
Tightly-Secure Key-Encapsulation
Mechanism in the Quantum Random

Oracle Model

Tsunekazu Saito(B), Keita Xagawa(B) , and Takashi Yamakawa(B)

NTT Secure Platform Laboratories, 3-9-11, Midori-cho,
Musashino-shi, Tokyo 180-8585, Japan

{saito.tsunekazu,xagawa.keita,yamakawa.takashi}@lab.ntt.co.jp

Abstract. Key-encapsulation mechanisms secure against chosen cipher-
text attacks (IND-CCA-secure KEMs) in the quantum random ora-
cle model have been proposed by Boneh, Dagdelen, Fischlin, Lehmann,
Schafner, and Zhandry (CRYPTO 2012), Targhi and Unruh (TCC 2016-
B), and Hofheinz, Hövelmanns, and Kiltz (TCC 2017). However, all are
non-tight and, in particular, security levels of the schemes obtained by
these constructions are less than half of original security levels of their
building blocks.

In this paper, we give a conversion that tightly converts a weakly secure
public-key encryption scheme into an IND-CCA-secure KEM in the quan-
tum random oracle model. More precisely, we define a new security notion
for deterministic public key encryption (DPKE) called the disjoint simu-
latability, and we propose a way to convert a disjoint simulatable DPKE
scheme into an IND-CCA-secure key-encapsulation mechanism scheme
without incurring a significant security degradation. In addition, we give
DPKE schemes whose disjoint simulatability is tightly reduced to post-
quantum assumptions. As a result, we obtain IND-CCA-secure KEMs
tightly reduced to various post-quantum assumptions in the quantum ran-
dom oracle model.

Keywords: Tight security · Chosen-ciphertext security
Post-quantum cryptography · KEM

1 Introduction

1.1 Background

Indistinguishability against chosen ciphertext attacks (IND-CCA-security) is
considered to be a de facto standard security notion of a public key encryption
(PKE) and a key encapsulation mechanism (KEM). For constructing efficient
IND-CCA-secure PKEs and KEMs, an idealized model called the random ora-
cle model (ROM) [BR93] is often used. In the ROM, a hash function is ide-
alized to be a publicly accessible oracle that simulates a truly random func-
tion. There are many known generic constructions of efficient IND-CCA-secure
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PKE/KEM in the ROM; Bellare-Rogaway (BR) [BR93], OAEP [BR95,FOPS04],
REACT [OP01], GEM [CHJ+02], Fujisaki-Okamoto (FO) [FO99,FO13], etc.
KEM variants of these constructions were studied by Dent [Den03], which is
summarized in Fig. 10 in Sect. B.

Quantum Random Oracle Model. Though the ROM has been
widely used to heuristically analyze security of cryptographic primitives,
Boneh et al. [BDF+11] pointed out that the ROM is rather problematic when
considering a quantum adversary. The problem is that in the ROM, an adversary
is only given a classical access to a random oracle. Since a random oracle is an
idealization of a real hash function, a quantum adversary should be able to quan-
tumly compute it. On the basis of this observation, they proposed a new model
called the quantum random oracle model (QROM) where an adversary can quan-
tumly access a random oracle. Since many techniques used in the ROM including
adaptive programmability or extractability cannot be directly translated into the
ones in the QROM, proving security in the QROM often requires different tech-
niques from proofs in the ROM (see [BDF+11] for more details). Nonetheless,
some above mentioned IND-CCA-secure PKE/KEMs in the ROM (and their
variants) can be shown to also be secure in the QROM: Boneh et al. [BDF+11]
proved that a variant of Bellare-Rogaway is IND-CCA-secure in the QROM.
Targhi and Unruh [TU16] proposed variants of the Fujisaki-Okamoto and OAEP
and proved that they are IND-CCA-secure in the QROM.

Tight Security. When proving the security of a primitive P under the hardness
of a problem S, we usually construct a reduction algorithm R that uses an
adversary A against the security of P as a subroutine and solves the problem S.
Let (T, ε) and (T ′, ε′) denote running times and success probabilities of A and R,
respectively. We say that a reduction is tight if we have T ′ ≈ T and ε′ ≈ ε. Tight
security is desirable since it ensures that breaking the security of P is as hard as
solving an underlying hard problem S. Conversely, if a security reduction is non-
tight, we cannot immediately conclude that breaking the security of a primitive
P is hard even if an underlying problem S is hard. For example, Menezes [Men12]
shows an example of a provably secure primitive with non-tight security that is
insecure with a realistic parameter setting. Therefore, tight security is important
to ensure the real security of a primitive.

From that perspective, the above mentioned IND-CCA-secure PKE/KEMs
in the QROM do not serve as satisfactory solutions for constructing post-
quantum IND-CCA-secure PKE/KEMs because they are non-tight. To clar-
ify this, we give more details on these results below, where (T, ε) and (T ′, ε′)
denote running times and success probabilities of an adversary and a reduction
algorithm, respectively, qH denotes the number of random oracle queries, and
tRO denotes the time needed to simulate one evaluation of a random oracle (for
further explanation of tRO, see Subsect. 2.2).
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– Boneh et al. [BDF+11] proved that a KEM variant of Bellare-Rogaway based
on a one-way trapdoor function is IND-CCA-secure in the QROM.1 Accord-
ing to their security proof, we have T ′ ≈ T + qH · tF + (qH + qDec) · tRO
and ε′ ≈ ε2/q2

H where tF denotes the time needed for evaluating an under-
lying one-way trapdoor function and qDec denotes the number of decryption
queries.

– Targhi and Unruh [TU16] proposed a variant of Fujisaki-Okamoto and proved
that their construction is secure in the QROM assuming OW-CPA security
of an underlying PKE scheme. According to their security proof, we have
T ′ ≥ T + O(q2

H) and ε′ ≈ ε4/q6
H. We note that Hofheinz et al. [HHK17]

subsequently gave a modular analysis for the conversion but did not improve
the tightness.

– Targhi and Unruh [TU16] proposed a variant of OAEP and proved that
their construction is secure in the QROM assuming a partial domain one-
way function. According to their security proof, we have T ′ ≥ T + O(q2

H) and
ε′ ≈ ε8/poly(qH).

As seen above, known constructions of IND-CCA-secure PKE/KEMs in
the QROM incur at least quadratic security loss, and their security degrades
rapidly as qH grows. For example, in the Bellare-Rogaway KEM, if we start from
a trapdoor function with 128-bit security (i.e., ε′ = 2−128) and set qH = 260,
then the bound given by Boneh et al. [BDF+11] only ensures 4-bit security (i.e.,
ε = 2−4) for a resulting KEM. Conversely, if we want to ensure 128-bit security
(i.e., ε = 2−128) for a resulting KEM, we have to start from a trapdoor function
with 376-bit security (ε′ = 2−376) which incurs significant blowup of parameters.
The other two constructions are even worse in regard to tightness. Therefore, to
obtain an efficient construction of post-quantum IND-CCA-secure PKE/KEM,
we need a construction with tighter security reduction that does not incur a
quadratic security loss.

1.2 Our Contributions

In this paper, we give a construction of an IND-CCA-secure KEM based on
a deterministic PKE (DPKE) scheme that satisfies a newly introduced security
notion that we call the disjoint simulatability. Our security reduction is much
tighter than those of existing constructions of IND-CCA-secure PKE schemes
and does not incur quadratic security loss. By using the same notations as in the
previous subsection, we have T ′ ≈ T +qH · tEnc+(qH+qDec) · tRO and ε′ ≈ ε where
tEnc denotes a time needed for encryption of an underlying DPKE scheme. We
note that tEnc is a fixed polynomial of the security parameter, and thus we believe
that this blowup is much less significant than the quadratic (or quartic/octic)
blowup for ε as in the previous constructions.
1 More precisely, they proved that a hybrid encryption variant of the Bellare-Rogaway

PKE scheme based on a one-way trapdoor function plus a CCA-secure symmetric-
key encryption scheme is IND-CCA-secure in the QROM. Their proof is easily
turned into the proof for the KEM variant of the Bellare-Rogaway conversion.
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Fig. 1. Transformations among PKE, DPKE and KEM in the QROM: D-LWE and
S-LWE denote the decisional and search learning-with-errors assumptions; P-LWE
denotes the polynomial-LWE assumption; DSPR denotes the decisional small poly-
nomial ratio assumption; LPN denotes the learning-parity-with-noise assumption;
McEliece KI and Niederreiter KI denote the McEliece-key-indistinguishability and
Niederreiter-key-indistinguishability assumptions, respectively; NTRU OW, McEliece
OW, and Niederreiter OW denote onewayness of the NTRU, McEliece encryption,
and Niederreiter encryption, respectively; OW-CPA, OW-PCA, IND-CPA, and IND-
CCA denote onewayness under chosen-plaintext attacks, onewayness under plaintext-
checking attacks, indistinguishability under chosen-plaintext attacks, and indistin-
guishability under chosen-ciphertext attacks, respectively; SPR denotes the sparse
pseudorandomness; and DS denotes the disjoint simulatability. Solid arrows indicate
quantum tight reductions, dashed arrows indicate quantum non-tight reductions, thin
arrows indicate existing reductions, thick arrows indicate our new reductions, and gray
arrows indicate trivial implications.

Moreover, we construct some DPKE schemes whose disjoint simulatabili-
ties are tightly reduced to some post-quantum assumptions like learning with
errors (LWE) and some other assumptions related to NTRU, the McEliece PKE,
and the Niederreiter PKE. As a result, we obtain the first IND-CCA-secure
KEMs that do not incur a quadratic security loss in the QROM based on these
assumptions. We also construct a disjoint simulatable DPKE scheme from any
IND-CPA-secure PKE scheme on an exponentially large message space with
quadratic security loss. This gives a construction of an IND-CCA-secure KEM
based on an IND-CPA-secure PKE scheme on an exponentially large message
space with quadratic (rather than quartic as in previous works) security loss.
Our results are summarized in Fig. 1.

We implement an instantiation based on NTRU-HRSS [HRSS17] on a desk-
top PC and a RasPi. Assuming that NTRU-HRSS is disjoint simulatable, the
obtained KEM is CCA secure in the QROM. See Sect. 5.
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1.3 Technical Overview

Here, we give a technical overview of our results.

Disjoint Simulatability and Sparse Pseudorandomness. Let DM be a
distribution over a message space M. We say that a DPKE scheme is DM-
disjoint simulatable if a ciphertext of a message that is distributed according
to DM can be simulated by a simulator that does not know a message, and
simulated ciphertext is invalid (i.e., out of the range of an encryption algorithm)
with overwhelming probability. For an intermediate step to construct a disjoint
simulatable DPKE scheme, we consider another security notion that we call
sparse pseudorandomness and show that this is a sufficient condition for disjoint
simulatability. We say that a DPKE scheme is DM-sparse pseudorandom if a
ciphertext of a message that is distributed according to DM is pseudorandom
and the range of an encryption algorithm is sparse in a ciphertext space. The
DM-sparse pseudorandomness implies the DM-disjoint simulatability because if
the sparse pseudorandomness is satisfied, then a simulator that simply outputs
a random element of a ciphertext space suffices for the disjoint simulatability2.

Instantiations of Disjoint Simulatable DPKE. We construct DPKE
schemes based on the concepts of the Gentry–Peikert–Vaikuntanathan
(GPV) trapdoor function for LWE [GPV08], NTRU [HPS98], the McEliece
PKE [McE78], and the Niederreiter PKE [Nie86] and prove that they are sparse
pseudorandom (and thus disjoint simulatable) w.r.t. a certain message distribu-
tion under the LWE assumption, or other related assumptions to an underlying
PKE scheme. Moreover, the reductions are tight. See Subsect. 3.3 for details of
instantiations from concrete assumptions

We also construct a disjoint simulatable DPKE scheme based on any
IND-CPA-secure PKE scheme with an exponentially large message space in the
QROM. Unfortunately, this reduction is not tight and incurs a square security
loss. See Subsect. 3.4 for details.

Previous Construction: BR-KEM. Before describing our construction,
we review the construction and security proof of the Bellare-Rogaway
KEM (BR-KEM), which was proven IND-CCA-secure in the QROM by
Boneh et al. [BDF+11] because our construction is based on their idea. BR-KEM
is a construction of an IND-CCA-secure KEM based on a one-way trapdoor
function with an efficiently recognizable range3. For compatibility with ours, we
treat a one-way trapdoor function as a perfectly correct OW-CPA-secure DPKE
scheme by considering a function and an inversion to be an encryption and a

2 In fact, we have to additionally assume that a ciphertext space is efficiently sam-
pleable.

3 The efficient recognizability of a range was not explicitly assumed in [BDF+11] but
is actually needed for their proof.
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decryption, respectively. Let (Gen,Enc,Dec) denote algorithms of an underlying
DPKE scheme. Then BR-KEM = (GenBR,EncBR,DecBR) is described as follows:

– GenBR is exactly the same as Gen.
– EncBR, given a public key ek as an input, chooses a randomness m from a

message space uniformly at random, computes a ciphertext C := Enc(ek ,m)
and a key K := H(m) where H is a hash function modeled as a random oracle,
and outputs (C,K).

– DecBR, given a ciphertext C and a decryption key dk as an input, checks if C
is in the valid ciphertext space and returns ⊥ if not. Otherwise it computes
K := H(Dec(dk , C)) and returns K.

In the security proof in the QROM, we first replace a random oracle H with
Hq ◦ Enc(ek , ) where Hq is another random oracle that is not given to an adver-
sary. Since Enc(ek , ·) is injective due to its perfect correctness, Hq◦ Enc(ek , ·) still
works as a random oracle from the view of an adversary. After this replacement,
we notice that a decryption oracle can be simulated by using Hq without the help
of a decryption key because we have H(Dec(dk , c)) = Hq ◦ Enc(ek ,Dec(dk , c)) =
Hq(c). For proving IND-CCA security, we have to prove that Hq(c∗) is pseu-
dorandom from the view of an adversary. If we were in a classical world, then
this could be proven quite easily: the only way for an adversary to obtain any
information of Hq(c∗) is to query m∗ such that c∗ = Enc(ek ,m∗), in which case
the adversary breaks the OW-CPA security of an underlying DPKE scheme. In
a quantum world, things do not go as easily because even if an adversary queries
a quantum state whose magnitude on m∗ is large, a reduction algorithm cannot
notice that immediately. Nonetheless, by using the One-Way to Hiding (OW2H)
lemma proven by Unruh [Unr15] (Lemma 2.1), we can show that the advantage
for an adversary to distinguish Hq(c∗) from a truly random string is at most a
square root of the probability that measurement of a randomly chosen adver-
sary’s query to H is equal to m∗. Hence, we can reduce the IND-CCA security
of BR-KEM to the OW-CPA security of the underlying DPKE scheme with a
quadratic security loss. On the other hand, to avoid the quadratic security loss,
it seems that we have to avoid the usage of the OW2H lemma because the lemma
inherently incurs a quadratic security loss.

Our Conversion, SXY. In the above proof, we used the fact that the only way
for an adversary to obtain any information of Hq(c∗) is to query m∗ to H such that
c∗ = Enc(ek ,m∗). Our key idea is based on the observation that if such m∗ does
not exist, i.e., c∗ is out of the range of Enc(ek , ·), then it is information-theoretically
impossible for an adversary to obtain any information of Hq(c∗). Indeed, though
c∗ is in the range of Enc(ek , ·) in the real game, if we choose an encryption random-
ness m according to a distribution DM, then we can replace c∗ with a simulated
ciphertext that is out of the range of Enc(ek , ·) by using the DM-disjoint simulata-
bility. After replacing c∗ with a simulated one, we can information-theoretically
bound an adversary’s advantage and need not use the OW2H lemma. This seems
to simply resolve the problem, and we obtain an IND-CCA-secure KEM without
a quadratic security loss. However, another problem arises here: a valid ciphertext
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space of a disjoint simulatable DPKE scheme is inherently not efficiently recogniz-
able (otherwise real and simulated ciphertexts are easy to distinguish), whereas the
simulation of decryption algorithm has to first verify if a given ciphertext is valid or
not. To resolve the problem, we modify the decryption algorithm so that if a cipher-
text is invalid, then it returns a random value rather than ⊥. In the security proof
of BR-KEM, a decryption oracle is simulated just by evaluating a random oracle
Hq for a ciphertext, and this enables a reduction algorithm to simulate a decryp-
tion oracle for both valid and invalid ciphertexts even though it cannot determine
if a given ciphertext is valid. Hence, we can reduce the IND-CCA-security of the
resultingKEMwithout using theOW2H lemmaand thuswithout a quadratic secu-
rity loss.

Curiously, this conversion is essentially the same asU�⊥
m in [HHK17]. This means

that we can remove an “additional” hash fromQU�⊥
m assuming a stronger underlying

DPKE in the QROM. In addition, this means that the obtained KEM is tightly
secure assuming that the underlying DPKE is OW-CPA secure in the ROM as
shown in [HHK17].

1.4 Related Work

In a concurrent and independent work, Jiang, Zhang, Chen, Wang, and
Ma [JZC+17] proposed two new constructions of an IND-CCA-secure KEMbased
on a OW-CPA-secure PKE scheme with quadratic security loss. However, both
constructions incur quadratic security loss.

2 Preliminaries

2.1 Notation

A security parameter is denoted by κ. We use the standard O-notations: O, Θ,
Ω, and ω. DPT and PPT stand for deterministic polynomial time and probabilis-
tic polynomial time. A function f(κ) is said to be negligible if f(κ) = κ−ω(1).
We denote a set of negligible functions by negl(κ). For two finite sets X and Y,
Map(X ,Y) denote a set of all functions whose domain is X and codomain is Y.

For a distribution χ, we often write “x ← χ,” which indicates that we take a
sample x from χ. For a finite set S, U(S) denotes the uniform distribution over S.
We often write “x ← S” instead of “x ← U(S).” For a set S and a deterministic
algorithm A, A(S) denotes the set {A(x) | x ∈ S}.

If inp is a string, then “out ← A(inp)” denotes the output of algorithm A when
run on input inp. IfA is deterministic, then out is a fixed value and we write “out :=
A(inp).” We also use the notation “out := A(inp; r)” to make the randomness r
explicit.

For the Boolean statement P , boole(P ) denotes the bit that is 1 if P is true, and
0 otherwise. For example, boole(b′ ?= b) is 1 if and only if b′ = b.

2.2 Quantum Computation

We refer to [NC00] for basic of quantum computation.
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Quantum Random Oracle Model. Roughly speaking, the quantum random
oracle model (QROM) is an idealized model where a hash function is modeled
as a publicly and quantumly accessible random oracle. See [BDF+11] for a more
detailed description of the model.

Lemmas. We review some useful lemmas regarding the quantum random ora-
cles. The first one is called the oneway-to-hiding (OW2H) lemma, which is proven
by Unruh [Unr15, Lemma 6.2]. Roughly speaking, the lemma states that if any
quantum adversary issuing at most q queries to a quantum random oracle H can
distinguish (x,H(x)) from (x, y), where y is chosen uniformly at random, then we
can find x by measuring one of the adversary’s queries even it causes a quadratic
security loss. The lemma of the following form is taken from [HHK17].

Lemma 2.1 (AlgorithmicOneway toHiding [Unr15,HHK17]). LetH : X →
Y be a quantum randomoracle, and letA be an adversary issuing atmost q queries to
H that on input (x, y) ∈ X ×Y outputs either 0/1. For all (probabilistic) algorithms
F whose input space is X ×Y and which do not make any hash queries toH, we have

∣
∣
∣
∣

Pr[AH(inp) → 1 | x ← X ; inp ← F(x,H(x))]
− Pr[AH(inp) → 1 | (x, y) ← X × Y; inp ← F(x, y)]

∣
∣
∣
∣

≤ 2q ·
√

Pr[EXTA,H(inp) → x | (x, y) ← X × Y; inp ← F(x, y)],

where EXT picks i ← {1, . . . , q}, runs AH(inp) until i-th query |x̂〉 toH, and returns
x′ := Measure(|x̂〉) (when A makes fewer than i queries, EXT outputs ⊥ �∈ X ).

(Unruh’s original statement is recovered by letting F be an identity function.)
The second one claims that a random oracle can be used as a pseudorandom

function even in the quantum setting.

Lemma 2.2. Let � be an integer. Let H : {0, 1}� × X → Y and H′ : X → Y be two
independent random oracles. If an unbounded time quantum adversary A makes a
query to H at most qH times, then we have

∣
∣
∣Pr[AH,H(s,·)() → 1 | s ← {0, 1}�] − Pr[AH,H′

() → 1]
∣
∣
∣ ≤ qH · 2

−�+1
2

where all oracle accesses of A can be quantum.

Though this seems to be a folklore, we give a proof of this lemma in Sect. C for
completeness.4

Simulation of Random Oracle. In the original quantum random oracle model
introduced by Boneh et al. [BDF+11], they do not allow a reduction algorithm to
access a random oracle, so it has to simulate a random oracle by itself. In contrast,
in this paper, we give a random oracle access to a reduction algorithm. We remark
that this is just a convention and not a modification of the model since we can
simulate a random oracle against quantum adversaries in several ways.
4 Jiang et al. [JZC+17] also gave a proof of an essentially identical lemma.
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1. The first way is a simulation by a 2q-wise independent hash function, where q
denotes the number of random oracle queries by an adversary, as introduced
by Zhandry [Zha12b]. The simulation is perfect, that is, no adversary can dis-
tinguish the real QRO from the simulated one. A drawback of this simulation
is a O(q2) blowup for a running time of a reduction algorithm since it has to
compute a 2q-wise independent hash function for each random oracle query.

2. The second way is a simulation by a quantumly secure PRF as used in
[BDF+11]. If we use this simulation, then the blowup of a running time of a
reduction algorithm is O(q · tPRF) where tPRF is the time needed for evaluating a
PRF, which is usually much smaller than O(q2). However, we have to addition-
ally assume the existence of a quantumly secure PRF, which is known to exist
if a quantumly secure one-way function exists [Zha12a].

3. The third way is a simulation by a real hash function like SHA-2 and to think
that this is a “random oracle.” Since we adopt the QROM, we idealize a real hash
function as a random oracle in the construction of primitives. Thus, it may be
natural to assume the same thing even in a reduction, that is, the reduction
algorithm implements the random oracle by a concrete hash function. If we use
this simulation, then the blowup of a running time of a reduction algorithm is
O(q · thash) where thash denotes a time to evaluate a hash function. This gives a
tightest reduction at the expense of additional idealization of a hash function.
We note that a similar convention is also used by Kiltz et al. [KLS17].
We finally note that this way strengthens the assumption, that is, we need to
assume that some problem is hard in the QROM.

We use tRO to denote a time needed to simulate a random oracle. We have tRO =
O(q), tPRF, or thash, if we use the first, second, or third way, respectively. We note
that in the proof of quantum variants of Fujisaki-Okamoto and OAEP [TU16,
HHK17], we have to simulate a random oracle in the 1st way, because a simula-
tor has to “invert” a random oracle in a simulation.

2.3 Public-Key Encryption

The model for PKE schemes is summarized as follows:

Definition 2.1. A PKE schemePKE consists of the following triple of polynomial-
time algorithms (Gen,Enc,Dec).

– Gen(1κ; rg) → (ek , dk): a key-generation algorithm that on input 1κ, where κ is
the security parameter, outputs a pair of keys (ek , dk). ek and dk are called the
encryption key and decryption key, respectively.

– Enc(ek ,m; re) → c: an encryption algorithm that takes as input encryption key
ek and message m ∈ M and outputs ciphertext c ∈ C.

– Dec(dk , c) → m/⊥: a decryption algorithm that takes as input decryption key
dk and ciphertext c and outputs message m ∈ M or a rejection symbol ⊥ �∈ M.

Definition 2.2. We say a PKE scheme PKE is deterministic if Enc is determinis-
tic. DPKE stands for deterministic public key encryption.
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Definition 2.3 (Correctness). We say PKE = (Gen,Enc,Dec) has perfect cor-
rectness if for any (ek , dk) generated by Gen and for any m ∈ M, we have that

Pr[Dec(dk , c) = m | c ← Enc(ek ,m)] = 1.

An additional property, γ-spread, is in Sect. A

Security: Here, we define onewayness under chosen-plaintext attacks (OW-CPA),
indistinguishability under chosen-plaintext attacks (IND-CPA), and indistin-
guishability under chosen-ciphertext attacks (IND-CCA) for a PKE.

Definition 2.4 (Securitynotions forPKE).For any adversaryA, we define its
OW-CPA, IND-CPA, and IND-CCA advantages against a PKE scheme PKE =
(Gen,Enc,Dec) as follows:

Advow-cpa
A,PKE (κ) := Pr[Exptow-cpa

PKE,A (κ) = 1],

Advind-cpa
PKE,A (κ) :=

∣
∣
∣2Pr[Exptind-cpa

PKE,A (κ) = 1] − 1
∣
∣
∣ ,

Advind-cca
PKE,A (κ) :=

∣
∣
∣2Pr[Exptind-cca

PKE,A (κ) = 1] − 1
∣
∣
∣ ,

where Exptow-cpa
PKE,A (κ), Exptind-cpa

PKE,A (κ), and Exptind-cca
PKE,A (κ) are experiments described

in Fig. 2. For GOAL-ATK ∈ {OW-CPA, IND-CPA, IND-CCA}, we say that
PKE is GOAL-ATK-secure if Advgoal-atk

A,PKE (κ) is negligible for any PPT adversary A.

Additional definitions are in Sect. A

Fig. 2. Games for PKE schemes
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2.4 Key Encapsulation

The model for KEM schemes is summarized as follows:

Definition 2.5. A KEM scheme KEM consists of the following triple of
polynomial-time algorithms (Gen,Encaps,Decaps):

– Gen(1κ; rg) → (ek , dk): a key-generation algorithm that on input 1κ, where κ is
the security parameter, outputs a pair of keys (ek , dk). ek and dk are called the
encapsulation key and decapsulation key, respectively.

– Encaps(ek ; re) → (c,K): an encapsulation algorithm that takes as input encap-
sulation key ek and outputs ciphertext c ∈ C and key K ∈ K.

– Decaps(dk , c) → K/⊥: a decapsulation algorithm that takes as input decapsula-
tion key dk and ciphertext c and outputs key K or a rejection symbol ⊥ �∈ K.

Definition 2.6 (Correctness). We say KEM = (Gen,Encaps,Decaps) has per-
fect correctness if for any (ek , dk) generated by Gen, we have that

Pr[Decaps(dk , c) = K : (c,K) ← Encaps(ek)] = 1.

Security: We define indistinguishability under chosen-plaintext and chosen-
ciphertext attacks (denoted by IND-CPA and IND-CCA) for KEM, respectively.

Definition 2.7. For any adversary A, we define its IND-CPA and IND-CCA
advantages against a KEM scheme KEM = (Gen,Encaps,Decaps) as follows:

Advind-cpa
KEM,A (κ) :=

∣
∣
∣2Pr[Exptind-cpa

KEM,A (κ) = 1] − 1
∣
∣
∣ ,

Advind-cca
KEM,A(κ) :=

∣
∣
∣2Pr[Exptind-cca

KEM,A(κ) = 1] − 1
∣
∣
∣ ,

where Exptind-cpa
KEM,A (κ) and Exptind-cca

KEM,A(κ) are experiments described in Fig. 3.

Fig. 3. Games for KEM schemes
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ForATK ∈ {CPA,CCA}, we say thatKEM is IND-ATK-secure ifAdvind-atk
A,PKE (κ)

is negligible for any PPT adversary A.

2.5 eXtendable-Output Functions

An eXtendable-Output Function (XOF) is a function on input bit strings in
which the output can be extended to an arbitrary desired length. An XOF is
denoted by XOF(X,L), where X is the input bit string and L is the desired output
length. We modeled the XOF as a quantumly-accessible random oracle. We employ
SHAKE256, standardized as an XOF by NIST [NIS15].

2.6 Assumptions

Preliminaries: Let ρs(x) = exp(−π‖x‖2/s2) for x ∈ R
n be a Gaussian function

scaled by a factor s. For any real s > 0 and latticeΛ, we define the discreteGaussian
distribution DΛ,s over Λ with parameter s by

DΛ,s(x) = ρs(x)/ρs(Λ) for x ∈ Λ,

where ρs(Λ) =
∑

x∈Λ ρs(x). The following norm bound is useful.

Lemma 2.3 (Adapted version of [MR07, Lemma 4.4]). For σ = ω(
√

log(n)),
it holds that

Pr
e←DZn,σ

[‖e‖ > σ
√

n] ≤ 2−n+1.

LWE and its variants: We review the assumptions for lattice-based PKEs.
The most basic one is the learning-with-errors (LWE) assumption [Reg09],
which is a generalized version of the learning-parity-with-noise assumption
[BFKL93,KSS10].

Definition 2.8 (LWE assumption in matrix form). For all κ, let n = n(κ)
and q = q(κ) be integers and let χ be a distribution over Z.

The decisional learning-with-errors (LWE) assumption LWEn,q states that, for
any m = poly(κ),

the following two distributions are computationally hard to distinguish:

– A, sA + e, where A ← Z
n×m
q , s ← Z

n
q , and e ← χm

– A, u, where A ← Z
n×m
q and u ← Z

m
q .

Wealso review its polynomial version [LPR10,BV11].Wehere use theHermite-
normal form of the assumption [ACPS09,LPR10,BV11], where secret s is chosen
from the noise distribution.

Definition 2.9 (Poly-LWE assumption – Hermite normal form). For all
κ, let Φ(x) = Φκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ)
be an integer, let R := Z[x]/(Φ(x)) and Rq := Zq[x]/(Φ(x)), and let χ denote a
distribution over the ring R.
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The decisional polynomial learning-with-errors (Poly-LWE) assumption
PolyLWEΦ,q,χ states that, for any � = poly(κ), the following two distributions are
hard to distinguish:

– {(ai, ais + ei)}i=1,...,�, where ai ← Rq, s, ei ← χ
– {(ai, ui)}i=1,...,�, where ai, ui ← Rq.

Next, we recall the decisional small polynomial ratio (DSPR) assumption
defined by López-Alt, Tromer, and Vaikuntanathan [LTV12]. We here employ an
adapted version of the DSPR assumption.

Definition 2.10 (DSPR assumption). For all κ, let Φ(x) = Φκ(x) ∈ Z[x]
be a polynomial of degree n = n(κ), let q = q(κ) be a positive integer, let R :=
Z[x]/(Φ(x)) and Rq := Zq[x]/(Φ(x)), and let χ denote a distribution over the
ring R.

The decisional small polynomial ratio (DSPR) assumption DSPRΦ,q,χg,χf
says

that the following two distributions are hard to distinguish:

– a polynomial h := g · f−1 ∈ Rq, where g ← χg and f ← χf .
– a polynomial u ← Rq.

Remark 2.1. Stehlé and Steinfeld [SS11] showed that DSPRΦ,q,χ is statistically
hard ifn is a power of two,Φ(x) = xn+1, andχg = χf = DZn,r for r >

√
q·poly(κ).

3 Disjoint Simulatability of Deterministic PKE

Here, we define a new security notion, disjoint simulatability, for DPKE. We also
define another security notion called sparse pseudorandomness and prove that it
implies the disjoint simulatability. Then we give some instantiations of sparse pseu-
dorandom (and thus disjoint simulatable) deterministic PKE schemes based on the
LWEassumption or various assumptions related toNTRU, theMcEliecePKE, and
the Niederreiter PKE with tight reductions. We also construct a disjoint simulat-
able DPKE scheme from any IND-CPA-secure PKE scheme with a sufficiently
large message space in the QROM, though the reduction is non-tight.

3.1 Definition

We define a new security notion, disjoint simulatability, for DPKE. Intuitively, a
deterministic PKE scheme is disjoint simulatable if there exists a simulator that
is only given a public key and generates a “fake ciphertext” that is indistinguish-
able from a real ciphertext of a random message. Moreover, we require that a fake
ciphertext falls in a valid ciphertext space with negligible probability. The formal
definition is as follows.
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Definition 3.1 (Disjoint simulatability). Let DM denote an efficiently
sampleable distribution on a set M. A deterministic PKE scheme PKE =
(Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is DM-disjoint simu-
latable if there exists a PPT algorithm S that satisfies the following.

– (Statistical disjointness:)

DisjPKE,S(κ) := max
(ek ,dk)∈Gen(1κ;R)

Pr[c ∈ Enc(ek ,M) | c ← S(ek)]

is negligible, where R denotes a randomness space for Gen.
– (Ciphertext-indistinguishability:) For any PPT adversary A,

Advds-ind
PKE,DM,A,S(κ) :=

∣
∣
∣
∣
∣
∣
∣

Pr
[

A(ek , c∗) → 1
∣
∣
∣
∣

(ek , dk) ← Gen(1κ);m∗ ← DM;
c∗ := Enc(ek ,m∗)

]

−Pr
[
A(ek , c∗) → 1 | (ek , dk) ← Gen(1κ); c∗ ← S(ek)

]

∣
∣
∣
∣
∣
∣
∣

is negligible.

3.2 Sufficient Condition: Sparse Pseudorandomness

Here,we define another security notion forDPKEcalled sparse pseudorandomness,
which is a sufficient condition to be disjoint simulatable. Intuitively, a deterministic
PKE scheme is sparse pseudorandom if valid ciphertexts are sparse in a ciphertext
sparse and pseudorandom when a message is randomly chosen. In other words, an
encryption algorithm can be seen as a pseudorandom generator (PRG). The formal
definition is as follows.

Definition 3.2 (Sparse pseudorandomness). Let DM denote an efficiently
sampleable distribution on a set M. A deterministic PKE scheme PKE =
(Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is DM-sparse pseu-
dorandom if the following two properties are satisfied.

– (Sparseness:)

SparsePKE(κ) := max
(ek ,dk)∈Gen(1κ;R)

|Enc(ek ,M)|
|C|

is negligible where R denotes a randomness space for Gen.
– (Pseudorandomness:) For any PPT adversary A,

Advpr
PKE,DM,A(κ) :=

∣
∣
∣
∣
∣
∣

Pr
[

A(ek , c∗) → 1
∣
∣
∣
∣

(ek , dk) ← Gen(1κ);m∗ ← DM;
c∗ := Enc(ek ,m∗)

]

−Pr
[
A(ek , c∗) → 1 | (ek, dk) ← Gen(1κ), c∗ ← C

]

∣
∣
∣
∣
∣
∣

is negligible.

Then we prove that the sparse pseudorandomness implies the disjoint simulata-
bility if a ciphertext space is efficiently sampleable.
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Lemma 3.1. If a deterministicPKEschemePKE = (Gen,Enc,Dec)with plaintext
and ciphertext spaces M and C is DM-sparse pseudorandom and C is efficiently
sampleable, then PKE is also DM-disjoint simulatable. In particular, there exists a
PPT simulator S such that DisjPKE,S(κ) = SparsePKE(κ) and Advds-ind

PKE,DM,A,S(κ) =
Advpr

PKE,DM,A(κ).

Proof. Let S be an algorithm that outputs a random element of C. Then we clearly
have DisjPKE,S(κ) = SparsePKE(κ) and Advds-ind

PKE,DM,A,S(κ) = Advpr
PKE,DM,A(κ). ��

3.3 Instantiations

Here, we give examples of a DPKE scheme that is disjoint simulatable. In partic-
ular, we construct a DPKE scheme that has the sparse pseudorandomness based
on the LWE assumption or some other assumptions related to NTRU. (We fur-
ther construct them based on the McEliece PKE and the Niederreiter PKE in the
full version.) We remark that the reductions are tight. By combining those with
Lemma 3.1, we obtain disjoint simulatable DPKE schemes based on any of these
assumptions with tight security.

LWE-based DPKE. We review the GPV trapdoor function for LWE [GPV08,
Pei09,MP12]. The LWE assumption (in matrix form) states that (A, sA + e) and
(A, u) are computationally indistinguishable, where A ← Z

n×m
q , s ← Z

n
q , e ← χm,

and u ← Z
m
q . The GPV trapdoor function for LWE exploited that if we have a

“short” matrix T satisfying AT ≡ O mod q, we can retrieve s and e from c = sA+e.
The trapdoor T for A is generated by an algorithm TrapGen:

Theorem 3.1 ([Ajt99,AP11]). For any positive integers n and q ≥ 3, any δ > 0
and m ≥ (2 + δ)n lg q, there is a probabilistic polynomial-time algorithm TrapGen
that outputs a pair T ∈ Z

m×m and A ∈ Z
n×m
q such that: the distribution of A

is within a negligible statistical distance of uniform over Zn×m
q , T is non-singular

(over the rationals), ‖ti‖ ≤ L = O(m lg m) for every column vector ti of T , and
AT ≡ O (mod q).

Let us construct a DPKE scheme PKE = (Gen,Enc,Dec) as follows:

Parameters: We require several parameters: the dimension n = n(κ), the mod-
ulus q = q(κ), and m = m(κ). We also employ L = O(m lg m), σ = ω(

√
lg n),

β = σ
√

n.
We require that βL < q/2 and qm � qn · (2β + 1)m.
– The plaintext space M := Z

n
q × Bm(β), where Bm(β) := {e ∈ Z

m |
‖e‖ ≤ β}.

– The sampler DM samples s ← Z
n
q and e ← DZm,σ conditioned on ‖e‖ ≤ β.

– The ciphertext space C := Z
m
q

Key Generation: Gen(1κ) invokes TrapGen(1n, 1m, q) and obtains A ∈ Z
n×m
q

and T ∈ Z
m×m. It outputs ek = A and dk = (A, T ).
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Encryption: Enc(ek , (s, e)) outputs c = sA + e mod q.
Decryption: Dec(dk , c) computes e = (c · T mod q) · T−1 and s = (c − e) ·

A+ mod q, where A+ := A	 · (A · A	) ∈ Z
m×n
q , the left inverse of A.

The properties of PKE are summarized as follows:

Perfect Correctness: We know c · T ≡ sAT + eT ≡ eT (mod q). If ‖eT‖∞ <
q/2, then c · T mod q = eT ∈ Z

m holds and e is recovered by e = (c · T mod
q) · T−1. Once correct e is obtained, s is recovered by (c − e) · A+ ∈ Z

n
q . The

condition ‖eT‖∞ < q/2 is satisfied because ‖eT‖∞ ≤ maxi ‖e‖ · ‖ti‖ ≤ βL <
q/2, where ti is the column vectors of T .

Sparseness: |C| = qm and |Enc(ek ,M)| ≤ M = |Zn
q × Bm(β)| ≤ qn · (2β + 1)m.

Sparseness follows from the fact qm � qn · (2β + 1)m.
Pseudorandomness: We consider the following hybrid games:

– (Original game 1:) The adversary is given (A, c∗), where (A, T ) ←
TrapGen(1n, 1m, q), (s, e) ← DM, and c∗ ← Z

m
q .

– (Hybrid game 1:) Let us replace the public key A.We consider (A, c∗), where
A ← Z

n×m
q , (s, e) ← DM, and c∗ := sA + e mod q. This change is justified

by Theorem 3.1.
– (Hybrid game 2:) Let us replace the sampler DM. We consider (A, c∗), where

A ← Z
n×m
q , (s, e) ← U(Zn

q )×DZm,σ, and c∗ := sA+e mod q. This replace-
ment is justified by Lemma 2.3.

– (Hybrid game 3:) We next replace the ciphertext c∗. We consider (A, c∗),
where A ← Z

n×m
q and c∗ ← Z

m
q . This game is computationally indistin-

guishable from the previous game under the LWE assumption LWEn,q,DZ,σ
.

– (Original game 2:) We replace the public key A. We consider (A, c∗), where
(A, T ) ← TrapGen(1n, 1m, q) and c∗ := sA + e mod q. This change is justi-
fied by Theorem 3.1.

Remark 3.1. For simplicity, we employ the simple version of the GPV trapdoor
function for LWE. Further improvements are available, e.g., [MP12, Section 5].

NTRU-based DPKE. We next review the original version of NTRUEn-
crypt [HPS98]. Let Φ(x) = xn − 1 ∈ Z[x], let p < q be positive integers with
gcd(p, q) = 1, and let R := Z[x]/(Φ(x)) and Rq := Zq[x]/(Φ(x)). We often set
p = 3 and q = 2k for some k. Let T be a set of ternary-coefficient polynomials in
R, that is, T := {t =

∑n−1
i=0 tix

i ∈ R | ti ∈ {−1, 0,+1}}. Let Lf ,Lg,Lr,Lm ⊆ T .
The public key is h = g/f , where f ← Lf , g ← Lg with f has inverses in Rp

and Rq. The the ciphertext of m ∈ Lm with randomness r ∈ Lr is c = prh + m.
Roughly speaking, we can retrieve m if we know f ; cf = prg + mf ∈ Rq and it
holds in R.

Parameters: We require that ‖prg + mf mod q‖∞ < q/2 for any g, f,m, r in
their domains, where, for t =

∑n−1
i=0 tix

i ∈ R, we define ‖t‖∞ := maxi|ti|. For
simplicity, we assume that Lm = Lr.
– The plaintext space is M := Lm × Lr.
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– The sampler DM samples (m, r) ← Lm × Lr.
– The ciphertext space is C := Rq.

Key Generation: Gen() chooses g ← Lg and f ← Lf until f is invertible in Rq

and Rp. It outputs ek = h = g/f ∈ Rq and dk = (h, f).
Encryption: Enc(ek , (m, r)) outputs c = prh + m ∈ Rq.
Decryption: Dec(sk , c) computes m := (fc mod q) · f−1 mod p and r := (c −

m) · (ph)−1 mod q.

The properties of this DPKE are summarized as follows:

Perfect correctness: Note that fc ≡ prg + mf (mod q). Since ‖prg + mf mod
q‖∞ < q/2 from our requirement, we have (fc mod q) = prg+mf ∈ R. Hence,
we have (fc mod q) · f−1 ≡ (prg + mf) · f−1 ≡ m (mod p) as we wanted. r is
also recovered because (c − m) · (ph)−1 ≡ prh · (ph)−1 ≡ r (mod q).

Sparseness: Sparseness follows from |C| = qn � 32n = |T 2| ≥ |Lm × Lr| =
|Enc(ek ,M)|.

Pseudorandomness: What we want to show is

(h, c = prh + m) ≈c (h, u),

where h = g/f is a public key with f ← Lf , g ← Lg with condition f has
inverses Rp and Rq, (m, r) ← Lm × Lr, and u ← Rq. Let χg := U(Lg)
and χf := U(Lf ∩ R∗

p ∩ R∗
q), where R∗

k for k ∈ {p, q} denotes {f ∈ R |
f has an inverse in Rk}. Let χ := U(Lm) = U(Lr).
– We first replace h = g/f with random h′, which is justified by the DSPR

assumption DSPRΦ,q,χf ,χg
.

– We next replace c = prh′ + m with random c′, which is justified by the
Poly-LWE assumption PolyLWEΦ,q,χ; Given h̃ and c = rh̃ + m or random,
we convert them into h′ = p−1h̃ and c. Since p is co-prime to q, h′ is truly
random. If c = rh̃ + e, then c = pr · p−1h̃ + e = prh′ + e as we wanted.

– We then go backward by replacing random h′ with h = g/f , which is justi-
fied by the DSPR assumption DSPRΦ,q,χf ,χg

again.

3.4 Generic Conversion from IND-CPA-Secure PKE

Here, we show that any perfectly-correct IND-CPA-secure PKE whose plain-
text space is sufficiently large can be converted into a disjoint-simulatable DPKE
scheme in the quantum random oracle model. We note that the conversion is non-
tight.

Intuitively, we replace randomness of an underlying IND-CPA-secure PKE
scheme with a hash value of a message similarly to the conversion T given in
[HHK17] (which is in turn based on the Fujisaki-Okamoto conversion). The dif-
ference from the conversion T is that we “puncture” a message space by 05. That
is, if a message space of an underlying IND-CPA-secure PKE scheme is M, then
5 We assume that 0 ∈ M. In fact, we can replace 0 with an arbitrary message in M. We

assume that 0 ∈ M for notational simplicity.
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Fig. 4. PKE1 = (Gen1,Enc1,Dec1) = TPunc[PKE,G] with simulator S.

a message space of the resulting scheme is M′ := M\{0}. In this meaning, we call
our conversion TPunc. We give the concrete description of the conversion TPunc
below.

Let M and R be the message and randomness spaces of PKE, respectively, and
let M′ := M \ {0}. Then the resulting DPKE scheme PKE1 = TPunc[PKE,G] is
described in Fig. 4 where G : M → R denotes a random oracle. Here, we remark
that the message space of PKE1 is restricted to M′ := M \ {0}. The security of
PKE1 is stated as follows.

Theorem 3.2 (Security ofTPunc). Let S be the algorithm described in Fig. 4. If
PKE is perfectly correct, then we have DisjPKE1,S(κ) = 0. Moreover, for any quan-
tum adversary A against PKE1 issuing at most qG quantum queries to G, there exist
quantum adversaries B and C against IND-CPA security of PKE such that

Advds-ind
PKE1,UM′ ,A,S(κ) ≤ 2qG

√

Advind-cpa
PKE,B (κ) +

2
|M| + Advind-cpa

PKE,C (κ)

where UM′ denotes the uniform distribution on M′, and Time(B) ≈ Time(C) ≈
Time(A) + qG · tRO.

Security Proof. We obviously have DisjPKE1,S(κ) = 0 since PKE is perfectly
correct.

To prove the rest of the theorem, we consider the following sequence of games.
See Table 1 for the summary of games and justifications.
Game0: This game is defined as follows:

(ek , dk) ← Gen(1κ);m∗ ← M′; r∗ ← G(m∗); c∗ := Enc(ek ,m∗; r∗);

b′ ← AG(·)(ek , c∗); return b′.

Game1: This game is the same as Game0 except that a randomness to generate a
challenge ciphertext is freshly generated:

(ek , dk) ← Gen(1κ);m∗ ← M′; r∗ ← R; c∗ := Enc(ek ,m∗; r∗);
b′ ← AG(·)(ek , c∗); return b′.
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Table 1. Summary of games for the security proof of Theorem 3.2

Game m∗ r∗ c∗ Justification

Game0 M′ G(m∗) Enc(ek , m∗; r∗) = Enc1(ek , m∗)

Game1 M′ r∗ Enc(ek , m∗; r∗) OW-CPA security of PKE
and the OW2H lemma

Game2 0 r∗ Enc(ek , 0; r∗) = S(ek) IND-CPA security of PKE

Fig. 5. Adversary B and Algorithm F

Game2: This game is the same as Game1 except that a challenge ciphertext is
generated by Enc(ek ,m∗; r∗), where m∗ := 0 rather than m∗ ← M′:

(ek , dk) ← Gen(1κ); r∗ ← R; c∗ := Enc(ek , 0; r∗); b′ ← AG(·)(ek , c∗); return b′.

This completes the descriptions of games. It is easy to see that we have

Advds-ind
PKE1,UM′ ,A,S(κ) = |Pr[Game0 = 1] − Pr[Game2 = 1]| .

We give an upperbound for this by the following lemmas.

Lemma 3.2. There exists an adversary B such that

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ 2qG

√

Advind-cpa
PKE,B (κ) +

2
|M|

and Time(B) ≈ Time(A) + qG · tRO.

Proof. Let F be an algorithm described in Fig. 5. It is easy to see that Game0
can be restated as

m∗ ← M′; r∗ ← G(m∗); inp := F(ek ,m∗; r∗); b′ ← AG(·)(inp); return b′.

and Game1 can be restated as

m∗ ← M′; r∗ ← R; inp := F(ek ,m∗; r∗); b′ ← AG(·)(inp); return b′.
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Then applying the Algorithmic-OW2H lemma (Lemma 2.1) with X = M′,
Y = R, x = m∗, y = r∗, and algorithms A and F, we have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ 2qG

√

Pr[m∗ ← BG(ek, c∗)].

where BG is an algorithm described in Fig. 5, (ek, dk) ← Gen(1κ), m∗ ← M′,
r∗ ← R, and c∗ := Enc(ek,m∗, r∗). Since the statistical distance between uni-
form distributions on M and M′ is 1

|M| , we have Pr[m∗ ← BG(ek, c∗)] ≤
Advow-cpa

PKE,B (κ) + 1
|M| where the probability in the left-hand side is taken as in

the above. (Note that additional 1
|M| appears because m∗ is taken from M′ =

M \ {0} in the left-hand side probability.) Moreover, we have Advow-cpa
PKE,B (κ) ≤

Advind-cpa
PKE,B (κ) + 1

|M| in general. By combining these inequalities, the lemma is
proven. ��

Lemma 3.3. There exists an adversary C such that |Pr[Game1 = 1]−
Pr[Game2 = 1]| ≤ Advind-cpa

PKE,C (κ) and Time(C) ≈ Time(A) + qG · tRO.

Proof. We construct an adversary C against the IND-CPA security of PKE as
follows.

CG(ek): It chooses m0 ← M′ and sets m1 := 0. Then it queries (m0,m1) to
its challenge oracle and obtains c∗ ← Enc(ek ,m∗; r∗), where m∗ is mb for
a random bit b chosen by the challenger. It invokes b′ ← AG(ek , c∗) and
outputs b′.

This completes the description of C. It is obvious that C perfectly simulates
Gameb+1 depending on the challenge bit b ∈ {0, 1}. Therefore, we have

Advind-cpa
PKE,C (κ) = |2Pr[b′ = b] − 1|

= |(1 − Pr[b′ = 1 | b = 0]) + Pr[b′ = 1 | b = 1] − 1|
= |1 − Pr[Game1 = 1] + Pr[Game2 = 1] − 1|
= |Pr[Game2 = 1] − Pr[Game1 = 1]|

as we wanted. ��

4 Conversion from Disjoint Simulatability to IND-CCA

In this section, we convert a disjoint simulatable DPKE scheme into an
IND-CCA-secure KEM. Let PKE1 = (Gen1,Enc1,Dec1) be a deterministic PKE
scheme and let H : M → K and H′ : {0, 1}� × C → K be random oracles. Our
conversion SXY is described in Fig. 6. The securities of our conversion can be
stated as follows.

Theorem 4.1 (Security of SXY in the ROM (an adapted version
of [HHK17, Theorem 3.6])). Let PKE1 be a perfectly correct DPKE scheme.
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Fig. 6. KEM := SXY[PKE1,H,H′].

For any IND-CCA adversary A against KEM issuing qH and qH′ quantum ran-
dom oracle queries to H and H′ and qDec decryption queries, there exists an
OW-CPA adversary B against PKE1, such that

Advind-cca
KEM,A(κ) ≤ Advow-cpa

PKE1,B(κ) + qH′ · 2−�

and Time(B) ≈ Time(A) + qH ·Time(Enc1) + (qH + qH′ + qDec) · tCRO, where tCRO
is the running time to simulate the classical random oracle.

Theorem 4.2 (Security of SXY in the QROM). Let PKE1 be a perfectly
correct DPKE scheme that satisfies the DM-disjoint simulatability with a simu-
lator S. For any IND-CCA quantum adversary A against KEM issuing qH and
qH′ quantum random oracle queries to H and H′ and qDec decryption queries,
there exists an adversary B against the disjoint simulatability of PKE1 such that

Advind-cca
KEM,A(κ) ≤ Advds-ind

PKE1,DM,S,B(κ) + DisjPKE1,S(κ) + qH′ · 2
−�+1

2

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

The proof of Theorem 4.2 follows.

Remark 4.1. We also note that our reduction enables the decapsulation oracle
Dec to quantumly queried.

Security Proof. We use game-hopping proof. The overview of all games is
given in Table 2.

Game0: This is the original game, Exptind-cca
KEM,A(κ).

Game1: This game is the same as Game0 except that H′(s, c) in the decryption
oracle is replaced with Hq(c) where Hq : C → K is another random oracle. We
remark that A is not given direct access to Hq.
Game1.5: This game is the same as Game1 except that the random oracle H(·) is
simulated by H′

q(Enc1(ek , ·)) where H′
q is yet another random oracle. We remark

that a decryption oracle and generation of K∗
0 also use H′

q(Enc1(ek , ·)) as H(·)
and that A is not given direct access to H′

q.
Game2: This game is the same as Game1.5 except that the random oracle H(·)
is simulated by Hq(Enc1(ek , ·)) instead of H′

q(Enc1(ek , ·)). We remark that a
decryption oracle and generation of K∗

0 also use Hq(Enc1(ek , ·)) as H(·).
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Table 2. Summary of games for the proof of Theorem4.2

Game H c∗ K∗
0 K∗

1 Decryption of Justification

valid c invalid c

Game0 H(·) Enc1(ek
′, m∗) H(m∗) random H(m) H′(s, c)

Game1 H(·) Enc1(ek
′, m∗) H(m∗) random H(m) Hq(c) Lemma 2.2

Game1.5 H′
q(Enc1(ek

′, ·)) Enc1(ek
′, m∗) H(m∗) random H(m) Hq(c) Perfect correctness

Game2 Hq(Enc1(ek
′, ·)) Enc1(ek

′, m∗) H(m∗) random H(m) Hq(c) Conceptual

Game3 Hq(Enc1(ek
′, ·)) Enc1(ek

′, m∗) Hq(c
∗) random Hq(c) Hq(c) Perfect correctness

Game4 Hq(Enc1(ek
′, ·)) S(ek′) Hq(c

∗) random Hq(c) Hq(c) DS-IND

Game3: This game is the same as Game2 except that K∗
0 is set as Hq(c∗) and the

decryption oracle always returns Hq(c) as long as c �= c∗. We denote the modified
decryption oracle by Dec

′
.

Game4: This game is the same as Game3 except that c∗ is set as S(ek ′).

The above completes the descriptions of games. We clearly have

Advind-cca
KEM,A(κ) = |2Pr[Game0 = 1] − 1|

by the definition. We upperbound this by the following lemmas.

Lemma 4.1. We have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ qH′ · 2
−�+1

2 .

Proof. This is obvious from Lemma 2.2. ��

Lemma 4.2. We have

Pr[Game1 = 1] = Pr[Game1.5 = 1].

Proof. Since we assume that PKE1 has a perfect correctness, Enc1(ek ′, ·) is injec-
tive. Therefore, if H′

q(·) is a random function, then H′
q(Enc1(ek , ·)) is also a

random function. Remarking that access to H′
q is not given to A, it causes no

difference from the view of A if we replace H(·) with H′
q(Enc1(ek , ·)). ��

Lemma 4.3. We have

Pr[Game1.5 = 1] = Pr[Game2 = 1].

Proof. We call a ciphertext c valid if we have Enc1(ek ′,Dec1(dk′, c)) = c and
invalid otherwise. We remark that Hq is used only for decrypting an invalid
ciphertext c as Hq(c) in Game1.5. This means that a value of Hq(c) for a valid
c is not used at all in Game1.5. On the other hand, any output of Enc1(ek ′, ·) is
valid due to the perfect correctness of PKE1. Since H′

q is only used for evaluating
an output of Enc(ek ′, ·), a value of Hq(c) for a valid c is not used at all in Game1.5.
Hence, it causes no difference from the view of A if we use the same random
oracle Hq instead of two independent random oracles Hq and H′

q. ��
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Lemma 4.4. We have

Pr[Game2 = 1] = Pr[Game3 = 1].

Proof. Since we set H(·) := Hq(Enc1(ek ′, ·)), for any valid c and m :=
Dec1(dk′, c), we have H(m) = Hq(Enc1(ek ′,m)) = Hq(c). Therefore, responses
of the decryption oracle are unchanged. We also have H(m∗) = Hq(c∗) for a
similar reason. ��

Lemma 4.5. There exists an adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-ind
PKE1,DM,S,B(κ).

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

Proof. We construct an adversary B, which is allowed to access two random
oracles Hq and H′, against the disjoint simulatability as follows6.

BHq,H′
(ek ′, c∗) : It picks b ← {0, 1}, sets K∗

0 := Hq(c∗) and K∗
1 ← K, and invokes

b′ ← AH,H′,Dec
′
(ek ′, c∗,K∗

b ) where A′s oracles are simulated as follows.
– H(·) is simulated by Hq(Enc1(ek ′, ·)).
– H′ can be simulated because B has access to an oracle H′.
– Dec

′
(·) is simulated by forwarding to Hq(·).

Then B returns boole(b ?= b′).

This completes the description of B. It is easy to see that B perfectly simulates
Game3 if c∗ = Enc1(ek ,m∗) and Game4 if c∗ = S(ek ′). Therefore, we have

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-ind
PKE1,DM,S,B(κ)

as wanted. Since B invokes A once, H is simulated by one evaluation of Enc1
plus one evaluation of a random oracle, and H′ and Dec

′
are simulated by one

evaluation of random oracles, we have Time(B) ≈ Time(A) + qH · Time(Enc1) +
(qH + qH′ + qDec) · tRO. ��

Lemma 4.6. We have

|2Pr[Game4 = 1] − 1| ≤ DisjPKE1,S(κ).

Proof. Let Bad denote an event in which c∗ ∈ Enc1(ek ′,M) in Game4. It is easy
to see that we have

Pr[Bad] ≤ DisjPKE1,S(κ).

When Bad does not occur, i.e., c∗ /∈ Enc1(ek ′,M), A obtains no information
about K∗

0 = Hq(c∗). This is because queries to H only reveal Hq(c) for c ∈
Enc1(ek ′,M), and Dec

′
(c) returns ⊥ if c = c∗. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.

6 We allow a reduction algorithm to access the random oracles. See Subsect. 2.2 for
details.
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Combining the above, we have

|2Pr[Game4 = 1] − 1|
=

∣
∣Pr[Bad] · (2Pr[Game4 = 1 | Bad] − 1) + Pr[Bad]

·(2Pr[Game4 = 1 | Bad] − 1)
∣
∣

≤ Pr[Bad] +
∣
∣2Pr[Game4 = 1 | Bad] − 1

∣
∣

≤ DisjPKE1,S(κ)

as we wanted. ��

5 Implementation

We report the implementation results on a desktop PC and on a RasPi, which
are based on the previous implementation of a variant of NTRU [HRSS17].

5.1 NTRU-HRSS

We review a variant of NTRU, which we call NTRUHRSS17, developed by Hülsing,
Rijneveld, Schanck, and Schwabe [HRSS17].

Let Φm(x) ∈ Z[x] be the m-th cyclotomic polynomial. We have Φ1 = x−1. If
m is prime, then we have Φm = 1 + x + · · · + xm−1. Define Sn := Z[x]/(Φn) and
Rn := Z[x]/(xn − 1). For prime n, we have xn − 1 = Φ1Φn and Rn � S1 × Sn.
We define Liftp : Sn/(p) → Rn as

Liftp(v) :=
[

Φ1[v/Φ1](p,Φn)

]

(xn−1)
.

By definition, we have Liftp(v) ≡ 0 (mod Φ1) and Liftp(v) ≡ v (mod (p,Φn)).
Let p = (p,Φn) and q = (q, xn − 1). Let

T := {a ∈ Z[x] : a = [a]p} = {a ∈ Z[x] : ai ∈ (p) and deg(a) < deg(Φn)},

T+ := {a ∈ T : 〈xa, a〉 ≥ 0}.

The definition of NTRUHRSS17 is in Fig. 7. Note that all ciphertexts are equiv-
alent to 0 modulo (q,Φ1), which prevents a trivial distinguishing attack.

Fig. 7. NTRUHRSS17
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Fig. 8. Our modification NTRUHRSS17
′

Hülsing et al. choose (n, p, q) = (701, 3, 8192): The scheme is perfectly cor-
rect, and they claimed 128-bit post-quantum security of this parameter set.
The implementation of NTRUHRSS17 and QFO⊥[NTRUHRSS17,G,H,H′] is reported
in [HRSS17].

Our Modification: We want PKE1 to be deterministic. Hence, we consider a
pair of (m, r) as a plaintext and make the decryption algorithm output (m, r)
rather than m. The modification NTRUHRSS17

′ is summarized in Fig. 8.
The properties of this DPKE are summarized as follows:

Perfect Correctness: This follows from the perfect correctness of the original
PKE.

Sparseness: This follows from the parameter setting of the original PKE.
Pseudorandomness: We assume that the modified PKE NTRUHRSS17

′ satisfies
pseudorandomness.

We also implement SXY[NTRUHRSS17
′,H,H′], where H and H′ are imple-

mented by SHAKE256. We define

H(m, r) := XOF
(

(r,m, 0), 256
)

and H′(s, c) := XOF
(

(c, (s‖00 · · · 00), 1), 256
)

,

where we treat r ∈ Rn/(q) and the last bit is the context string.
To avoid the inversion of polynomials in decapsulation, we add f−1 modulo

p to dk as Hüsling et al. did [HRSS17]. This requires 139 extra bytes. In
addition, we put (ph)−1 modulo q in dk , which requires 1140 extra bytes. Thus,
our decapsulation key is 2557 bytes long.

5.2 Experimental Results

We preform the experiment with

– one core of an Intel Core i7-6700 at 3.40GHz on a desktop PC with 8GB
memory and Ubuntu16.04 and

– a RasPi3 with 32-bit Rasbian.

We use gcc to compile the programs with option -O3. We generate
200 keys and ciphertexts to estimate the running time of key genera-
tion, encryption, and decryption. The experimental results are summarized
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Table 3. Experimental results: We have |ek | = 1140 bytes, |dk | = 2557 bytes, and
|c| = 1140 bytes.

in Table 3. (Gen1,Enc1,Dec1) and (Gen,Enc,Dec) indicate NTRUHRSS17
′ and

SXY[NTRUHRSS17
′]. The results reflect Hüsling et al.’s constant-time implementa-

tion and ours. Our conversion adds only small extra costs for hashing in encryp-
tion and adds about TEnc1 for re-encrypting in decryption.

Note that our implementations are for reference and we did not
optimize them. Further optimizations will speed up the algorithms as
Hüsling et al. did [HRSS17]. The source code is available at https://info.isl.
ntt.co.jp/crypt/eng/archive/contents.html#sxy.

Acknolwedgements. We would like to thank anonymous reviewers of Euro-
crypt 2018, Eike Kiltz, Daniel J. Bernstein, Edoardo Persichetti, and Joost Rijneveld
for their insightful comments.

A Missing Definitions

Definition A.1 (γ-spread). Let PKE = (Gen,Enc,Dec) be a PKE scheme.
We say PKE is γ-spread if for every (ek , dk) generated by Gen(1κ) and for any
m ∈ M, we have that

− lg
(

max
c∈C

Pr
r←R

[c = Enc(ek ,m; r)]
)

≥ γ.

(In other words, the min entropy of Enc(ek ,m;U(R)) is at least γ.) We say PKE
is well-spread in κ if γ = γ(κ) = ω(lg κ).

We additionally review the definitions of onewayness under validity-checking
attacks (OW-VA), onewayness under plaintext-checking attacks (OW-PCA), and
onewayness under plaintext and validity checking attacks (OW-PCVA) for PKE.

Definition A.2 (Security notions for PKE). Let PKE = (Gen,Enc,Dec) be
a PKE scheme with message space M. For any adversary A and for ATK ∈

https://info.isl.ntt.co.jp/crypt/eng/archive/contents.html#sxy
https://info.isl.ntt.co.jp/crypt/eng/archive/contents.html#sxy
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Fig. 9. Games for PKE schemes

{VA,PCA,PCVA}, we define the experiments Exptow-va
PKE,A(κ), Exptow-pca

PKE,A (κ), and
Exptow-pcva

PKE,A (κ) as in Fig. 9, where

OATK :=

⎧

⎪⎨

⎪⎩

Cvo(·) (ATK = VA)
Pco(·, ·) (ATK = PCA)
Cvo(·),Pco(·, ·) (ATK = PCVA).

For any adversary A, we define its OW-VA, OW-PCA, and OW-PCVA advantages
as follows:

Advow-va
A,PKE(κ) := Pr[Exptow-va

PKE,A(κ) = 1],

Advow-pca
A,PKE (κ) := Pr[Exptow-pca

PKE,A (κ) = 1],

Advow-pcva
A,PKE (κ) := Pr[Exptow-pcva

PKE,A (κ) = 1].

For ATK ∈ {VA,PCA,PCVA}, we say that PKE is OW-ATK-secure if
Advow-atk

A,PKE(κ) is negligible for any PPT adversary A.

B Transformations in the Random Oracle Model

We summarize transformations among PKE, DPKE and KEM in the ROM in
Fig. 10.

GOAL-ATTACKg indicate the class of PKEs that is GOAL-ATTACK-secure
and 2−ω(lg κ)-uniformity [FO00,FO99], or equivalently ω(lg κ)-spreading [FO13].
Solid arrows indicate tight reductions, dashed arrows indicate non-tight reduc-
tions, thin arrows indicate trivial reductions, thick black arrows indicate reduc-
tions in [FO00], thick green arrows indicate reductions in [Den03], and thick blue
arrows indicate reductions in [HHK17].

– The transformation R is in [FO00, Remark 5.5]; R converts PKE =
(Gen,Enc,Dec) with randomness space R into PKE′ = (Gen′,Enc′,Dec′) with
randomness space R × R′. They defined Gen′ := Gen, Enc′(ek , x; (r, r′)) :=
(Enc(ek , x; r), r′) and Dec′(dk , (c, r′)) := Dec(dk , c). This change amplifies
γ-uniformity of PKE into (γ/ |R′|)-uniformity.
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Fig. 10. Transformations in the ROM. GOAL-ATTACKg indicates the class of PKEs
that is GOAL-ATTACK-secure and 2−ω(lg κ)-uniformity [FO00,FO99], or equivalently
ω(lg κ)-spreading [FO13]. Solid arrows indicate tight reductions, dashed arrows indicate
non-tight reductions, thin arrows indicate trivial reductions, thick black arrows indicate
reductions in [FO00], thick green arrows indicate reductions in [Den03], and thick blue
arrows indicate reductions in [HHK17]. The transformation R is in [FO00, Remark 5.5].
The transformations Dent1, Dent2, Dent3, Dent4, and Dent5 are given in [Den03]. The
transformations S�, T, U⊥, U�⊥, U⊥

m, U�⊥
m, and QU⊥

m are given in [HHK17]. (Color figure
online)

– The transformations Dent1, Dent2, Dent3, Dent4, and Dent5 are given
in [Den03].

– The transformations S�, T, U⊥, U�⊥, U⊥
m, U�⊥

m, and QU⊥
m are given in [HHK17].

Note that Dent1 ≈ U⊥
m, which is a KEM variant of BR93; Dent2 ≈ U⊥, which

is a KEM variant of REACT/GEM; Dent4 ≈ QU⊥
m; Dent5 ≈ FO⊥

m = U⊥
m ◦ T,

which is a KEM variant of FO.
Albrecht, Orsini, Paterson, Peer, and Smart [AOP+17] gave the tight security

proof for Dent5 when the underlying PKE is a certain Ring-LWE-based PKE
scheme. We also observe that Dent5 is decomposed into U⊥

m ◦ T. Thus, starting
from IND-CPAg-secure PKE, we obtain the similar proof by combining reductions
in [HHK17].

C Omitted Proofs

C.1 Proof of Lemma 2.2

Here, we prove Lemma 2.2. Before proving the lemma, we introduce another
lemma, which gives a lower bound for a decisional variant of Grover’s search
problem.
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Lemma C.1 ([SY17, Lemma C.1]). Let gs : {0, 1}� → {0, 1} denotes a function
defined as gs(s) := 1 and gs(s′) := 0 for all s′ �= s, and g⊥ : {0, 1}� → {0, 1}
denotes a function that returns 0 for all inputs. Then for any unbounded time
adversary A that issues at most q quantum queries to its oracle, we have

Pr[1 ← Ags() | s ← {0, 1}�] − Pr[1 ← Ag⊥()] ≤ q · 2
−�+1

2 .

Then we prove Lemma 2.2 relying on the above lemma.

Proof. (of Lemma 2.2) To prove the theorem, we consider the following sequence
of games for an algorithm A.

Game 0: This game returns as AH,H(s,·)() outputs, where s ← {0, 1}� and H :
{0, 1}� × X → Y are random functions.

Game 1: This game returns as AO[s,H0,H1],H1(·)() outputs, where s ← {0, 1}�,
H0 : {0, 1}� × X → Y and H1 : X → Y are independent random functions,
and O[s,H0,H1] is a function defined as

O[s,H0,H1](s′, x) :=

{

H0(s′, x) if s′ �= s,

H1(x) if s′ = s.
(1)

Game 2: This game returns as AH0,H1() outputs, where H0 : {0, 1}� ×X → Y and
H1 : X → Y are independent random functions.

This completes the descriptions of games. We want to prove that |Pr[Game2 =
1]−Pr[Game0 = 1]| ≤ qH · 2−�+1

2 . It is easy to see that we have Pr[Game0 = 1] =
Pr[Game1 = 1]. What is left is to prove that |Pr[Game2 = 1] − Pr[Game1 = 1]| ≤
qH ·2−�+1

2 . We prove this by a reduction to Lemma C.1. We consider the following
algorithm B that has access to g that is gs for randomly chosen s ← {0, 1}� or
g⊥ where gs and g⊥ are as defined in Lemma C.1.

Bg: It picks two random functions H0 : {0, 1}� × X → Y and H1 : X → Y, and
runs AO,H1 where B simulates O as follows: If A queries (s′, x) to O, B
queries s′ to its own oracle g to obtain a bit b. If b = 0, then B returns
H0(s′, x) to A and if b = 1, then B returns H1(x′) to A.

This completes the description of B. It is easy to see that if g = gs for randomly
chosen s ← {0, 1}�, then B perfectly simulates Game1, and if g = g⊥, then B
perfectly simulates Game2. Therefore, we have

|Pr[Game1 = 1] − Pr[Game2 = 1]| =
∣
∣
∣Pr[1 ← Bgs() | s ← {0, 1}�] − Pr[1 ← Bg⊥()]

∣
∣
∣ .

On the other hand, by Lemma C.1, we have
∣
∣Pr[1 ← Bgs() | s ← {0, 1}�] − Pr[1 ← Bg⊥()]

∣
∣ ≤ qH · 2

−�+1
2 ,

since the number of B’s queries to its own oracle is exactly the same as the
number of A’s queries to O, which is equal to qH. This completes the proof of
Lemma 2.2. ��
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