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Abstract. Consider key agreement by two parties who start out know-
ing a common secret (which we refer to as “pass-string”, a generalization
of “password”), but face two complications: (1) the pass-string may come
from a low-entropy distribution, and (2) the two parties’ copies of the
pass-string may have some noise, and thus not match exactly. We pro-
vide the first efficient and general solutions to this problem that enable,
for example, key agreement based on commonly used biometrics such as
iris scans.

The problem of key agreement with each of these complications indi-
vidually has been well studied in literature. Key agreement from low-
entropy shared pass-strings is achieved by password-authenticated key
exchange (PAKE), and key agreement from noisy but high-entropy shared
pass-strings is achieved by information-reconciliation protocols as long as
the two secrets are “close enough.” However, the problem of key agree-
ment from noisy low-entropy pass-strings has never been studied.

We introduce (universally composable) fuzzy password-authenticated
key exchange (fPAKE), which solves exactly this problem. fPAKE does
not have any entropy requirements for the pass-strings, and enables
secure key agreement as long as the two pass-strings are “close” for some
notion of closeness. We also give two constructions. The first construction
achieves our fPAKE definition for any (efficiently computable) notion of
closeness, including those that could not be handled before even in the
high-entropy setting. It uses Yao’s garbled circuits in a way that is only
two times more costly than their use against semi-honest adversaries,
but that guarantees security against malicious adversaries. The second
construction is more efficient, but achieves our fPAKE definition only
for pass-strings with low Hamming distance. It builds on very simple
primitives: robust secret sharing and PAKE.
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1 Introduction

Consider key agreement by two parties who start out knowing a common secret
(which we refer to as “pass-string”, a generalization of “password”). These
parties may face several complications: (1) the pass-string may come from a
non-uniform, low-entropy distribution, and (2) the two parties’ copies of the
pass-string may have some noise, and thus not match exactly. The use of such
pass-strings for security has been extensively studied; examples include
biometrics and other human-generated data [15,23,29,39,46,49,66], physically
unclonable functions (PUFs) [30,52,57,58,64], noisy channels [61], quantum
information [9], and sensor readings of a common environment [32,33].

The Noiseless Case. When the starting secret is not noisy (i.e., the same for both
parties), existing approaches work quite well. The case of low-entropy secrets is
covered by password-authenticated key exchange (PAKE) (a long line of work, with
first formal models introduced in [7,14]). A PAKE protocol allows two parties to
agree on a shared high-entropy key if and only if they hold the same short pass-
word. Even though the password may have low entropy, PAKE ensures that off-line
dictionary attacks are impossible. Roughly speaking, an adversary has to partici-
pate in one on-line interaction for every attempted guess at the password. Because
key agreement is not usually the final goal, PAKE protocols need to be composed
with whatever protocols (such as authenticated encryption) use the output key.
This composability has been achieved by universally composable (UC) PAKE
defined by Canetti et al. [20] and implemented in several follow-up works.

In the case of high-entropy secrets, off-line dictionary attacks are not a con-
cern, which enables more efficient protocols. If the adversary is passive, ran-
domness extractors [51] do the job. The case of active adversaries is covered
by the literature on so-called robust extractors defined by Boyen et al. [13]
and, more generally, by many papers on privacy amplification protocols secure
against active adversaries, starting with the work of Maurer [45]. Composability
for these protocols is less studied; in particular, most protocols leak information
about the pass-string itself, in which case reusing the pass-string over multiple
protocol executions may present problems [12] (with the exception of [19]).

The Noisy Case. When the pass-string is noisy (i.e., the two parties have slightly
different versions of it), this problem has been studied only for the case of high-
entropy pass-strings. A long series of works on information-reconciliation pro-
tocols started by Bennett et al. [9] and their one-message variants called fuzzy
extractors (defined by Dodis et al. [26], further enhanced for active security
starting by Renner and Wolf [54]) achieves key agreement when the pass-string
has a lot of entropy and not too much noise. Unfortunately, these approaches do
not extend to the low-entropy setting and are not designed to prevent off-line
dictionary attacks.
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Constructions for the noisy case depend on the specific noise model. The case
of binary Hamming distance—when the n pass-string characters held by the two
parties are the same at all but δ locations—is the best studied. Most existing
constructions require, at a minimum, that the pass-string should have at least δ
bits of entropy. This requirement rules out using most kinds of biometric data
as the pass-string—for example, estimates of entropy for iris scans (transformed
into binary strings via wavelet transforms and projections) are considerably lower
than the amount of errors that need to be tolerated [11, Sect. 5]. Even the PAKE-
based construction of Boyen et al. [13] suffers from the same problem.

One notable exception is the construction of Canetti et al. [19], which does not
have such a requirement, but places other stringent limitations on the probability
distribution of pass-strings. In particular, because it is a one-message protocol,
it cannot be secure against off-line dictionary attacks.

1.1 Our Contributions

We provide definitions and constant-round protocols for key agreement from
noisy pass-strings that:

– Resist off-line dictionary attacks and thus can handle low-entropy pass-
strings,

– Can handle a variety of noise types and have high error-tolerance, and
– Have well specified composition properties via the UC framework [17].

Instead of imposing entropy requirements or other requirements on the distri-
bution of pass-strings, our protocols are secure as long as the adversary cannot
guess a pass-string value that is sufficiently close. There is no requirement, for
example, that the amount of pass-string entropy is greater than the number of
errors; in fact, one of our protocols is suitable for iris scans. Moreover, our proto-
cols prevent off-line attacks, so each adversarial attempt to get close to the correct
pass-string requires an on-line interaction by the adversary. Thus, for example,
our protocols can be meaningfully run with pass-strings whose entropy is only 30
bits—something not possible with any prior protocols for the noisy case.

New Models. Our security model is in the Universal Composability (UC) Frame-
work of Canetti [17]. The advantage of this framework is that it comes with a
composability theorem that ensures that the protocol stays secure even running
in arbitrary environments, including arbitrary parallel executions. Composabil-
ity is particularly important for key agreement protocols, because key agreement
is rarely the ultimate goal. The agreed-upon key is typically used for some sub-
sequent protocol—for example, a secure channel. Further, this framework allows
to us to give a definition that is agnostic to how the initial pass-strings are
generated. We have no entropy requirements or constraints on the pass-string
distribution; rather, security is guaranteed as long as the adversary’s input to
the protocol is not close enough to the correct pass-string.

As a starting point, we use the definition of UC security for PAKE from
Canetti et al. [20]. The PAKE ideal functionality is defined as follows: the secret
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pass-strings (called “passwords” in PAKE) of the two parties are the inputs to the
functionality, and two random keys, which are equal if and only if the two inputs
are equal, are the outputs. The main change we make to PAKE is enhancing the
functionality to give equal keys even if the two inputs are not equal, as long
as they are close enough. We also relax the security requirement to allow one
party to find out some information about the other party’s input—perhaps even
the entire input—if the two inputs are close. This relaxation makes sense in
our application: if the two parties are honest, then the differences between their
inputs are a problem rather than a feature, and we would not mind if the inputs
were in fact the same. The benefit of this relaxation is that it permits us to
construct more efficient protocols. (We also make a few other minor changes
which will be described in Sect. 2.) We call our new UC functionality “Fuzzy
Password-Authenticated Key Exchange” or fPAKE.

New Protocols. The only prior PAKE-based protocol for the noisy setting by
Boyen et al. [13], although more efficient than ours, does not satisfy our goal. In
particular, it is not composable, because it reveals information about the secret
pass-strings (we demonstrate this formally in the full version of this paper [28]).
Because some information about the pass-strings is unconditionally revealed,
high-entropy pass-strings are required. Thus, in order to realize our definition
for arbitrary low-entropy pass-strings, we need to construct new protocols.

Realizing our fPAKE definition is easy using general two-party computation
techniques for protocols with malicious adversaries and without authenticated
channels [4]. However, we develop protocols that are considerably more effi-
cient: our definitional relaxation allows us to build protocols that achieve secu-
rity against malicious adversaries but cost just a little more than the generic
two-party computation protocols that achieve security only against honest-but-
curious adversaries (i.e., adversaries who do not deviate from the protocol, but
merely try to infer information they are not supposed to know).

Our first construction uses Yao’s garbled circuits [6,63] and oblivious transfer
(see [21] and references therein). The use of these techniques is standard in
two-party computation. However, by themselves they give protocols secure only
against honest-but-curious adversaries. In order to prevent malicious behavior of
the players, one usually applies the cut-and-choose technique [42], which is quite
costly: to achieve an error probability of 2−λ, the number of circuits that need to
be garbled increases by a factor of λ, and the number of oblivious transfers that
need to be performed increases by a factor of λ/2. We show that for our special
case, to achieve malicious security, it suffices to repeat the honest-but-curious
protocol twice (once in each direction), incurring only a factor of 2 overhead over
the semi-honest case.1 Mohassel and Franklin [48] and Huang et al. [34] suggest

1 Gasti et al. [31] similarly use Yao’s garbled circuits for continuous biometric user
authentication on a smartphone. Our approach can eliminate the third party in
their application, at the cost of requiring two garbled circuits instead of one. As far
as we know, ours is the first use of garbled circuits in the two-party fully malicious
setting without calling on an expensive transformation.
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a similar technique (known as “dual execution”), but at the cost of leaking a bit
of the adversary’s choice to the adversary. In contrast, our construction leaks
nothing to the adversary at all (as long as the pass-strings are not close). This
construction works regardless of what it means for the two inputs to be “close,”
as long as the question of closeness can be evaluated by an efficient circuit.

Our second construction is for the Hamming case: the two n-character pass-
strings have low Hamming distance if not too many characters of one party’s
pass-string are different from the corresponding characters of the other’s pass-
string. The two parties execute a PAKE protocol for each position in the string,
obtaining n values each that agree or disagree depending on whether the char-
acters of the pass-string agree or disagree in the corresponding positions. It is
important that at this stage, agreement or disagreement at individual positions
remains unknown to everyone; we therefore make use of a special variant of
PAKE which we call implicit-only PAKE (we give a formal UC security defini-
tion of implicit-only PAKE and show that it is realized by the PAKE protocol
from [1,8]). This first step upgrades Hamming distance over a potentially small
alphabet to Hamming distance over an exponentially large alphabet. We then
secret-share the ultimate output key into n shares using a robust secret sharing
scheme, and encrypt each share using the output of the corresponding PAKE
protocol.

The second construction is more efficient than the first in the number of
rounds, communication, and computation. However, it works only for Hamming
distance. Moreover, it has an intrinsic gap between functionality and security:
if the honest parties need to be within distance δ to agree, then the adversary
may break security by guessing a secret within distance 2δ. See Fig. 10 for a
comparison between the two constructions.

The advantages of our protocols are similar to the advantages of UC PAKE:
They provide composability, protection against off-line attacks, the ability to
use low-entropy inputs, and handle any distribution of secrets. And, of course,
because we construct fuzzy PAKE, our protocols can handle noisy inputs—
including many types of noisy inputs that could not be handled before. Our first
protocol can handle any type of noise as long as the notion of “closeness” can be
efficiently computed, whereas most prior work was for Hamming distance only.
However, these advantages come at the price of efficiency. Our protocols require
2–5 rounds of interaction, as opposed to many single-message protocols in the
literature [19,25,60]. They are also more computationally demanding than most
existing protocols for the noisy case, requiring one public-key operation per input
character. We emphasize, however, that our protocols are much less computa-
tionally demanding than the protocols based on general two-party computation,
as already discussed above, or general-purpose obfuscation, as discussed in [10,
Sect. 4.3.4].

2 Security Model

We now present a security definition for fuzzy password-authenticated key
exchange (fPAKE). We adapt the definition of PAKE from Canetti et al. [20]
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to work for pass-strings (a generalization of “passwords”) that are similar, but
not necessarily equal. Our definition uses measures of the distance d(pw, pw′)
between pass-strings pw, pw′ ∈ F

n
p . In Sects. 3.3 and 4, Hamming distance is

used, but in the generic construction of Sect. 3, any other notion of distance can
be used instead. We say that pw and pw′ are “similar enough” if d(pw, pw′) ≤ δ
for a distance notion d and a threshold δ that is hard-coded into the functionality.

To model the possibility of dictionary attacks, the functionality allows the
adversary to make one pass-string guess against each player (P0 and P1). In the
real world, if the adversary succeeds in guessing (a pass-string similar enough
to) party Pi’s pass-string, it can often choose (or at least bias) the session key
computed by Pi. To model this, the functionality then allows the adversary to
set the session key for Pi.

As usual in security notions for key exchange, the adversary also sets the
session keys for corrupted players. In the definition of Canetti et al. [20], the
adversary additionally sets Pi’s key if P1−i is corrupted. However, contrarily to
the original definition, we do not allow the adversary to set Pi’s key if P1−i is
corrupted but did not guess Pi’s pass-string. We make this change in order to
protect an honest Pi from, for instance, revealing sensitive information to an
adversary who did not successfully guess her pass-string, but did corrupt her
partner.

Another minor change we make is considering only two parties—P0 and P1—
in the functionality, instead of considering arbitrarily many parties and enforcing
that only two of them engage the functionality. This is because universal com-
posability takes care of ensuring that a two-party functionality remains secure
in a multi-party world.

As in the definition of Canetti et al. [20], we consider only static corruptions
in the standard corruption model of Canetti [17]. Also as in their definition,
we chose not to provide the players with confirmation that key agreement was
successful. The players might obtain such confirmation from subsequent use of
the key.

By default, in the fPAKE functionality the TestPwd interface provides the
adversary with one bit of information—whether the pass-string guess was correct
or not. This definition can be strengthened by providing the adversary with no
information at all, as in implicit-only PAKE (FiPAKE, Fig. 7), or weakened by
providing the adversary with extra information when the adversary’s guess is
close enough.

To capture the diversity of possibilities, we introduce a more general TestPwd
interface, described in Fig. 2. It includes three leakage functions that we will
instantiate in different ways below—Lc if the guess is close-enough to succeed,
Lf if it is too far. Moreover, a third leakage function—Lm for medium distance—
allows the adversary to get some information even if the adversary’s guess is only
somewhat close (closer than some parameter γ ≥ δ), but not close enough for
successful key agreement. We thus decouple the distance needed for functionality
from the (possibly larger) distance needed to guarantee security; the smaller the
gap between these two distances, the better, of course.
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Fig. 1. Ideal functionality fPAKE

Fig. 2. A modified TestPwd interface to allow for different leakage

Below, we list the specific leakage functions Lc, Lm and Lf that we consider
in this work, in order of decreasing strength (or increasing leakage):

1. The strongest option is to provide no feedback at all to the adversary. We
define fPAKEN to be the functionality described in Fig. 1, except that TestPwd
is from Fig. 2 with

LN
c (pwi, pw

′
i) = LN

m(pwi, pw
′
i) = LN

f (pwi, pw
′
i) = ⊥ .
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2. The basic functionality fPAKE, described in Fig. 1, leaks the correctness of
the adversary’s guess. That is, in the language of Fig. 2,

Lc(pwi, pw
′
i) = “correct guess”,

and Lm(pwi, pw
′
i) = Lf (pwi, pw

′
i) = “wrong guess”.

The classical PAKE functionality from [20] has such a leakage.
3. Assume the two pass-strings are strings of length n over some finite alphabet,

with the jth character of the string pw denoted by pw[j]. We define fPAKEM

to be the functionality described in Fig. 1, except that TestPwd is from Fig. 2,
with Lc and Lm that leak the indices at which the guessed pass-string differs
from the actual one when the guess is close enough (we will call this leakage
the mask of the pass-strings). That is,

LM
c (pwi, pw

′
i) = ({j s.t.pwi[j] = pw′

i[j]}, “correct guess”),

LM
m (pwi, pw

′
i) = ({j s.t.pwi[j] = pw′

i[j]}, “wrong guess”)

and LM
f (pwi, pw

′
i) = “wrong guess”.

4. The weakest definition—or the strongest leakage—reveals the entire actual
pass-string to the adversary if the pass-string guess is close enough. We define
fPAKEP to be the functionality described in Fig. 1, except that TestPwd is
from Fig. 2, with

LP
c (pwi, pw

′
i) = LP

m(pwi, pw
′
i) = pwi and LP

f (pwi, pw
′
i) = “wrong guess”.

Here, LP
c and LP

m do not need to include “correct guess” and “wrong guess”,
respectively, because this is information that can be easily derived from pwi

itself.

The first two functionalities are the strongest, but there are no known con-
structions that realize them, other than through generic two-party computation
secure against malicious adversaries, which is an inefficient solution. The last two
functionalities, though weaker, still provide meaningful security, especially when
γ = δ. Intuitively, this is because strong leakage only occurs when an adversary
guesses a “close” pass-string, which enables him to authenticate as though he
knows the real pass-string anyway.

In Sect. 3, we present a construction satisfying fPAKEP for any efficiently
computable notion of distance, with γ = δ (which is the best possible). We
present a construction for Hamming distance satisfying fPAKEM in Sect. 4, with
γ = 2δ.

3 General Construction Using Garbled Circuits

In this section, we describe a protocol realizing fPAKEP that uses Yao’s gar-
bled circuits [63]. We briefly introduce this primitive in Sect. 3.1 and refer to
Yakoubov [62] for a more thorough introduction.
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The Yao’s garbled circuit-based fPAKE construction has two advantages:

1. It is more flexible than other approaches; any notion of distance that can
be efficiently computed by a circuit can be used. In Sect. 3.3, we describe a
suitable circuit for Hamming distance. The total size of this circuit is O(n),
where n is the length of the pass-strings used. Edit distance is slightly less
efficient, and uses a circuit whose total size is O(n2).

2. There is no gap between the distances required for functionality and
security—that is, there is no leakage about the pass-strings used unless they
are similar enough to agree on a key. In other words, δ = γ.

Informally, the construction involves the garbled evaluation of a circuit that
takes in two pass-strings as input, and computes whether their distance is less
than δ. Because Yao’s garbled circuits are only secure against semi-honest gar-
blers, we cannot simply have one party do the garbling and the other party
do the evaluation. A malicious garbler could provide a garbling of the wrong
function—maybe even a constant function—which would result in successful key
agreement even if the two pass-strings are very different. However, as suggested
by Mohassel and Franklin [48] and Huang et al. [34], since a malicious evaluator
(unlike a malicious garbler) cannot compromise the computation, by performing
the protocol twice with each party playing each role once, we can protect against
malicious behavior. They call this the dual execution protocol.

The dual execution protocol has the downside of allowing the adversary to
specify and receive a single additional bit of leakage. It is important to note
that because of this, dual execution cannot directly be used to instantiate
fPAKE, because a single bit of leakage can be too much when the entropy of
the pass-strings is low to begin with—a few adversarial attempts will uncover
the entire pass-string. Our construction is as efficient as that of Mohassel et al.
and Huang et al., while guaranteeing no leakage to a malicious adversary in the
case that the pass-strings used are not close. We describe how we achieve this in
Sect. 3.1.3.

3.1 Building Blocks

In Sect. 3.1.1, we briefly review oblivious transfer. In Sect. 3.1.2, we review Yao’s
Garbled Circuits. In Sect. 3.1.3, we describe in more detail our take on the dual
execution protocol, and how we avoid leakage to the adversary when the pass-
strings used are dissimilar.

3.1.1 Oblivious Transfer (OT)
Informally, 1-out-of-2 Oblivious Transfer (see [21] and citations therein) enables
one party (the sender) to transfer exactly one of two secrets to another party
(the receiver). The receiver chooses (by index 0 or 1) which secret she wants.
The security of the OT protocol guarantees that the sender does not learn this
choice bit, and the receiver does not learn anything about the other secret.
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3.1.2 Yao’s Garbled Circuits (YGC)
Next, we give a brief introduction to Yao’s garbled circuits [63]. We refer to Yak-
oubov [62] for a more detailed description, as well as a summary of some of the
Yao’s garbled circuits optimizations [3,5,38,40,53,65]. Informally, Yao’s garbled
circuits are an asymmetric secure two-party computation scheme. They enable
two parties with sensitive inputs (in our case, pass-strings) to compute a joint
function of their inputs (in our case, an augmented version of similarity) without
revealing any additional information about their inputs. One party “garbles” the
function they wish to evaluate, and the other evaluates it in its garbled form.

Below, we summarize the garbling scheme formalization of Bellare et al. [6],
which is a generalization of YGC.

Functionality. A garbling scheme G consists of four polynomial-time algorithms
(Gb,En,Ev,De):

1. Gb(1λ, f) → (F, e, d). The garbling algorithm Gb takes in the security param-
eter λ and a circuit f , and returns a garbled circuit F , encoding information
e, and decoding information d.

2. En(e, x) → X. The encoding algorithm En takes in the encoding information
e and an input x, and returns a garbled input X.

3. Ev(F,X) → Y . The evaluation algorithm Ev takes in the garbled circuit F
and the garbled input X, and returns a garbled output Y .

4. De(d, Y ) → y. The decoding algorithm De takes in the decoding information
d and the garbled output Y , and returns the plaintext output y.

A garbling scheme G = (Gb,En,Ev,De) is projective if encoding information e
consists of 2n wire labels (each of which is essentially a random string), where
n is the number of input bits. Two wire labels are associated with each bit of
the input; one wire label corresponds to the event of that bit being 0, and the
other corresponds to the event of that bit being 1. The garbled input includes
only the wire labels corresponding to the actual values of the input bits. In
projective schemes, in order to give the evaluator the garbled input she needs
for evaluation, the garbler can send her all of the wire labels corresponding to
the garbler’s input. The evaluator can then use OT to retrieve the wire labels
corresponding to her own input.

Similarly, we call a garbling scheme output-projective if decoding information
d consists of two labels for each output bit, one corresponding to each possible
value of that bit. The garbling schemes used in this paper are both projective
and output-projective.

Correctness. Informally, a garbling scheme (Gb,En,Ev,De) is correct if it always
holds that De(d,Ev(F,En(e, x))) = f(x).

Security. Bellare et al. [6] describe three security notions for garbling schemes:
obliviousness, privacy and authenticity. Informally, a garbling scheme G =
(Gb,En,Ev,De) is oblivious if a garbled function F and a garbled input X do
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not reveal anything about the input x. It is private if additionally knowing the
decoding information d reveals the output y, but does not reveal anything more
about the input x. It is authentic if an adversary, given F and X, cannot find a
garbled output Y ′ �= Ev(F,X) which decodes without error.

In the full version of this paper [28], we define a new property of output-
projective garbling schemes called garbled output randomness. Informally, it
states that even given one of the output labels, the other should be indistin-
guishable from random.

3.1.3 Malicious Security: A New Take on Dual Execution
with Privacy-Correctness Tradeoffs

While Yao’s garbled circuits are naturally secure against a malicious evaluator,
they have the drawback of being insecure against a malicious garbler. A gar-
bler can “mis-garble” the function, either replacing it with a different function
entirely or causing an error to occur in an informative way (this is known as
“selective failure”).

Typically, malicious security is introduced to Yao’s garbled circuits by using
the cut-and-choose transformation [35,41,43]. To achieve a 2−λ probability of
cheating without detection, the parties need to exchange λ garbled circuits [41].2

Some of the garbled circuits are “checked”, and the rest of them are evaluated,
their outputs checked against one another for consistency. Because of the factor
of λ computational overhead, though, cut-and-choose is expensive, and too heavy
a tool for fPAKE. Other, more efficient transformations such as LEGO [50] and
authenticated garbling [59] exist as well, but those rely heavily on pre-processing,
which cannot be used in fPAKE since it requires advance interaction between the
parties.

Mohassel and Franklin [48] and Huang et al. [34] suggest an efficient trans-
formation known as “dual execution”: each party plays each role (garbler and
evaluator) once, and then the two perform a comparison step on their outputs
in a secure fashion. Dual execution incurs only a factor of 2 overhead over semi-
honest garbled circuits. However, it does not achieve fully malicious security. It
guarantees correctness, but reduces the privacy guarantee by allowing a malicious
garbler to learn one bit of information of her choice. Specifically, if a malicious
garbler garbles a wrong circuit, she can use the comparison step to learn one
bit about the output of this wrong circuit on the other party’s input. This one
extra bit of information could be crucially important, violating the privacy of
the evaluator’s input in a significant way.

We introduce a tradeoff between correctness and privacy for boolean func-
tions. For one of the two possible outputs (without loss of generality, ‘0’), we
restore full privacy at the cost of correctness. The new privacy guarantee is that
if the correct output is ‘0’, then a malicious adversary cannot learn anything
beyond this output, but if the correct output is ‘1’, then she can learn a single
bit of her choice. The new correctness guarantee is that a malicious adversary
2 There are techniques [44] that improve this number in the amortized case when many

computations are done—however, this does not fit our setting.
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can cause the computation that should output ‘1’ to output ‘0’ instead, but not
the other way around.

The main idea of dual execution is to have the two parties independently
evaluate one another’s circuits, learn the output values, and compare the output
labels using a secure comparison protocol. In our construction, however, the par-
ties need not learn the output values before the comparison. Instead, the parties
can compare output labels assuming an output of ‘1’, and if the comparison
fails, the output is determined to be ‘0’.

More formally, let d0[0], d0[1] be the two output labels corresponding to P0’s
garbled circuit, and d1[0], d1[1] be the two output labels corresponding to P1’s
circuit. Let Y0 be the output label learned by P1 as a result of evaluation, and
Y1 be the label learned by P0. The two parties securely compare (d0[1], Y1) to
(Y0, d1[1]); if the comparison succeeds, the output is “1”.

Our privacy–correctness tradeoff is perfect for fPAKE. If the parties’ inputs
are similar, learning a bit of information about each other’s inputs is not prob-
lematic, since arguably the small amount of noise in the inputs is a bug, not
a feature. If the parties’ inputs are not similar, however, we are guaranteed to
have no leakage at all. We pay for the lack of leakage by allowing a malicious
party to force an authentication failure even when authentication should succeed.
However, either party can do so anyway by providing an incorrect input.

In Sect. 3.2.2, we describe our Yao’s garbled circuit-based fPAKE protocol.
Note that in this protocol, we omit the final comparison step; instead, we use
the output lables ((d0[1], Y1) and (Y0, d1[1])) to compute the agreed-upon key
directly.

3.2 Construction

Building a fPAKE from YGC and OT is not straightforward, since all construc-
tions of OT assume authenticated channels, and fPAKE (or PAKE) is designed
with unauthenticated channels in mind. We therefore follow the framework of
Canetti et al. [18], who build a UC secure PAKE protocol using OT. We first
build our protocol assuming authenticated channels, and then apply the generic
transformation of Barak et al. [4] to adapt it to the unauthenticated channel
setting. More formally, we proceed in three steps:

1. First, in Sect. 3.2.1, we define a randomized fuzzy equality-testing functional-
ity FRFE, which is analogous to the randomized equality-testing functionality
of Canetti et al.

2. In Sect. 3.2.2, we build a protocol that securely realizes FRFE in the OT-hybrid
model, assuming authenticated channels.

3. In Sect. 3.2.3, we apply the transformation of Barak et al. to our protocol.
This results in a protocol that realizes the “split” version of functionality
FP

RFE, which we show to be enough to implement to fPAKEP . Split function-
alities, which were introduced by Barak et al., adapt functionalities which
assume authenticated channels to an unauthenticated channels setting. The
only additional ability an adversary has in a split functionality is the ability
to execute the protocol separately with the participating parties.
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Fig. 3. Ideal functionality FP
RFE for randomized fuzzy equality

3.2.1 The Randomized Fuzzy Equality Functionality
Figure 3 shows the randomized fuzzy equality functionality FP

RFE, which is essen-
tially what FP

fPAKE would look like assuming authenticated channels. The primary
difference between FP

RFE and FP
fPAKE is that the only pass-string guesses allowed

by FP
RFE are the ones actually used as protocol inputs; this limits the adversary

to guessing by corrupting one of the participating parties, not through man in
the middle attacks. Like FP

fPAKE, if a pass-string guess is “similar enough”, the
entire pass-string is leaked. This leakage could be replaced with any other leak-
age from Sect. 2; FRFE would leak the correctness of the guess, FM

RFE would leak
which characters are the same between the two pass-strings, etc.

Note that, unlike the randomized equality functionality in the work of
Canetti et al. [18], FP

fPAKE has a TestPwd interface. This is because NewKey does
not return the necessary leakage to an honest user. So, an interface enabling the
adversary to retrieve additional information is necessary.

3.2.2 A Randomized Fuzzy Equality Protocol
In Fig. 4 we introduce a protocol ΠRFE that securely realizes FP

RFE using Yao’s
garbled circuits. Garbled circuits are secure against a malicious evaluator,
but only a semi-honest garbler; however, we obtain security against malicious
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Fig. 4. A protocol ΠRFE realizing FP
RFE using Yao’s garbled circuits and an Ideal OT

Functionality. If at any point an expected message fails to arrive (or arrives malformed),
the parties output a random key. Subscripts are used to indicate who produced the
object in question. If a double subscript is present, the second subscript indicates whose
data the object is meant for use with. For instance, a double subscript 0, 1 denotes that
the object was produced by party P0 for use with P1’s data; e0,1 is encoding information
produced by P0 to encode P1’s pass-string. Note that we abuse notation by encoding
inputs to a single circuit separately; the input to P0’s circuit corresponding to pw0 is
encoded by P0 locally, and the input corresponding to pw1 is encoded via OT. For any
projective garbling scheme, this is not a problem.

adversaries by having each party play each role once, as describe in Sect. 3.1.3.
In more detail, both parties Pi ∈ {P0,P1} proceed as follows:

1. Pi garbles the circuit f that takes in two pass-strings pw0 and pw1, and
returns ‘1’ if d(pw0, pw1) ≤ δ and ‘0’ otherwise. Section 3.3 describes how f
can be designed efficiently for Hamming distance. Instead of using the output
of f (‘0’ or ‘1’), we will use the garbled output, also referred to as an output
label in an output-projective garbling scheme. The possible output labels are
two random strings—one corresponding to a ‘1’ output (we call this label
ki,correct), and one corresponding to a ‘0’ output (we call this label ki,wrong).

2. Pi uses OT to retrieve the input labels from P1−i’s garbling that correspond
to Pi’s pass-string.

3. Pi sends P1−i her garbled circuit, together with the input labels from her
garbling that correspond to her own pass-string. After this step, Pi should
have P1−i’s garbled circuit and a garbled input consisting of input labels
corresponding to the bits of the two pass-strings.
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4. Pi evaluates P1−i’s garbled circuit, and obtains an output label Y1−i.
5. Pi outputs ki = ki,correct ⊕ Y1−i.

The natural question to ask is why ΠRFE only realizes FP
RFE, and not a stronger

functionality with less leakage. We argue this assuming (without loss of general-
ity) that P1 is corrupted. ΠRFE cannot realize a functionality that leaks less than
the full pass-string pw0 to P1 if d(pw0, pw1) ≤ δ; intuitively, this is because if P1

knows a pass-string pw1 such that d(pw0, pw1) ≤ δ, P1 can extract the actual
pass-string pw0, as follows. If P1 plays the role of OT receiver and garbled circuit
evaluator honestly, P0 and P1 will agree on k0,correct. P1 can then mis-garble a
circuit that returns k1,correct if the first bit of pw0 is 0, and k1,wrong if the first
bit of pw0 is 1. By testing whether the resulting keys k0 and k1 match (which
P1 can do in subsequent protocols where the key is used), P1 will be able to
determine the actual first bit of pw0. P1 can then repeat this for the second bit,
and so on, extracting the entire pass-string pw0. Of course, if P1 does not know
a sufficiently close pw1, P1 will not be able to perform these tests, because the
keys will not match no matter what circuit P1 garbles.

More formally, if P1 knows a pass-string pw1 such that d(pw0, pw1) ≤ δ
and carries out the mis-garbling attack described above, then in the real world,
the keys produced by P0 and P1 either will or will not match based on some
predicate p of P1’s choosing on the two pass-strings pw0 and pw1. Therefore, in
the ideal world, the keys should also match or not match based on p(pw0, pw1);
otherwise, the environment will be able to distinguish between the two worlds.
In order to make that happen, since the simulator does not know the predicate
p in question, the simulator must be able to recover the entire pass-string pw0

(given a sufficiently close pw1) through the TestPwd interface.

Theorem 1. If (Gb,En,Ev,De) is a projective, output-projective and garbled-
output random secure garbling scheme, then protocol ΠRFE with authenticated
channels in the FOT-hybrid model securely realizes FP

RFE with respect to static
corruptions for any threshold δ, as long as the pass-string space and notion of
distance are such that for any pass-string pw, it is easy to compute another
pass-string pw′ such that d(pw, pw′) > δ.

Proof (Sketch). For every efficient adversary A, we describe a simulator SRFE

such that no efficient environment can distinguish an execution with the real
protocol ΠRFE and A from an execution with the ideal functionality FP

RFE and
SRFE. SRFE is described in the full version of this paper. We prove indistinguisha-
bility in a series of hybrid steps. First, we introduce the ideal functionality as a
dummy node. Next, we allow the functionality to choose the parties’ keys, and
we prove the indistinguishability of this step from the previous using the garbled
output randomness property of our garbling scheme Next, we simulate an hon-
est party’s interaction with another honest party without using their pass-string,
and prove the indistinguishability of this step from the previous using the obliv-
iousness property of our garbling scheme. Finally, we simulate an honest party’s
interaction with a corrupted party without using the honest party’s pass-string,
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and prove the indistinguishability of this step from the previous using the privacy
property of our garbling scheme.

We give a more formal proof of Theorem 1 in the full version of this paper [28].

3.2.3 From Split Randomized Fuzzy Equality to fPAKE

The Randomized Fuzzy Equality (RFE) functionality FP
RFE assumes authenti-

cated channels, which an fPAKE protocol cannot do. In order to adapt RFE to our
setting, we use the split functionality transformation defined by Barak et al. [4].
Barak et al. provide a generic transformation from protocols which require
authenticated channels to protocols which do not. In the “transformed” pro-
tocol, an adversary can engage in two separate instances of the protocol with
the sender and receiver, and they will not realize that they are not talking to
one another. However, it does guarantee that the adversary cannot do anything
beyond this attack. In other words, it provides “session authentication”, meaning
that each party is guaranteed to carry out the entire protocol with the same part-
ner, but not “entity authentication”, meaning that the identity of the partner is
not guaranteed.

Barak et al. achieve this transformation in three steps. First, the parties
generate signing and verification keys, and send one another their verification
keys. Next, the parties sign the list of all keys they have received (which, in a two-
party protocol, consists of only one key), sign that list, and send both list and
signature to all other parties. Finally, they verify all of the signatures they have
received. After this process—called “link initialization”—has been completed,
the parties use those public keys they have exchanged to authenticate subsequent
communication.

We describe the Randomized Fuzzy Equality Split Functionality in Fig. 5. It
is simplified from Fig. 1 in Barak et al. [4] because we only need to consider two
parties and static corruptions.

It turns out that sFP
RFE is enough to realize FP

fPAKE. In fact, the protocol ΠRFE

with the split functionality transformation directly realizes FP
fPAKE. In the full

version of this paper [28], we prove that this is the case.

3.3 An Efficient Circuit f for Hamming Distance

The Hamming distance of two pass-strings pw, pw′ ∈ F
n
p is equal to the number of

locations at which the two pass-strings have the same character. More formally,

d(pw, pw′) := | {j | pw[j] �= pw′[j], j ∈ [n]} |.
We design f for Hamming distance as follows:

1. First, f XORs corresponding (binary) pass-string characters, resulting in a
list of bits indicating the (in)equality of those characters.

2. Then, f feeds those bits into a threshold gate, which returns 1 if at least
n−δ of its inputs are 0, and returns 0 otherwise. f returns the output of that
threshold gate, which is 1 if and only if at least n − δ pass-string characters
match.
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Fig. 5. Functionality sFP
RFE

Fig. 6. The f circuit

This circuit, illustrated in Fig. 6, is very efficient to garble; it only requires
n ciphertexts. Below, we briefly explain this garbling. Our explanation assumes
familiarity with YGC literature [62, and references therein]. Briefly, garbled gad-
get labels [3] enable the evaluation of modular addition gates for free (there is no
need to include any information in the garbled circuit to enable this addition).
However, for a small modulus m, converting the output of that addition to a
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binary decision requires m − 1 ciphertexts. We utilize garbled gadgets with a
modulus of n + 1 in our efficient garbling as follows:

1. The input wire labels encode 0 or 1 modulo n+1. However, instead of having
those input wire labels encode the characters of the two pass-strings directly,
they encode the outputs of the comparisons of corresponding characters. If the
jth character of Pi’s pass-string is 0, then Pi puts the 0 label first; however,
if the jth character of Pi’s pass-string is 1, then Pi flips the labels. Then,
when P1−i is using oblivious transfer to retrieve the label corresponding to
her jth pass-string character, she will retrieve the 0 label if the two characters
are equal, and the 1 label otherwise. (Note that this pre-processing on the
garbler’s side eliminates the need to send X0,0 and X1,1 in Fig. 4.)

2. Compute a n-input threshold gate, as illustrated in Fig. 6 of Yakoubov [62].
This gate returns 0 if the sum of the inputs is above a certain threshold (that
is, if at least n − δ pass-string characters differ), and 1 otherwise. This will
require n ciphertexts.

Thus, a garbling of f consists of n ciphertexts. Since fPAKE requires two such
garbled circuits (Fig. 4), 2n ciphertexts will be exchanged.

Larger Pass-string Characters. If larger pass-string characters are used, then
Step 1 above needs to change to check (in)equality of the larger characters instead
of bits. Step 2 will remain the same. There are several ways to perform an
(in)equality check on characters in Fp for p ≥ 2:

1. Represent each character in terms of bits. Step 1 will then consist of XORing
corresponding bits, and taking an OR or the resulting XORs of each character
to get negated equality. This will take an additional n log(p) ciphertexts for
every pass-string character.

2. Use garbled gadget labels from the outset. We will require a larger OT
(1-out-of-p instead of 1-out-of-2), but nothing else will change.

4 Specialized Construction for Hamming Distance

In the full version of this paper [28], we show that it is not straightforward
to build a secure fPAKE from primitives that are, by design, well-suited for
correcting errors. However, PAKE protocols are appealingly efficient compared
to the garbled circuits used in the prior construction. In this section, we will see
whether the failed approach can be rescued in an efficient way, and we answer
this question in the affirmative.

4.1 Building Blocks

4.1.1 Robust Secret Sharing
We recall the definition of a robust secret sharing scheme, slightly simplified for
our purposes from Cramer et al. [22]. For a vector c ∈ F

n
q and a set A ⊆ [n], we

denote with cA the projection F
n
q → F

|A|
q , i.e., the sub-vector (ci)i∈A.
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Definition 2. Let Fq be a finite field and n, t, r ∈ N with t < r ≤ n. An
(n, t, r) robust secret sharing scheme (RSS) consists of two probabilistic algo-
rithms Share : Fq → F

n
q and Reconstruct : Fn

q → Fq with the following properties:

– t-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ t, the projections cA of
c

$← Share(s) and c′
A of c′ $← Share(s′) are identically distributed.

– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s),
and any c̃ such that cA = c̃A, it holds that Reconstruct(c̃) = s.

In other words, an (n, t, r)-RSS is able to reconstruct the shared secret even if
the adversary tampered with up to n − r shares, while each set of t shares is
distributed independently of the shared secret s and thus reveals nothing about
it. We note that we allow for a gap, i.e., r ≥ t + 1. Schemes with r > t + 1 are
called ramp RSS.

4.1.2 Linear Codes
A linear q-ary code of length n and rank k is a subspace C with dimension k of the
vector space F

n
q . The vectors in C are called codewords. The size of a code is the

number of codewords it contains, and is thus equal to qk. The weight of a word
w ∈ F

n
q is the number of its non-zero components, and the distance between two

words is the Hamming distance between them (equivalently, the weight of their
difference). The minimal distance d of a linear code C is the minimum weight of
its non-zero codewords, or equivalently, the minimum distance between any two
distinct codewords.

A code for an alphabet of size q, of length n, rank k, and minimal distance d
is called an (n, k, d)q-code. Such a code can be used to detect up to d − 1 errors
(because if a codeword is sent and fewer than d − 1 errors occur, it will not get
transformed to another codeword), and correct up to �(d−1)/2
 errors (because
for any received word, there is a unique codeword within distance �(d − 1)/2
).
For linear codes, the encoding of a (row vector) word W ∈ F

k
q is performed by an

algorithm C.Encode : Fk
q → F

n
q , which is the multiplication of W by a so-called

“generating matrix” G ∈ F
k×n
q (which defines an injective linear map). This

leads to a row-vector codeword c ∈ C ⊂ F
n
q .

The Singleton bound states that for any linear code, k + d ≤ n + 1, and
a maximum distance separable (or MDS) code satisfies k + d = n + 1. Hence,
d = n − k + 1 and MDS codes are fully described by the parameters (q, n, k).
Such an (n, k)q-MDS code can correct up to �(n − k)/2
 errors; it can detect if
there are errors whenever there are no more than n − k of them.

For a thorough introduction to linear codes and proof of all statements in
this short overview we refer the reader to [55].

Observe that a linear code, due to the linearity of its encoding algorithm, is
not a primitive designed to hide anything about the encoded message. However,
we show in the following lemma how to turn an MDS code into a RSS scheme.

Lemma 3. Let C be a (n + 1, k)q-MDS code. We set L to be the last column
of the generating matrix G of the code C and we denote by C ′ the (n, k)q-MDS
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code whose generating matrix G′ is G without the last column. Let Share and
Reconstruct work as follows:

– Share(s) for s ∈ Fq first chooses a random row vector W ∈ F
k
q such that

W · L = s, and outputs c ← C ′.Encode(W ) (equivalently, we can say that
Share(s) chooses a uniformly random codeword of C whose last coordinate is
s, and outputs the first n coordinates as c).

– Reconstruct(w) for w ∈ F
n
q first runs C ′.Decode(w). If it gets a vector W ′,

then output s = W ′ · L, otherwise output s
$← Fq.

Then Share and Reconstruct form a (n, t, r)-RSS for t = k−1 and r = �(n+k)/2�.
Proof. Let us consider the two properties from Definition 2.

– t-privacy: Assume |A| = t (privacy for smaller A will follow immediately by
adding arbitrary coordinates to it to get to size t). Let J = A ∪ {n + 1};
note that |J | = t + 1 = k. Note that for the code C, any k coordinates
of a codeword determine uniquely the input to Encode that produces this
codeword (otherwise, there would be two codewords that agreed on k elements
and thus had distance n − k + 1, which is less than the minimum distance
of C). Therefore, the mapping given by EncodeJ : F

k
q → F

|J|
q is bijective;

thus coordinates in J are uniform when the input to Encode is uniform. The
algorithm Share chooses the input to Encode uniformly subject to fixing the
coordinate n+1 of the output. Therefore, the remaining coordinates (i.e., the
coordinates in A) are uniform.

– r-robustness: Note that C has minimum distance n − k + 2, and therefore C ′

has minimum distance n − k + 1 (because dropping one coordinate reduces
the distance by at most 1). Therefore, C ′ can correct �(n − k)/2
 = n − r
errors. Since cA = c̃A and |A| ≥ r, there are at most n − r errors in c̃, so
the call to C ′.Decode(c′) made by Reconstruct(c′) will output W ′ = W . Then
Reconstruct(c′) will output s = W ′ · L = W · L.

Note that the Shamir’s secret sharing scheme is exactly the above construction
with Reed-Solomon codes [47].

4.1.3 Implicit-Only PAKE

PAKE protocols can have two types of authentication: implicit authentication,
where at the end of the protocol the two parties share the same key if they
used the same pass-string and random independent keys otherwise; or explicit
authentication where, in addition, they actually know which of the two situations
they are in. A PAKE protocol that only achieves implicit authentication can
provide explicit authentication by adding key-confirmation flows [7].

The standard PAKE functionality FpwKE from [20]is designed with explicit
authentication in mind, or at least considers that success or failure will later be
detected by the adversary when he will try to use the key. Thus, it reveals to the
adversary whether a pass-string guess attempt was successful or not. However,
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some applications could require a PAKE that does not provide any feedback, and
so does not reveal the situation before the keys are actually used. Observe that,
regarding honest players, already FpwKE features implicit authentication since
the players do not learn anything but their own session key.

Definition of implicit-only PAKE. Hence, we introduce a new notion, called
implicit-only PAKE or iPAKE (see Fig. 7). This ideal functionality is designed
to implement implicit authentication also with respect to an adversary, namely
by not providing him with any feedback upon a dictionary attack. Of course, in
many cases, the parties as well as the adversary can later check whether their
session keys match or not, and so whether the pass-strings were the same or not.
We stress that this is not a leakage from the PAKE protocol itself, but from the
global system.

In terms of functionalities, there are two differences from FpwKE to FiPAKE.
First, the TestPwd query only silently updates the internal state of the record
(from fresh to either compromised or interrupted), meaning that its outcome
is not given to the adversary S. Second, the NewKey query is modified so that
the adversary gets to choose the key for a non-corrupted party only if it uses the

Fig. 7. Functionality FiPAKE
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correct pass-string (corruption of the other party is no longer enough), as already
discussed earlier. Without going too much into the details, it is intuitively clear
that simulation of an honest party is hard if the simulator does not know whether
it should proceed the simulation with a pass-string extracted from a dictionary
attack or not. Regarding the output, i.e., the question whether the session keys
computed by both parties should match or look random, the simulator thus gets
help from our functionality by modifying the NewKey queries.

We further alter this functionality to allow for public labels, as shown in the
full version of this paper [28]. The resulting functionality F�-iPAKE idealizes what
we call labeled implicit-only PAKE (or �-iPAKE for short), resembling the notion
of labeled public key encryption as formalized in [56]. In a nutshell, labels are
public authenticated strings that are chosen by each user individually for each
execution of the protocol. Authenticated here means that tampering with the
label can be efficiently detected. Such labels can be used to, e.g., distribute pub-
lic information such as public keys reliably over unauthenticated channels.

A UC -Secure �-iPAKE Protocol . In the seminal paper by Bellovin and
Merritt [8], the Encrypted Key Exchange protocol (EKE) is proposed, which
is essentially a Diffie-Hellman [24] key exchange. The two flows of the proto-
col are encrypted using the pass-string as key with an appropriate symmetric
encryption scheme. The EKE protocol has been further formalized by Bellare
et al. [7] under the name EKE2. We present its labeled variant in Fig. 8. The
idea of appending the label to the symmetric key is taken from [1]. We prove
security of this protocol in the FRO,FIC,FCRS-hybrid model. That is, we use an
ideal random oracle functionality FRO to model the hash function, and ideal
cipher functionality FIC to model the encryption scheme and assume a publicly
available common reference string modeled by FCRS. Formal definitions of these
functionalities are given in the full version of this paper [28].

Fig. 8. Protocol EKE2, in a group G = 〈g〉 of prime order P , with a hash function
H : G3 → {0, 1}k and a symmetric cipher E , D onto G for keys in Fp × L, where L is
the label space.
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Theorem 4. If the CDH assumption holds in G, the protocol EKE2 depicted in
Fig. 8 securely realizes F�-iPAKE in the FRO,FIC,FCRS-hybrid model with respect
to static corruptions.

We note that this result is not surprising, given that other variants of EKE2 have
already been proven to UC-emulate FpwKE. Intuitively, a protocol with only two
flows not depending on each other does not leak the outcome to the adversary
via the transcript, which explains why EKE2 is implicit-only. Hashing of the
transcript keeps the adversary from biasing the key unless he knows the correct
pass-string or breaks the ideal cipher. For completeness, we include the full proof
in the full version of this paper [28].

4.2 Construction

We show how to combine an RSS with a signature scheme and an �-iPAKE to
obtain an fPAKE. The high-level idea is to fix the issue that arose in the protocol
from the full version of this paper [28] due to pass-strings being used as one-
time pads. Instead, we first expand the pass-string characters to session keys with
large entropy using �-iPAKE. The resulting session keys are then used as a one-
time pad on the entirety of shares of a nonce. We also apply known techniques
from the literature, such as executing the protocol twice with reversed roles to
protect against malicious parties, and adding signatures and labels to prevent
man-in-the-middle attacks. Our full protocol is depicted in Fig. 9. It works as
follows:

1. In the first phase, the two parties aim at enhancing their pass-strings to a
vector of session keys with good entropy. For this, pass-strings are viewed as
vectors of characters. The parties repeatedly execute a PAKE on each of these
characters separately. The PAKE will ensure that the key vectors held by the
two parties match in all positions where their pass-strings matched, and are
uniformly random in all other positions.

2. In the second phase, the two parties exchange nonces of their choice, in such
a way that the nonce reaches the other party only if enough of the key vector
matches. This is done by applying an RSS to the nonce, and sending it to
the other party using the key vector as a one time pad. Both parties do this
symmetrically, each using half of the bits of the key vector. The robustness
property of the RSS ensures that a few non-matching pass-string characters
do not prevent both parties from recovering the other party’s nonce. The final
key is then obtained by adding the nonces (again, as a one-time pad): this is
a scalar in Fq.

When using the RSS from MDS codes described in Lemma 3, the one-time pad
encryption of the shares (which form a codeword) can be viewed as the code-offset
construction for information reconciliation (aka secure sketch) [27,36] applied to
the key vectors. While our presentation goes through RSS as a separate object,
we could instead present this construction using information reconciliation. The
syndrome construction of secure sketches Lemma 3 can also be used here instead
of the code-offset construction.



416 P.-A. Dupont et al.

Fig. 9. Protocol fPAKERSS where q ≈ 2λ is a prime number and + denotes the group
operation in F

n
q . (Share,Reconstruct) is a Robust Secret Sharing scheme with Share :

Fq → F
n
q , and (SigGen → VK × SK, Sign,Vfy) is a signature scheme. The parties

repeatedly execute a labeled implicit-only PAKE protocol with label space VK and key
space F

2
q, which takes inputs from Fp. If at any point an expected message fails to

arrive (or arrives malformed), the parties output a random key.

4.3 Security of fPAKERSS

We show that our protocol realizes functionality FM
fPAKE in the F�-iPAKE-hybrid

model. In a nutshell, the idea is to simulate without the pass-strings by adjusting
the keys outputted by F�-iPAKE to the mask of the pass-strings, which is leaked
by FM

fPAKE.

Theorem 5. If (Share : Fq → F
n
q ,Reconstruct : Fn

q → Fq) is an (n, t, r) RSS and
(SigGen,Sign,Vfy) is an EUF-CMA secure one-time signature scheme, protocol
fPAKERSS securely realizes FM

fPAKE with γ = n − t − 1 and δ = n − r in the
F�-iPAKE-hybrid model with respect to static corruptions.

In particular, if we wish key agreement to succeed as long as there are fewer
than δ errors, we instantiate RSS using the construction of Lemma 3 based on a
(n + 1, k)q MDS code, with k = n − 2δ. This will give r = �(n + k)/2� = n − δ,
so δ will be equal to n − r, as required. It will also give γ = n − t − 1 = 2δ.

We thus obtain the following corollary:

Corollary 6. For any δ and γ = 2δ, given an (n + 1, k)q-MDS code for k =
n−2δ (with minimal distance d = n−k +2) and an EUF-CMA secure one-time
signature scheme, protocol fPAKERSS securely realizes FM

fPAKE in the F�-iPAKE-
hybrid model with respect to static corruptions.
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Proof sketch of Theorem 5. We start with the real execution of the protocol and
indistinguishably switch to an ideal execution with dummy parties relaying their
inputs to and obtaining their outputs from FM

fPAKE. To preserve the view of the
distinguisher, the environment Z, a simulator S plays the role of the real world
adversary by controlling the communication between FM

fPAKE and Z. During the
proof, we built FM

fPAKE and S by subsequently randomizing pass-strings (since
the final simulation has to work without them) and session keys (since FM

fPAKE

hands out random session keys in certain cases). We have to tackle the following
difficulties, which we will describe in terms of attacks.

– Passive attack: in this attack, Z picks two pass-strings and then observes the
transcript and outputs of the protocol, without having access to any internal
state of the parties. We show that Z cannot distinguish between transcript
and outputs that were either produced using Z’s pass-strings or random pass-
strings. Regarding the outputs, we argue that even in the real execution the
session keys were chosen uniformly at random (with Z not knowing the coins
consumed by this choice) as long as the distance check is reliable. Using prop-
erties of the RSS, we show that this is the case with overwhelming probability.
Regarding the transcript, randomization is straightforward using properties
of the one-time pad.

– Man-in-the-middle attack: in this attack, Z injects a malicious message into
a session of two honest parties. There are several ways to secure protocols
that have to run in unauthenticated channels and are prone to this attack.
Basically, all of them introduce methods to bind messages together to prevent
the adversary from injecting malicious messages. To do this, we need the
labeled version of our iPAKE and a one-time signature scheme3. Unless Z is
able to break a one-time-signature scheme, this attack always results in an
abort.

– Active attack: in this attack, Z injects a malicious message into a session with
one corrupted party, thereby knowing the internal state of this party. We show
how to produce transcript and outputs looking like in a real execution, but
without using the pass-strings of the honest party. Since Z can now actually
decrypt the one-time pad and therefore the transcript reveals the positions
of the errors in the pass-strings, S has to rely on FM

fPAKE revealing the mask
of the pass-strings used in the real execution. If, on the other hand, the pass-
strings are too far away from each other, we show that the privacy property
of the RSS actually hides the number and positions of the errors. This way,
S can use a random pass-string to produce the transcript in that case.

One interesting subtlety that arises is the usage of the iPAKE. Observe that
the UC security notion for a regular PAKE as defined in [20] and recalled in
the full version of this paper [28] provides an interface to the adversary to test

3 Instead of labels and one-time signature, one could just sign all the messages, as
would be done using the split-functionality [4], but this would be less efficient. This
trade-off, with labels, is especially useful when we use a PAKE that admits adding
labels basically for free, as it is the case with the special PAKE protocol we use.
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a pass-string once and learn whether it is right or wrong. Using this notion,
our simulator would have to answer to such queries from Z. Since this is not
possible without FM

fPAKE leaking the mask all the time, it is crucial to use the
iPAKE variant that we introduced in Sect. 4.1.3. Using this stronger notion, the
adversary is still allowed one pass-string guess which may affect the output, but
the adversary learns nothing more about the outcome of his guess than he can
infer from whatever access he has to the outputs alone. Since our protocol uses
the outputs of the PAKE as one-time pad keys, it is intuitively clear that by
preventing Z from getting additional leakage about these keys, we protect the
secrets of honest parties.

4.4 Further Discussion

4.4.1 Adaptive Corruptions
Adaptive security of our protocol is not achievable without relying on additional
assumptions. To see this, consider the following attack: Z starts the protocol
with two equal pass-strings and, without corrupting anyone, silently observes
the transcript produced by S using random pass-strings. Afterwards, Z corrupts
both players to learn their internal state. S may now choose a value K. This also
fixes L′ = K since the pass-strings were equal. Now note that S is committed
to E,F since signatures are not equivocable. Since perfect shares are sparse in
F

n
q , the probability that there exists a K such that E − K and F − K are both

perfect shares is negligible. Thus, there do not exist plausible values U, V ′ that
explain the transcript4.

4.4.2 Removing Modeling Assumptions
All modeling assumptions of our protocol come from the realization of the ideal
F�-iPAKE functionality. E.g., the �-iPAKE protocol from Sect. 4.1.3 requires a ran-
dom oracle, an ideal cipher and a CRS. We note that we can remove everything
up to the CRS by, e.g., taking the PAKE protocol introduced in [37]. This proto-
col also securely realizes our F�-iPAKE functionality5. However, it is more costly
than our �-iPAKE protocol since both messages each contain one non-interactive
zero knowledge proof.
4 We note that additional assumptions like assuming erasures can enable an adaptive

security proof.
5 In a nutshell, their protocol is implicit-only for the same reason as the �-iPAKE

protocol we use here: there are only two flows that do not depend on each other,
so the transcript cannot reveal the outcome of a guess unless it reveals the pass-
string to anyone. Regarding the session keys, usage of a hash function takes care
of randomizing the session key in case of a failed dictionary attack. Furthermore,
the protocol already implements labels. A little more detailed, looking at the proof
in [37], the simulator does not make use of the answer of TestPwd to simulate any
messages. Regarding the session key that an honest player receives in an corrupted
session, they are chosen to be random in the simulation (in Expt3). Letting this
happen already in the functionality makes the simulation independent of the answer
of TestPwd also regarding the computation of the session keys.
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Since fPAKE implies a regular PAKE (simply set δ = 0), [20] gives strong
evidence that we cannot hope to realize FfPAKE without a CRS.

5 Comparison of fPAKE Protocols

In this section, we give a brief comparison of our fPAKE protocols. First, in
Fig. 10, we describe the assumptions necessary for the two constructions, and
the security parameters that they can achieve.

Then, in Fig. 11, we describe the efficiency of the constructions when concrete
primitives (OT/�-iPAKE) are used to instantiate them. fPAKERSS is instantiated
as the construction in Fig. 9 with the �-iPAKE in Fig. 8 and an RSS. fPAKEYGC is
instantiated as the construction in Fig. 4 with the UC-secure oblivious transfer
protocol of Chou and Orlandi [21], with the garbling scheme of Bal et al. [3], and
with the split functionality transformation of Barak et al. [4]. Though fPAKEYGC

can handle any efficiently computable notion of distance, Fig. 11 assumes that
both constructions use Hamming distance (and that, specifically, fPAKEYGC uses
the circuit described in Fig. 6). We describe efficiency in terms of sub-operations
(per-party, not in aggregate).

Fig. 10. Assumptions, distance thresholds and functionality/security gaps achieved by
the two schemes. fPAKERSS is the construction in Fig. 9. fPAKEYGC is the construction
in Fig. 4 with the split functionality transformation of Barak et al. [4].

Fig. 11. Efficiency (in terms of sub-operations) of the two constructions. fPAKERSS is
the construction in Fig. 9 instantiated with the �-iPAKE in Fig. 8. fPAKEYGC is the con-
struction in Fig. 4 instantiated with the UC-secure oblivious transfer protocol of Chou
and Orlandi [21], the garbling scheme of Bal et al. [3], and with the split functionality
transformation of Barak et al. [4].
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Note that these concrete primitives each have their own set of required
assumptions. Specifically, the �-iPAKE in Fig. 8 requires a random oracle (RO),
ideal cipher (IC) and common reference string (CRS). The oblivious transfer pro-
tocol of Chou and Orlandi [21] requires a random oracle. The garbling scheme of
Bal et al. [3] requires a mixed modulus circular correlation robust hash function,
which is a weakening of the random oracle assumption.

For fPAKERSS, the factor of n arises from the n times EKE2 is executed.
For fPAKEYGC, the factor of n comes from the garbled circuit. Additionally, in
fPAKEYGC, three rounds of communication come from OT. The last of these is
combined with sending the garbled circuits. Two additional rounds of communi-
cation come from the split functionality transformation. The need for signatures
also arises from the split functionality transformation.
Efficiency Optimizations to fPAKEYGC. We can make several small efficiency
improvements to the fPAKEYGC construction which are not reflected in Fig. 11.
First, instead of using the split functionality transformation of Barak et al. [4],
we can use the split functionality of Camenisch et al. [16]. It uses a split key
exchange functionality to establish symmetric keys, and then uses those to sym-
metrically encrypt and authenticate each flow. While this does not save any
rounds, it does reduce the number of public key operations needed. Second, if
the pass-strings are more than λ bits long (where λ is the security parameter),
OT extensions that are secure against malicious adversaries [2] can be used. If
the pass-strings are fewer than λ bits long, then nothing is to be gained from
using OT extensions, since OT extensions require λ “base OTs”. However, if
the pass-strings are longer—say, if they are some biometric measurement that is
thousands of bits long—then OT extensions would save on the number of public
key operations, at the cost of an extra round of communication.
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