with composability prop-
erties. We note that [36] additionally required indistinguishability between real
and simulated common reference string; in our constructions, this will be triv-
ially satisfied, as the simulated crs will be exactly the real one. We define below
the notion of (bounded) adaptive soundness, which allows the input to be adver-
sarially picked after the public key is fixed.

Definition 4 (Bounded Adaptive Soundness). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the bounded adaptive soundness property if for
crs

$← Setup(1λ), for every adversary A ,

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
(π, x) ← A (pk)

: x /∈ Lcrs ∧ Π.Verify(pk, vk, x, π)
]

= negl(λ).

Definition 4 is formulated with respect to arbitrary adversaries A , which
leads to a statistical notion of soundness. A natural relaxation of this require-
ment is to consider only efficient (PPT) adversarial provers. We denote by com-
putational soundness this relaxed notion of soundness. Computationally sound
proof systems are called argument systems.
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Unbounded Soundness. Definition 4 corresponds to a bounded notion of
soundness, in the sense that soundness is only guaranteed to hold when the
prover tries to forge a single proof of a wrong statement, right after the setup
phase. However, if the prover is allowed to interact polynomially many times
with the verifier before trying to forge a proof, sending proofs and receiving
feedback on whether the proof was accepted, the previous definition provides no
security guarantees.

Intuitively, in this situation, the distinction between bounded and unbounded
soundness is comparable to the distinction between security against chosen plain-
text attacks and security against chosen ciphertext attacks for cryptosystems.
We define unbounded soundness in a similar fashion, by giving the prover access
to a verification oracle Ovk[pk] (with crs implicitly given as parameter) which,
on input (x, π), returns b ← Verify(pk, vk, x, π).

Definition 5 (Q-bounded Adaptive Soundness). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the Q-bounded adaptive soundness property if for
crs

$← Π.Setup(1λ), and every adversary A making at most Q queries to Ovk[pk],
it holds that

Pr
[
(pk, vk) $← Π.KeyGen(1λ),
(π, x) ← A Ovk[pk](pk)

: x /∈ Lcrs ∧ Π.Verify(pk, vk, x, π)
]

= negl(λ).

Alternatively, the above definition can be formulated with respect to
polynomial-time adversarial provers, leading to computational Q-bounded adap-
tive soundness. Note that the answers of the oracle are bits; therefore, if a
NIZK proof system satisfies the bounded adaptive soundness property of Def-
inition 4, it also satisfies the above Q-bounded adaptive soundness property for
any Q = O(log λ). Indeed, if Q is logarithmic, one can always guess in advance
the answers of the verification oracle with non-negligible (inverse polynomial)
probability. We say that a NIZK proof system which is Q-bounded adaptively
sound for any Q = poly(λ) satisfies unbounded adaptive soundness.

Eventually, we define (unbounded) knowledge-extractability, a strenghten-
ing of the soundness property which guarantees that if the prover produces an
accepting proof, then the simulator can actually extract a witness for the state-
ment. To this aim, we extend the syntax of the Setup algorithm to also output
a trapdoor τ , used by the extractor. The knowledge-extractibility guarantee is
stronger than soundness, in that the proof guarantees not only that there exists
a witness, but also that the prover must know that witness. A NIZK satisfying
knowledge-extractability is called a NIZK proof of knowledge.

Definition 6 (Q-bounded Knowledge-Extractability). A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs
with relations Rcrs satisfies the Q-bounded knowledge-extractability property if
for (crs, τ) $← Π.Setup(1λ), and every adversary A making at most Q queries to
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Ovk[pk], there is an efficient extractor Ext such that

Pr

⎡
⎣(pk, vk) $← Π.KeyGen(1λ),

(π, x) ← A Ovk[pk](pk),
w ← Ext(π, x, τ),

: Rcrs(x,w) iff Π.Verify(pk, vk, x, π)

⎤
⎦ ≈ 1.

3 A Framework for Designated-Verifier Non-interactive
Zero-Knowledge Proofs of Knowledge

In this section, we let k be an integer, (G, ) be an abelian group of order k, and
(α, β, γ) be three integers. We will describe a framework for proving statements
of knowledge over a wide variety of algebraic relations over G, in the spirit of
the Groth-Sahai framework for NIZK proofs over bilinear groups. To describe the
relations handled by our framework, we describe languages of algebraic relations
via linear maps. While this system was previously used to describe membership
statements [7–9], we adapt it to statements of knowledge. As previously observed
in [7], this system encompasses a wider class of languages than the Groth-Sahai
framework.

3.1 Statements Defined by a Linear Map over G

Let G ∈ G
α denote a vector of public parameters, and let C ∈ G

β denote a
public word. We will consider statements StΓ(G,C) defined by a linear map
Γ : (Gα,Gβ) 
→ G

γ×β as follows:

StΓ(G,C) = K{x ∈ Z
γ
k | x • Γ(G,C) = C} (1)

That is, the prover knows a witness-vector x ∈ Z
γ
k such that the equation

x • Γ(G,C) = C holds. This abstraction captures a wide class of statements.
Below, we describe two examples of statements that can be handled by our
framework. They aim at clarifying the way the framework can be used, illustrat-
ing its power, as well as providing useful concrete instantiations. The examples
focus on the most standard primitives (Pedersen commitments, ElGamal cipher-
texts), but the reader will easily recognize they can be naturaly generalized to
all standard variants of these primitives (e.g., variants of ElGamal secure under
t-linear assumptions [11], or under assumptions from the matrix Diffie-Hellman
family of assumptions [29]).

Example 1: Knowledge of Opening to a Pedersen Commitment. We
consider statements of knowledge of an opening (m, r) to a Pedersen commit-
ment C.

– Public Parameters: (G,H) ∈ G
2;

– Word: C ∈ G;
– Witness: a pair (m, r) ∈ Z

2
k such that C = m • G r • H;

– Linear Map: ΓPed : (G,H,C) 
→ (G,H)ᵀ;
– Statement: StΓPed

(G,H,C) = K{(m, r) ∈ Z
2
k | (m, r) • (G,H)ᵀ = C}.
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Example 2: Multiplicative Relationship Between ElGamal Cipher-
texts. This type of statement is of particular interest, as it can be generalized
to arbitrary (polynomial) relationships between plaintexts.

– Public Parameters: (G,H) ∈ G
2;

– Word: C = ((Ui, Vi)0≤i≤2) ∈ G
6;

– Witness: a 5-tuple x = (m0, r0,m1, r1, r2) ∈ Z
5
k such that Ui = ri • G and

Vi = mi •G r•H for i = 0, 1, and U2 = m1 •U0 r2 •G, V2 = m1 •V0 r2 •H;
– Linear Map:

ΓEM : (G,H,C) 
→

⎛
⎜⎜⎜⎜⎝

0 G 0 0 0 0
G H 0 0 0 0
0 0 0 G U0 V0

0 0 G H 0 0
0 0 0 0 G H

⎞
⎟⎟⎟⎟⎠ ;

– Statement: StΓEM
(G,H,C) = K{x ∈ Z

5
k | x • ΓEM(G,H,C) = C}.

Conjunction of Statements. The above framework naturally handles conjuc-
tions. Consider two statements (StΓ0(G0,C0),StΓ1(G1,C1)), defined by linear
maps (Γ0,Γ1), with public parameters (G1,G1), words (C0,C1), and witnesses
(x0,x1). Let G ← (G1,G1), C ← (C0,C1), and x ← (x0,x1). We construct
the linear map Γ associated to StΓ(G,C) as Γ ← ((Γ0, 0)ᵀ, (0,Γ1)ᵀ). One can
immediatly observe that StΓ(G,C) = StΓ0(G0,C0) ∧ StΓ1(G1,C1). The frame-
work handles disjunction of statements as well, as observed in [1]; we omit the
details.

3.2 A Framework for DVNIZK Proofs of Knowledge

We now introduce our framework for constructing designated-verifier non-
interactive zero-knowledge proofs of knowledge for statements defined by a linear
map over G. Let S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryp-
tion scheme with plaintext space Zk. We construct a DVNIZK of knowledge
ΠK = (ΠK.Setup,ΠK.KeyGen,ΠK.Prove,ΠK.Verify) for a statement StΓ(G,C)
over a word C ∈ G

β , with public parameters G ∈ G
α, defined by a linear

map Γ : (Gα,Gβ) 
→ G
γ×β . Our construction proceeds as follows:

– ΠK.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that
ek defines a plaintext space Zk and a random source ZR. As the IND-CPA and
strong additive properties of S require R to be unknown, we assume that a
bound B on R is publicly available. We denote � ← 2λkB.

– ΠK.KeyGen(1λ): pick e ← Z�, set pk ← S.Encek(0; e) and vk ← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Z

β
k , with witness x for the statement

StΓ(G,C), pick x′ $← Z
γ
k , r

$← Z
γ
2λB

, compute

X ← S.Encek(x, r), X′ ← S.Encek(x′, 0) 	 (r � pk), C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).
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– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e � X ⊕ X′ is
decodable, and decode it to a vector d ∈ Z

γ
k . Check that

d • Γ(G,C) = e • C C′.

If all checks succeeded, accept. Otherwise, reject.

The proof π consists of 2γ ciphertexts of S, and β elements of G. Below, we
illustrate our construction of DVNIZK on the examples of statements given in
the previous section. For the sake of concreteness, we instantiate the DVNIZK-
friendly encryption scheme S with Paillier (hence the operation is instantiated
as the multiplication modulo n2), so that the message space is Zn and the ran-
domizer space is Zϕ(n)/2 for an RSA modulus n. In the examples, we use a bound
B = n and draw Paillier random coins from Z2λB , following our generic frame-
work. However, observe that in the case of Paillier, we can also draw the coins
from Zn/2 to get a distribution statistically close to uniform over Zϕ(n)/2, which
is more efficient.

Example 1: Knowledge of Opening to a Pedersen Commitment.

– ΠPed.Setup(1λ) : Compute ((n, h), δ) = (ek, dk) $← S.KeyGen(1λ). Output
crs ← ek. Let � ← 2λn2. Let G

$← GGen(1λ, n), (G,H) $← G
2.

– ΠPed.KeyGen(1λ): pick e
$← Z�, set pk ← he mod n2 and vk ← e.

– ΠPed.Prove(pk, C,x): on a word C ∈ G, with witness x = (m, r) ∈ Z
2
n for

the statement StΓPed
(G,C), pick x′ $← Z

2
n, ρ

$← Z
2
2λB, compute X ← (1 +

n)xhρ mod n2,X′ ← (1 + n)x′
pk−ρ mod n2,C′ ← x′ • (G,H)ᵀ, and output

π ← (X,X′,C′).
– ΠPed.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′ is of the

form (1 + n)d , and recover the vector d ∈ Z
2
n. Check that d • (G,H)ᵀ =

e • C C′.

Example 2: Multiplicative Relationship Between ElGamal Cipher-
texts.

– ΠEM.Setup(1λ) as ΠPed.Setup(1λ).
– ΠEM.KeyGen(1λ) as ΠPed.KeyGen(1λ).
– ΠEM.Prove(pk,C,x): on a word C ∈ G

6, with witness x =
(m0, r0,m1, r1, r2) ∈ Z

5
n for the statement StΓEM

(G,C), pick x′ $← Z
5
n, ρ

$←
Z

5
2λB , compute X ← (1 + n)xhρ mod n2,X′ ← (1 + n)xpk−ρ mod n2,C′ ←

x′ • ΓEM(G,C), and output π ← (X,X′,C′).
– ΠEM.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′ is of the

form (1 + n)d , and recover the vector d ∈ Z
5
n. Check that d • ΓEM(G,C) =

e • C C′.

3.3 Security Proof

We now prove the generic DVNIZK construction from Sect. 3.2 is secure.
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Perfect Completeness. It follows from straighforward calculations: e � X ⊕
X′ = S.Encek(e · x + x′; e · r − e · r) = S.Encek(e · x + x′; 0) is decodable and
decodes to d = e · x + x′ mod k. Then, d • Γ(G,C) = e • (x • Γ(G,C)) x′ •
Γ(G,C) = e • C C′ by the correctness of the statement (x • Γ(G,C) = C)
and by construction of C′.

Composable Zero-Knowledge. We prove the following theorem:

Theorem 7 (Zero-Knowledge of ΠK). If the encryption scheme S is
IND-CPA secure, the DVNIZK scheme ΠK is composable zero-knowledge.

We describe a simulator Sim(C, pk, vk) producing proofs computationally
indistinguishable from those produced by an honest prover on true statements.
The simulator operates as follows: let d

$← Z
γ
k , and C′ ← d • Γ(G,C) e • C.

Sample x
$← Z

γ
k , r

$← Z
γ
2λB

, and compute X ← S.Encek(x, r),X′ ←
S.Encek(d − e · x,−e · r). Output πs = (X,X′,C′).

Let A be an adversary that can distinguish Sim from Prove. We will build a
reduction against the IND-CPA security of S. The reduction obtains C,x from
A , samples x̃ ← Z

γ
k , sends (x, x̃) to the IND-CPA game and sets X to be the

challenge from the IND-CPA game. Now, the reduction samples d ← Z
γ
k and sets

X′ := S.Encek(d; 0)	X �e. Finally, the reduction sets C′ := d•Γ(G,C) e•C.
Send π∗ = (X,X′,C) to A .

Direct calculation shows that if the IND-CPA game outputs an encryption of
X̃, then X,X′,C are distributed as those produced by Sim, whereas when it
outputs an encryption of X then π∗ is distributed identical to a real proof. Thus,
whatever advantage A has in distinguishing Sim from Prove is also achieved by
the reduction against IND-CPA. Note that for simplicity, our proof assume that
the IND-CPA game is directly played over vectors, but standard methods allow
to reduce this to the classical IND-CPA game with a single challenge ciphertext.

Adaptive Unbounded Knowledge-Extractability. We start by showing
that ΠK satisfies statistical adaptive unbounded knowledge-extractability. More
precisely, we prove the following theorem:

Theorem 8 (Soundness of ΠK). There is an efficient simulator Sim such that
for any (possibly unbounded) adversary A that outputs an accepting proof π with
probability ε on an arbitrary word C after making at most Q queries to the oracle
Ovk[pk], Sim extracts a valid witness for the statement StΓ(G,C) with probability
at least ε − (Q + 1)β/pk, where pk is the smallest prime factor of k.

The proof describes an efficient simulator Sim that correctly emulates the
verifier, without knowing vk mod k. The simulation is done as follows:

– Sim.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. The
encryption key ek defines a plaintext space Zk and a random source ZR with
bound B. Let � ← 2λkB.
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– Sim.KeyGen(1λ): compute (pk, vk) $← ΠK.KeyGen(1λ), output pk, store eR ←
vk mod R, and erase vk.

– Sim.Verify(pk, dk, eR,C,π): parse π as (X,X′,C′). Using the secret key dk
of S, decrypt X to a vector x, and X′ to a vector x′. Check that (−eR) �
(X 	x) = X′ 	x′. Check that x•Γ(G,C) = C, and that x′ •Γ(G,C) = C′.
If all checks succeeded, accept. Otherwise, reject.

The simulator Sim first calls Sim.Setup(1λ) to generate the common reference
string (note that our simulator generates the common reference string honestly,
hence the simulation of Setup cannot be distinguished from an honest run of
Setup), and stores dk. Each time the adversary A sends a query (C,π) to the
oracle Ovk[pk], Sim simulates Ovk[pk] (without knowing vk mod k) by running
Sim.Verify(pk, dk, eR,C,π), and accepts or rejects accordingly. When A outputs
a final answer (C,π), Sim computes a witness x for StΓ(G,C) by decrypting C
with dk.

Observe that the distribution {(pk, vk) $← ΠK.KeyGen(1λ), ek ← vk mod k :
(pk, ek)} is statistically indistinguishable from the distribution {(pk, vk) $←
ΠK.KeyGen(1λ), ek

$← Zk : (pk, ek)}. Put otherwise, the distribution of vk mod k
is statistically indistinguishable from random, even given pk. Indeed, as S is a
DVNIZK-friendly encryption scheme, it holds by definition that gcd(k,R) = 1.
As � = 2λBk ≥ 2λRk, the distribution {e

$← Z�, ek ← e mod k, eR ← e mod R :
(ek, eR)} is statistically indistinguishable from the uniform distribution over
Zk × ZR, and the value pk only leaks eR, even to an unbounded adversary
(as S.Encek(0; e) = S.Encek(0; e mod R)). We now prove the following claim:

Claim. For any public parameters G and word C, it holds that

Pr

⎡
⎣ (pk, vk) $← ΠK.KeyGen(1λ),

b ← Sim.Verify(pk, dk,C,π), : b′ = b
b′ ← ΠK.Verify(pk, vk,C,π)

⎤
⎦ ≥ 1 − β/pk,

where pk is one of the prime factors of k.

Proof. First, we show that if b = 1, then b′ = 1. Indeed, let us denote (x,x′)
the plaintexts associated to (X,X′). Let (r, r′) be the random coins of the
ciphertexts (X,X′). Observe that, by the homomorphic properties of S, the
equation (−eR) � (X 	 x) = X′ 	 x′ is equivalent to S.Encek(0;−eR · r) =
S.Encek(0; r′), which is equivalent to e�X ⊕X′ = S.Enc(e ·x+x′ mod k; e ·r+
r′ mod R) = S.Enc(e·x+x′ mod k; 0) as e = eR mod R. Therefore, the verifier’s
check that e � X ⊕ X′ is decodable succeeds if and only if Sim’s first check
succeeds, and the decoded value d ∈ Z

γ
k satisfies d = e ·x+x′ mod k. Moreover,

if the equations x • Γ(G,C) = C and x′ • Γ(G,C) = C′ are both satisfied
(i.e. Sim’s other checks succeed), then it necessarily holds that d • Γ(G,C) =
(e · x + x′) • Γ(G,C) = e • (x • Γ(G,C)) x′ • Γ(G,C) = e • C C′. This
concludes the proof that, conditioned on Sim’s checks succeeding, the verifier’s
checks necessarily succeed.
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Now, assume for the sake of contradiction that the converse is not true:
suppose that Sim rejected the proof, while the verifier accepted. We already
showed that the equation (−eR)�(X	x) = X′	x′ is equivalent to the equation
e�X ⊕X′ = S.Enc(e ·x+x′ mod k; 0); therefore, if e�X ⊕X′ is decodable (it
has random coin 0), then Sim’s check that (−eR)� (X 	x) = X′ 	x′ succeeds.
As we assumed that Sim rejects the proof, this means that at least one of Sim’s
last checks must fail: either x •Γ(G,C) �= C, or x′ •Γ(G,C) �= C′. By the first
check of the verifier, it holds that e � X ⊕ X′ is decodable; denoting (x,x′) the
plaintexts associated to (X,X′), it therefore decodes to d = e · x + x′ mod k.
By the second check of the verifier, it holds that d•Γ(G,C) = e•C C′, which
implies e•(x•Γ(G,C)) x′•Γ(G,C) = e•C C′. This last equation rewrites to

e • (x • Γ(G,C) C) = C′ x′ • Γ(G,C) (2)

Now, recall that by assumption, either x • Γ(G,C) �= C, or x′ • Γ(G,C) �= C′.
Observe that Eq. 2 further implies, as e �= 0 (with overwhelming probability),
that x′ • Γ(G,C) C′ �= 0 if and only if x • Γ(G,C) C �= 0. Therefore, condi-
tioned on Sim rejecting the proof, it necessarily holds that x • Γ(G,C) C �= 0
and x′ • Γ(G,C) C′ �= 0. Let (μi, νi) be two non-zero entries of the vectors
(x•Γ(G,C) C,C′ x′ •Γ(G,C)) at the same position i ≤ β; by Eq. 2, it holds
that e = νi · μ−1

i mod p for at least one of the prime factors p of k. However,
recall that the value e mod k is statistically hidden to the prover (and therefore,
so is the value e mod p), hence the probability of this event happening can be
upper-bounded by β/p ≤ β/pk. This concludes the proof of the claim. ��

Now, consider an adversary A that outputs an accepting proof (C,π) with
probability at least ε after a polynomial number Q of interactions with the
oracle Ovk[pk]. By the above claim and a union bound, it necessarily holds that
A outputs an accepting proof (C,π) with probability at least ε − Qβ/pk after
interacting Q times with Sim.Verify(pk, dk, eR, ·, ·); moreover, with probability at
least 1−βpk, this proof is also accepted by Sim’s verification algorithm. Overall,
Sim obtains a proof accepted by his verification algorithm with probability at
least ε − (Q + 1)β/pk. In particular, this implies that the vector x extracted by
Sim from π satisfies x • Γ(G,C) = C with probability at least ε − (Q + 1)β/pk.
Therefore, Sim extracts a valid witness for the knowledge statement StΓ(G,C)
with probability at least ε − (Q + 1)β/pk. As the size k of a DVNIZK-friendly
cryptosystem has only superpolynomially large prime-factors, it holds that pk

is superpolynomially large. As (Q + 1)β is polynomial, we conclude that if A
outputs an accepting proof with non-negligible probability, then Sim extracts a
valid witness with non-negligible probability.

4 Dual Variant of the Framework

In the previous section, we described a framework for constructing efficient
DVNIZKs of knowledge for relations between words defined over an abelian group
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(G, ), using a cryptosystem with specific properties as the underlying commit-
ment scheme for the proof system. In this section, we show that the framework
can also be used in a dual way, by considering languages of relations between the
plaintexts of the underlying encryption scheme – we call this variant ‘dual vari-
ant’ of the framework, as the roles of the underlying encryption scheme (which
is used as a commitment scheme for the proof) and of the abelian group (which
contains the words on which the proof is made) are partially exchanged. This
allows for example to handle languages of relations between Paillier ciphertexts.
To instantiate the framework, it suffices to have any perfectly binding commit-
ment scheme defined over G. This dual variant leads to efficient DVNIZK proofs
for relations between, e.g., Paillier ciphertexts, whose zero-knowledge property
reduces to the binding property of the commitment scheme over G (e.g. the
DDH assumption, or its variants), and with statistical (unbounded, adaptive)
soundness.

4.1 Perfectly Binding Commitment over G

Suppose that we are given a perfectly binding homomorphic commitment C =
(C.Setup, C.Com, C.Verify), where C.Com : Zk × Zk 
→ G

∗. Assume further that
C.Setup generates a public vector of parameters G ∈ G

∗, and that there is a
linear map ΓC associated to this commitment such that for all (m, r) ∈ Z

2
k,

C.Com(m, r) = (m, r) • ΓC(G). Note this implies the commitment scheme is
homomorphic over G. ElGamal (Sect. 2.1), can be used as a commitment scheme
satisfying these properties, is hiding under the DDH assumption and perfectly
binding. We do so by using KeyGen(1λ) in place of Setup(1λ) to generate group
elements (G,H) (the public key of the encryption scheme), and commit (i.e
encrypt) via ΓC(G,H) = ((0, G)ᵀ, (G,H)ᵀ). We generalize this to commitments
to length-t vectors as follow: we let ΓC,t denote the extended matrix such that
C.Com(m, r) = (m, r) • ΓC,t(G), where (m, r) are vectors of length t (ΓC,t is
simply the block-diagonal matrix whose t blocks are all equal to ΓC). Consider
now the following statement, where the word is a vector C of commitments:

StΓC,t
(G,C) = K{(m, r) | (m, r) • ΓC,t(G) = C}

= K{(m, r) | C.Com(m, r) = C}.

One can immediatly observe that this statement (which is a proof of knowledge
of openings to a vector of commitments with C) is handled by the framework
of Sect. 3.

4.2 Equality of Plaintexts Between C and S

In this section, we describe a simple method to convert a DVNIZK on the
statement StΓC,t

(G,C) = K{(m, r) | C.Com(m, r) = C} into a DVNIZK on
the statement St′(G,C,Xm ) = ∃{(m,ρm , r) | Xm = S.Encek(m,ρm ) ∧ C =
C.Com(m, r)} for a length-t vector C of commitments with a commitment
scheme over G satisfying the requirements defined in the previous section, and a
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length-t vector of DVNIZK-friendly ciphertexts Xm . Instantiating the framework
of Sect. 3 for the statement StΓC,t

(G,C), we get the following DVNIZK Π:

– Π.Setup(1λ) : compute (ek, dk) $← S.KeyGen(1λ). Output crs ← ek. Note that
ek defines the plaintext space Zk and the random source ZR with bound B.
We denote � ← 2λkB.

– Π.KeyGen(1λ): pick e ← Z�, set pk ← S.Encek(0; e) and vk ← e.
– Π.Prove(pk,C, (m, r)): on a word C ∈ Z

t
k, with witness (m, r) for the state-

ment StΓC,t
(G,C) (where G

$← C.Setup(1λ)), pick random (m′, r′), random
coins (ρm ,ρr ) for S, and compute

Xm ← S.Encek(m,ρm ), Xr ← S.Encek(r,ρr ),
X′

m ← S.Encek(m′, 0) 	 (ρm � pk), X′
r ← S.Encek(r′, 0) 	 (ρr � pk),

C′ ← (m′, r′) • ΓC,t(G,C),

and output π ← (Xm ,X′
m ,Xr ,X′

r ,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (Xm ,X′

m ,Xr ,X′
r ,C′). Check that e �

Xm ⊕ X′
m and e � Xr ⊕ X′

r are decodable, and decode them to vectors
(dm ,dr ) ∈ (Zt

k)2. Check that (dm ,dr ) • ΓC,t(G,C) = e • C C′.

By the result of Sect. 3, this is an unbounded statistical adaptive knowledge-
extractableDVNIZK of knowledge of an opening forC. Suppose now thatwemodify
the above scheme as follow: we let Xm be part of theword on which the proof is exe-
cuted, rather than being computed as part of the proof by the algorithm Π.Prove.
That is, we consider words of the form (C,Xm ) with witness (m, r,ρm ) such that
(C,Xm ) = (C.Com(m; r), S.Encek(m,ρm )). Let Π′ denote the modified proof,
in which Xm is part of the word and (X′

m ,Xr ,X′
r ,C′) are computed as in Π.

Observe that the proof of security of our framework immediatly implies that Π′ is
a secure DVNIZK for plaintext equality between commitments with C and encryp-
tionswithS: our statistical argument shows that a (possibly unbounded) adversary
has negligible probability of outputting a word C together with an accepting proof
π = (Xm ,X′

m ,Xr ,X′
r ,C′) where the plaintext extracted by the simulator from

Xm is not also the plaintext of C. Hence, it is trivial that the probability of out-
putting a word (C,Xm ) and an accepting proof π′ = (X′

m ,Xr ,X′
r ,C′) where

the plaintext extracted by the simulator from Xm is not also the plaintext of C is
also negligible. Thus, we get:

Theorem 9. The proof system Π′ is an adaptive unbounded statistically sound
proof for equality between plaintexts of C and plaintexts of S, whose composable
zero-knowledge property reduces to the IND-CPA security of S.

Note that the proof Π′ is no longer a proof of knowledge: while the simulator
can extract (m, r) from the prover, he cannot necessarily extract the random
coins ρm of Xm , which are now part of the witness. Therefore, for the protocol
to make sense, it is important that C is perfectly binding.
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4.3 A Framework for Relations Between Plaintexts of S

The observations of the above section suggest a very natural way for designing
DVNIZKs for relations between plaintexts m ∈ Z

∗
k of the encryption scheme

S, which intuitively operates in two steps: first, we create commitments to the
plaintexts m over G using C and prove them consistent with the encrypted
values using the method described in the previous section. Then, we are able to
use the framework of Sect. 3 to demonstrate the desired relation holds between
the commited values (this is a statement naturally captured by the framework).
More formally, on input a vector of ciphertexts Xm encrypting plaintexts m
with random coins ρm ,

– Pick r and compute C ← C.Com(m, r).
– Construct a DVNIZK for the statement St′(G,C,Xm ) with witness

(m,ρm , r), using the method described in Sect. 4.2.
– Construct a DVNIZK for the statement StΓ(G,C) with witness (m, r), using

the framework of Sect. 3.

The correctness of this approach is immediate: the second DVNIZK guaran-
tees that the appropriate relation is satisfied between the plaintexts of the com-
mitments, while the first one guarantees that the ciphertexts indeed encrypt the
committed values. This leads to a DVNIZK proof of relation between plaintexts
of S, with unbounded adaptive statistical soundness. Regarding zero-knowledge,
as the proof starts by committing to m with C, we must in addition assume
that the commitment scheme is hiding (the security analysis is straightforward).

Theorem 10. The above system is an adaptive unbounded statistically sound
proof for relations of plaintexts of S, whose composable zero-knowledge reduces
to the IND-CPA security of S and the hiding property of C.

We note that we can also obtain a variant of Theorem 10, where zero-knowledge
only relies on the IND-CPA of S, and hiding of C implies the soundness property,
using commitment schemes a la Groth-Sahai where the crs can be generated in
two indistinguishable ways, one leading to a perfectly hiding scheme, and one
leading to a perfectly binding scheme (such commitments are known, e.g., from
the DDH assumption).

Example: Multiplicative Relationship Between Paillier Ciphertexts.
We focus now on the useful case of multiplicative relationship between plaintexts
of Paillier ciphertexts. We instantiate S with the Paillier encryption scheme over
an RSA group Zn, with a public key (n, h) (h = gn mod n2 for a generator g
of Jn), and the commitment scheme C with the ElGamal encryption scheme
over a group G of order n, with public key (G,H). Let (P0, P1, P2) ∈ (Z∗

n2)3

be three Paillier ciphertexts, and let (m0,m1,m2, ρ0, ρ1, ρ2) be such that m2 =
m0m1 mod n, and P0 = (1 + n)m0hρ0 mod n2, P1 = (1 + n)m1hρ1 mod n2, P2 =
(1 + n)m2hρ2 mod n2. Let E = he mod n2 denote the public key of the verifier.
The designated-verifier NIZK for proving that P2 encrypts m0m1 proceeds as
follows:



Efficient DVNIZK Proofs of Knowledge 217

– Committing over G: pick (r0, r1, r2) and send (Ui, Vi)0≤i≤2 ← (ri • G, ri •
H mi • G)0≤i≤2 (which are commitments with ElGamal to (m0,m1,m2)
over G).

– Proof of Plaintext Equality: pick (m′
i, r

′
i, ρ

′
i)0≤i≤2

$← (Zn × Zn × Zn/2)3,
and send for i = 0 to 2, Xi ← (1 + n)rihρ′

i mod n2,X ′
i ← (1 + n)r′

iE−ρ′
i mod

n2, P ′
i ← (1 + n)m′

iE−ρi mod n2, and (U ′
i , V

′
i ) ← (r′

i • G, r′
i • H m′

i • G).
– Proof of Multiplicative Relationship Between the Committed
Values: apply the proof system of Example 2 from Sect. 3 to the
word (Ui, Vi)0≤i≤2, with public parameters (G,H), and the witness x =
(m0, r0,m1, r1, r2 − r0m1) which satisfies (U0, V0) = (r0 • G, r0 • H m0 •
G), (U1, V1) = (r1 • G, r1 • H m1 • G), and (U2, V2) = ((r2 − r0m1) • G m1 •
U0, (r2 − r0m1) • H m1 • V0).

– Proof Verification: upon receving (Ui, Vi,Xi,X
′
i, P

′
i , U

′
i , V

′
i )0≤i≤2 together

with the proof of multiplicative relationship between the values committed
with (Ui, Vi)i, the verifier with verification key vk = e checks that e � Pi ⊕ P ′

i

and e � Xi ⊕ X ′
i successfully decode (respectively) to values pi, xi, and that

e • Ui U ′
i = xi • G and e • Vi V ′

i = xi • H pi • G, for i = 0 to 2. The verifier
additionally checks the multiplicative proof, as in Example 4 from Sect. 3. She
accepts iff all checks succeed.

The proof for the multiplicative statement involves 10 Paillier ciphertexts and 3
ElGamal ciphertexts. Overall, the total proof involves 20 Paillier ciphertexts, and
9 ElGamal ciphertexts. However, this size is obtained by applying the framework
naively; in this situation, it introduces a lot of redudancy. For instance, instead
of computing Paillier encryptions of (m0, r0,m1, r1) in the third phase, one can
simply reuse the word (P0, P1) and the ciphertexts (X0,X1), as well as reusing
(P ′

i ,X
′
i)i for the corresponding masks (m′

i, r
′
i)i, saving 8 Paillier ciphertexts;

similar savings can be obtained for the ElGamal ciphertexts, leading to a proof
of total size 12 Paillier ciphertexts + 7 ElGamal ciphertexts.

Furthermore, if we eschew unbounded soundness and accept bounds on mi

we are able to produce a much shorter proof, comprising only two Paillier cipher-
texts, outperforming even Fiat-Shamir. We detail this in the full version [16].
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