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Abstract. We study the round complexity of zero-knowledge (ZK) proof
systems. While five round ZK proofs for NP are known from standard
assumptions [Goldreich-Kahan, J. Cryptology’96], Katz [TCC’08] proved
that four rounds are insufficient for this task w.r.t. black-box simulation.
In this work, we study the feasibility of ZK proofs using non-black-box
simulation. Our main result is that three round private-coin ZK proofs
for NP do not exist (even w.r.t. non-black-box simulation), under cer-
tain assumptions on program obfuscation. Our approach builds upon
the recent work of Kalai et al. [Crypto’17] who ruled out constant round
public-coin ZK proofs under the same assumptions as ours.

1 Introduction

The notion of zero-knowledge (ZK) proofs [32] is fundamental in cryptography.
Intuitively, ZK proofs allow one to prove a statement without revealing anything
beyond the validity of the statement.

An important measure of efficiency of ZK protocols is round complexity.
Ever since the introduction of ZK proofs nearly three decades ago, an exten-
sive amount of research has been dedicated towards minimizing their round-
complexity. Protocols with smaller round complexity are more desirable so as to
minimize the effect of network latency, which in turn decreases the time com-
plexity of the protocol.

Round-Complexity of ZK. In this work, we study the exact round complexity
of ZK proofs that achieve soundness even against computationally unbounded
adversarial provers (as opposed to arguments that achieve soundness only against
polynomial-time adversarial provers). While initial constructions of ZK proofs
required a polynomial number of rounds, the seminal work of Goldreich and
Kahan [29] constructed a five round ZK proof system for NP based on collision-
resistant hash functions.
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In the negative direction, two-round ZK arguments for NP were ruled out
by Goldreich and Oren [31]. Later, Goldreich and Krawcyzk [30] ruled out three
round ZK arguments for NP where the ZK property holds w.r.t. a black-box
simulator. More recently, Katz [37] proved that four round ZK proofs with black-
box simulation only exist for languages whose complement is in MA.

The above state of the art motivates the following intriguing question:

Does there exist a three or four round ZK proof system for NP using
non-black-box simulation?

In this work, we investigate precisely this question.

Private-coin vs Public-coin. In the study of ZK proofs, whether or not the
verifier makes its random coins public or keeps them private has a strong bearing
on the round-complexity. Indeed, constructing public-coin ZK proofs is viewed
as a harder task. Very recently, Kalai et al. [36] ruled out constant round public-
coin ZK proof systems for NP, even w.r.t. non-black-box simulation, assuming
the existence of certain kinds of program obfuscation [7]. However, their approach
breaks down in the private coin setting, where a verifier may keep its random
coins used during the protocol private from the prover. This is not surprising,
since five round private-coin ZK proofs are already known [29].

In this work, we investigate the feasibility of constructing private-coin ZK
proofs (via non-black-box techniques) in less than five rounds. We remark that a
candidate construction of three-round (private-coin) ZK proof system was given
by Lepinski [40] based on a highly non-standard “knowledge-type” assumption;
we discuss the bearing of our results on Lepinski’s protocol (and the underlying
assumption) below.

1.1 Our Results

We revisit the round complexity of zero-knowledge proof systems. As our main
result, we rule out the existence of three round private-coin ZK proofs for lan-
guages outside BPP, under certain strong assumptions.

Theorem 1 (Informal). Three round ZK proofs against non-uniform verifiers
and distinguishers only exist for languages in BPP, assuming the following:

– Sub-exponentially secure one-way functions.
– Sub-exponentially secure indistinguishability obfuscation for circuits [7,25].
– Exponentially secure input-hiding obfuscation for multi-bit point functions

[5,11].

Our result relies on the same assumptions as those used in the recent work of
Kalai et al. [36]. In their work, Kalai et al. use these assumptions to instantiate
the Fiat-Shamir heuristic [24] and then rely upon its connection with public-coin
ZK proofs [22] to rule out constant round public-coin ZK proofs. Naturally, this
approach does not extend to the private coin setting. Nevertheless, we are able
to build upon their techniques to obtain our result in Theorem 1.
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Further, we note that our result contradicts the work of Lepinski [40] and
thus refutes the knowledge-type assumption underlying Lepinski’s protocol. We
further elaborate on this in Sect. 1.3.

On our assumptions. Starting with the work of [25], several candidate con-
structions of indistinguishability obfuscation (iO) have been proposed over
the last few years (see, e.g., [2–4,15,26,27,41–45,47]). During this time, (sub-
exponentially secure) iO has also led to numerous advances in theoretical cryp-
tography (see, e.g., [13,21,25,46]). Nevertheless, no iO scheme whose security is
based on standard cryptographic assumptions is presently known.

Our second assumption on program obfuscation concerns with the notion of
input-hiding obfuscation [5] for the class of multi-bit point functions Iα,β , where
Iα,β(α) = β and 0, otherwise. Roughly speaking, an input-hiding obfuscator for
this family is said to be T -secure, if any PPT adversary can succeed in guessing α
with probability at most T−1. For our purposes, we require T to be exponential
in the security parameter. Candidate constructions of such obfuscation based on
a strong variant of the DDH assumption are known from the works of [11,19]
(see Sect. 2 for a more detailed discussion.)

Pessimistic Interpretation. While it is natural to be somewhat skeptical
about the obfuscation assumptions we make, we note that our result implies
that constructing three-round zero-knowledge proofs would require overcoming
significant technical barriers. In particular, it would require disproving the exis-
tence of sub-exponentially secure iO, or the existence of exponentially secure
input-hiding obfuscation for multi-bit point functions (or, less likely, disproving
the existence of sub-exponentially secure one-way functions).

What about four rounds? Our result in Theorem 1 also extends to a specific
relaxation of ZK, referred to as ε-ZK [14]. In this relaxed notion, the simula-
tor’s running time may grow polynomially with the distinguishing gap, which is
allowed to be an inverse polynomial (unlike standard ZK, where the distinguish-
ing gap must be negligible).

In a recent work, Bitansky et al. [14] construct a four round private coin
ε-ZK proof system for NP, assuming the existence of keyless multi-collision-
resistant hash functions (MCRH) [9,14,39]. Multi-collision-resistant hash func-
tions weaken the standard notion of collision-resistant hash functions by only
guaranteeing that an adversary cannot find many (rather than two) inputs that
map to the same image. Presently, no constructions of keyless MCRH based on
standard assumptions are known; however, unlike collision-resistant hash func-
tions that cannot be secure against non-uniform adversaries in the keyless set-
ting, keyless MCRH are meaningful even in the non-uniform setting if the number
of required collisions are larger than the non-uniform advice to the adversary.

Their result serves as evidence that our techniques are unlikely to extend to
the four round case, since otherwise it would imply the non-existence of keyless
MCRH. While this is not implausible based on current evidence, in our eyes, it
would be a rather surprising outcome.
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It is of course possible that while four round private-coin ε-ZK proofs exist,
four round private-coin ZK proofs do not. However, in light of the above, it
seems that ruling out four round private-coin ZK proofs (w.r.t. non-black-box
simulation) would require substantially new techniques.

1.2 Technical Overview

In order to rule out the existence of three-round zero knowledge proofs, we
need to show that for any imaginable three round proof system, there exists a
non-uniform adversarial verifier whose view cannot be efficiently simulated by
any non-black-box simulator. Since a non-black-box simulator has access to the
adversary’s code, an immediate challenge is to “hide” the random coins of the
adversarial verifier from the simulator.

Our starting approach to address this issue is to use program obfuscation.
Let Π be any three-round private-coin proof system. To prove that Π is not ZK,
we construct a “dummy” adversarial verifier V ∗ who receives as auxiliary input
aux, an obfuscation of the next-message function of the honest verifier algorithm
of Π. More concretely, the auxiliary input aux consists of an obfuscated program
that has a key k for a pseudorandom function (PRF) hardwired in its description:

1. Upon receiving a message α from the prover, the program computes a message
β of the honest verifier (as per protocol Π) using randomness r = PRFk(α).1

2. Upon receiving a protocol transcript (α, β, γ), it recomputes the randomness
r used to compute β. Using the randomness r and the transcript, it honestly
computes the verifier’s output (i.e., whether to accept or reject the proof).

The adversarial verifier’s code does not do anything intelligent on its own, and
simply uses its auxiliary input aux to compute its protocol message.

Ruling out Rewinding Simulators. The above strategy for hiding the ran-
dom coins of the verifier runs into the following problem: a simulator may fix the
first two messages (α, β) of the protocol, and then observe the verifier’s output
on many different third messages to learn non-trivial information about the pri-
vate randomness of the verifier. Indeed, it was recently shown in the work of Jain
et al. [35] that in certain protocols, a simulator can learn the verifier’s random
tape by observing whether the verifier accepts or rejects in multiple trials.

A naive approach to address this problem is to simply modify the adversary
and remove the protocol output from adversary’s view. This can be achieved
by deleting the second instruction in the obfuscated program aux. This app-
roach, however, immediately fails because now a simulator can simply simulate
a “rejecting” transcript and succeed in fooling any distinguisher.

We address this problem by using non-uniform distinguishers, in a manner
similar to Goldreich and Oren [31] and the recent work of [1]. Specifically, we
modify the adversarial verifier to be such that it simply outputs the protocol

1 One may notice that this is similar to how protocols secure against “reset attacks”
are constructed [6,20].
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transcript at the end of the protocol. The revised auxiliary input aux only con-
tains the first instruction described above. The PRF key k used to compute
the verifier’s randomness inside aux is given as non-uniform advice to the dis-
tinguisher. Note that this information is not available to the simulator. Now,
given k and the protocol transcript, the distinguisher can easily decide whether
or not to accept the transcript. Therefore, a simulator can no longer fool the
distinguisher via a rejecting transcript.

How to rule out any Simulator? Of course the main problem remains. While
the above approach constitutes a meaningful first step, we still need to formally
argue that there does not exist any efficient simulator for the aforementioned
adversarial verifier.

In prior works such as [31], this is achieved by showing that any efficient
simulator algorithm can be used by a cheating prover to break the soundness of
candidate protocol, which leads to a contradiction. It is, however, not immedi-
ately clear how to implement this strategy in our setting since a cheating prover
does not have access to the code of the verifier (which is required for running
the simulator algorithm).

We instead show that the existence of an efficient simulator can be used to
disprove the computational soundness of a different protocol that is provably
sound, leading to a contradiction.

Contradiction via Round Compression. We implement a compiler for com-
pressing any three round private coin proof system into a two round argument
system. Our round compression strategy is in fact very similar to the one devel-
oped in the recent work of Kalai et al. [36] in the context of public-coin ZK
proofs. We then show that a simulator for the three round proof w.r.t. the afore-
mentioned non-uniform verifier can be used to construct a cheating prover for
the two round argument system.

We now elaborate on the round compression strategy. Consider the prover
and verifier of the three-round proof to be two-stage algorithms. That is, P1

produces the prover’s first message α, V1 is the verifier’s next message function
that on input α outputs the verifier’s message β, P2 on input β produces the
prover’s second message γ and finally V2 is the decision procedure which uses
the random tape to decide whether (α, β, γ) is an accepting transcript. The
compressed two-round argument works as follows:

1. In the first round, the verifier obfuscates the code of a slightly modified V1

that upon input α, computes its message β using randomness r = PRFk(α)
generated via a hardcoded PRF key k. The verifier then sends the obfuscated
program to the prover.

2. The prover now runs P1 to get α, evaluates the obfuscated program on α to
receive β and finally runs P2 on α, β to get γ. The prover then sends α, β, γ
to the verifier.

3. Finally, the verifier can use k to recompute the random tape PRFk(α) and
run V2 to validate the transcript.

A minor variant of the above strategy was recently used by Kalai et al. [36] in
the case of public-coin ZK proofs. In their case, the obfuscated program simply
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corresponds to a PRF algorithm since it suffices to implement the strategy of a
public-coin verifier.2

Now, using the above round compression strategy, we can compress any three-
round proof system Π into a two-round argument system Π ′. Now suppose that
there exists an efficient zero-knowledge simulator Sim for Π w.r.t. the adversarial
verifier V∗ with auxiliary input aux, as described earlier. It is easy to see that
such a simulator Sim can be used to construct an efficient cheating prover P∗ for
Π ′. Indeed, the view of Sim in Π against V∗ with aux is the same as the view of
P∗ against an honest verifier in Π ′.

Thus, the main challenge now is to prove that our round-compression strategy
indeed yields two-round arguments.

How to prove Soundness? To prove computational soundness of the two-
round protocol, we proceed in two main steps:

1. First, we establish that there exists only a very small set of “bad” first mes-
sages α for which the cheating prover can even hope to be successful.

2. Second, we prove that the obfuscation sufficiently hides this small set to
ensure that the cheating prover cannot find such an α.

Below, we elaborate on each of these steps.

Step 1: Upper bounding Bad α’s. Imagine for a moment, that the three-
round proof system is public coin. Then, for any x �∈ L and any α, there can only
exist a negligible fraction of random tapes (and therefore β) for which an accept-
ing γ even exists. This is true because otherwise the computationally unbounded
prover could simply exhaustively search for this γ once they receive β. Now, if
the random tape, as in the two-round argument, is chosen pseudorandomly as
a function of α, then only a very small set of α’s will lead to such bad random
tapes. This is because a distinguisher against the pseudorandom function can
test for bad α’s by exhaustively enumerating γ’s because the PRF is assumed
to be 2n-secure. This small set would then be the set of bad α’s. Clearly any
successful cheating prover must use a bad α, since those are the only ones for
which an accepting γ even exists.

In a private coin protocol, however, this notion of bad α’s does not work. In
fact in a private coin protocol, for any α and any random tape, an accepting
γ may always exist! Indeed, any three-round proof system can be transformed
into another proof system that has this property: the verifier in the new protocol
acts exactly as the original verifier, except that it also chooses a random γ∗ that
it keeps private. Now, once it receives γ from the prover in the third round,
the verifier accepts if either the original verifier accepts or γ = γ∗. Clearly in
this protocol, there always exists an accepting γ but the protocol nevertheless
remains sound. To break soundness, a prover must either break soundness of the
original protocol or guess γ∗ which is only possible with negligible probability,
because the entire transcript is independent of γ∗.

2 In particular, in the public-coin case, the obfuscated program can be interpreted as
an instantiation of the random oracle in the Fiat-Shamir heuristic.
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This example does not only show that the notion of bad α’s from the public
coin case does not work in the private-coin case, it also helps to illustrate how
we can try to fix it. While an accepting γ may always exist, the prover only
learns β and cannot tell which random tape was used by the verifier, beyond the
obvious fact that it must have been consistent with β. Therefore, the only γ a
prover can hope to use to break the soundness of the protocol are those that,
for a fixed β, are accepted by many consistent random tapes.

We use this key observation to derive our new notion of bad α’s. For any α
there exists only a negligible fraction of random tapes that are consistent with
a β such that there exists a γ that is accepted with high probability over all the
random tapes consistent with β. This is true, because otherwise an unbounded
prover could choose a random α and after receiving β, exhaustively search for all
consistent random tapes and then search for the γ accepted by many of them.
And then again, if the random tape, as is done in the two-round argument, is
chosen pseudorandomly as a function of α, then only a very small set of α’s will
lead to such bad random tapes.

However, must a cheating prover in the two-round protocol necessarily use
such a bad α to convince a verifier? While in the public coin case this was a
trivial fact, this is not at all obvious in the more general private-coin case. Since
even for “good” random tapes accepting γ’s may exist, it is necessary to show
that these remain hidden and cannot be used to cheat.

Here indistinguishability obfuscation comes to the rescue. Using iO and punc-
turable PRFs, we can show that a cheating prover must remain oblivious about
which consistent random tape was used to compute β. This allows us to argue
that a cheating prover cannot make use of γ’s that are only accepting for a small
number of consistent random tapes. Therefore, with overwhelming probability,
a successful cheating prover must use a bad α.

Step 2: Hiding Bad α’s. Now, it remains to argue that this set of bad α
is hidden by the obfuscation. Once we have established that a cheating prover
must output a bad α, the most obvious idea would be to try and lead this
to a contradiction with the soundness of the three-round proof. However, to
translate this into an attack, we need to use the security of the PRF. And while
using iO, that means we need to puncture. Since the puncturing must be done
before we learn α used by the cheating prover, we would incur an exponential
loss in the success probability of the hypothetical three-round cheating prover.
We can therefore only bring this to a contradiction if the three-round proof is
exponentially sound, which would severely weaken the result. Instead, we follow
the same approach as Kalai et al. [36] and “transfer” the exponential loss to
another cryptographic primitive.

The idea is to use the security of another primitive to argue that bad α’s are
hidden. Since the goal is to argue that bad inputs to a circuit remain hidden
a natural candidate for this primitive is input-hiding obfuscation. And indeed,
sufficiently strong input-hiding obfuscation for multibit point functions allows
to lead the existence of a cheating prover to a contradiction. Some technical
issues arise in this proof due to the distribution of bad α’s not being uniform.
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However, using a clever trick of a “relaxed” verifier it is possible to show that
the distributions are sufficiently close. In this part of the proof, we are able to
adapt the elegant strategy of Kalai et al. [36] with only minor modifications.

Extension to ε-ZK. To extend our result to also rule out three-round ε-ZK
proofs, we mainly need to argue that the cheating prover we described above
is still successful in breaking soundness of the two-round argument, even if our
starting point is an ε-ZK simulator instead of a regular ZK simulator.

Towards this, we note that the ε-ZK simulator, for every noticeable function
ε, is required to output a distribution that is ε-indistinguishable from the real
distribution. Thus, we can choose any small noticeable function ε, and then this
means that, while the cheating prover against the two-round argument is no
longer successful with all but negligible probability, it is still successful with
probability 1 − ε. This is sufficient to break soundness and our main theorem
therefore extends to ε-ZK proofs.

1.3 Implications to Lepinski’s Protocol

Lepinski’s 3-round ZK proof protocol [40] is based on a clever combination of the
three round honest-verifier ZK protocol of Blum [16] for Hamiltonian Graphs and
a special kind of oblivious transfer. While Lepinski chose to give a more direct
description of his protocol, a more modular high-level construction is implicit in
his thesis. His construction makes use of two building blocks:

1. The three round honest-verifier ZK protocol of Blum for Hamiltonian Graphs.
2. A three round string OT protocol with the following properties:

– The protocol is “delayed input” on the sender’s side. I.e., the first round of
the OT can be computed independently of the sender’s inputs (m0,m1).

– The protocol achieves indistinguishability based security against a com-
putationally unbounded malicious sender.

– The protocol achieves simulation based security against a malicious poly-
nomial time receiver.

Based on these assumptions a three-round ZK proof can be constructed as
described below. In the description we focus on soundness 1/2. For this spe-
cific protocol, smaller soundness error can be achieved by parallel repetition
without affecting the ZK property.

1. In the first round, the prover sets up the OT by sending the first message.
2. In the second round, the verifier sends the OT receiver message corresponding

to their random challenge for Blum’s protocol. I.e. the Blum challenge is used
as the selection bit b in the OT.

3. In the third round the prover sends the first message of Blum’s protocol.
Additionally he sends the sender message of the OT, corresponding to the
two possible prover responses to the (as of yet unknown) challenge. I.e. the
prover sets mb in the OT to be the response to challenge b.

4. Finally the verifier receives the OT message, thus learning mb and verifies
that mb is a valid response in Blum’s protocol.
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It is easy to verify that this protocol is indeed sound: since the OT is secure
against an unbounded sender, the prover must choose his first message without
knowledge of the challenge and if the graph does not contain a Hamiltonian cycle
then it can only give a valid response to one of the challenges and is thus only
successful with probability 1/2. The soundness of this protocol is uncontested
by our result.

To prove that the above protocol is also zero-knowledge, one can leverage the
simulation-based security of the OT against malicious receivers. In particular,
the ZK simulator uses the OT simulator to learn the OT selection bit, and
then uses it to invoke the honest-verifier ZK simulator for Blum’s protocol. This
part is disputed by our result. Since the security of Blum’s protocol is not in
question, this means that our result disputes the existence of an OT protocol
with the properties described above.

However, Lepinski implicitly gives a number-theoretic construction of such an
OT protocol using a very specific “knowledge-type” assumption that is referred
to as the “proof of knowledge assumption (POKA)” in this thesis. This assump-
tion essentially states that a specific three-round public-coin proof of knowledge
protocol remains a proof of knowledge even if the verifier’s challenge is computed
using a fixed hash function. This assumption is necessary to facilitate extraction
of the receiver’s selection bit in his OT protocol, which is the key to proving
simulation-based security against malicious receivers.

The question, of course, remains how this protocol and the underlying
assumption exactly relate to our impossibility result. For that, we should first
note that Lepinski does not explicitly prove his protocol to be zero-knowledge
relative to non-uniform verifiers. Since our impossibility result only rules out
three-round ZK with non-uniform verifiers, our result – taken literally – does
not directly apply to the protocol as stated. However, it is easy to see that
Lepinski’s protocol does, in fact, achieve ZK against non-uniform verifiers if the
POKA assumption is suitably augmented so that it holds even against provers
with arbitrary auxiliary input. This augmented assumption is therefore what is
specifically refuted by our result.

In a bit more detail, what does it mean exactly to apply our result to Lep-
inski’s protocol? As mentioned earlier, the soundness of the protocol is not in
question. Therefore, the round compression part of our proof works exactly as
stated, i.e., we are able to compress Lepinski’s three-round proof into a two round
argument. It is the second part of our result, where we show that the soundness
of the two round argument and the zero-knowledge property of the three-round
proof contradict each other, where we get the refutation of the POKA assump-
tion.

Essentially, in this part of the proof, we show that in the compressed two-
round argument, a malicious prover is capable of using the ZK-simulator for
the three-round proof to cheat and break soundness. Since the soundness of the
protocol is not in question, this means that we are refuting the existence of
the ZK-simulator and thus, that the 3-round protocol can be zero-knowledge.
In the generalized terms in which we described Lepinski’s protocol above the
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ZK-simulator only requires the HVZK-simulator of Blum’s protocol and the OT-
simulator to work. This means that our work specifically refutes the simulation
based receiver-security of the OT protocol. If we look at our result in a bit
more detail, it is also clear why this is the case. Essentially, we are constructing
a malicious prover who is capable of running the ZK-simulator for the 3-round
proof. For Lepinski’s construction to work, this simulator must be able to extract
the selection bit in the OT from the verifier’s message. This means that we are
constructing an algorithm capable of extracting the selection bit of the receiver
while acting as a malicious sender in the OT protocol. Clearly, this immediately
implies that the OT is broken.

1.4 Related Work

There is a large body of work dedicated to the study of round complexity of
zero-knowledge protocols. Below, we provide a brief (and incomplete) summary
of some of the prior work in this area.

ZK Proofs. Five-round ZK proofs are known based on collision-resistant hash
functions [29], and four-round ε-ZK proofs were recently constructed based on
keyless multi-collision-resistant hash functions [14]. Both of these constructions
require the verifier to use private coins. There also exists a candidate for a three-
round ZK proof due to Lepinski [40], which ultimately clashes with our result.
Lepinski’s protocol is based on a highly non-standard knowledge-type assump-
tion which our result refutes. We explain the exact relationship and implications
in Sect. 1.3.

Dwork et al. [22] (and independently, Hada and Tanaka [33]) established an
intimate connection between the Fiat-Shamir paradigm [24] and constant-round
public-coin ZK proofs. Using their result, [36] recently ruled out the existence
of constant-round public-coin ZK proofs, under the same assumptions as in our
work. Previously, such protocols were only ruled out w.r.t. black-box simulation
by [30]. We refer the reader to [36] for further discussion on public-coin ZK
proofs.

ZK Arguments. Four-round ZK arguments are known based on one-way func-
tions [8,23]. Goldreich and Krawcyzk [30] ruled out the existence of three-round
ZK arguments for NP w.r.t. black-box simulation. While three-round ZK argu-
ments with non-black-box simulators were unknown for a long time, some recent
works have studied them w.r.t. weaker adversaries such as uniform provers [10],
or uniform verifiers [12], while finally Bitansky et al. [14] were very recently able
to construct general three round ZK arguments for non-uniform provers and
verifiers based on keyless multi-collision-resistant hash functions.

2 Preliminaries

We denote by n ∈ N the security parameter that is implicitly given as input
to all algorithms in unary representation 1n. We denote by {0, 1}� the set of
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all bit-strings of length �. For a finite set S, we denote the action of sampling x
uniformly at random from S by x ←$ S, and we denote the cardinality of S by |S|.
Al algorithms are assumed to be randomized, unless explicitly stated otherwise.
An algorithm is efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y ← A(x; r) we denote that A is run on
input x and with random coins r and produced output y. If no randomness is
specified, then it is assumed that A is run with freshly sampled uniform random
coins, and write this as y ←$ A(x). For a circuit C we denote by |C| the size of
the circuit. A function negl(n) is negligible if for any positive polynomial poly(n),
there exists an N ∈ N, such that for all n > N , negl(n) ≤ 1

poly(n) .

2.1 Interactive Proofs and Arguments

An interactive proof for an NP language L is an interactive protocol between
two parties, a computationally unbounded prover and a polynomial-time verifier.
The two parties receive a common input x and the prover tries to convince the
verifier that x ∈ L. Intuitively the prover should (almost) always be successful
if x is indeed in L, but should be limited in its ability to convince the verifier if
x �∈ L. An interactive proof, as formally introduced by Goldwasser et al. [32] is
defined as follows.

Definition 1 (Interactive Proof). An r-round 2-Party protocol 〈P,V〉
between a polynomial-time verifier V and an unbounded prover P is an interac-
tive proof with soundness error ε for language L if the following two conditions
hold:

1. Completeness: For all x ∈ L it holds that PrP,V [1 ← 〈P(x),V(x)〉] = 1 −
negl(n).

2. Soundness: For all x∗ �∈ L and all computationally unbounded malicious
provers P∗ it holds that PrP∗,V [1 ← 〈P∗,V(x∗)〉] ≤ ε.

An interactive argument is very similar to an interactive proof, except that
soundness is only required to hold relative to polynomial time malicious provers.
Since also the honest prover is required to run in polynomial time, it receives
an NP witness for x as an additional input. Formally, this leads to the following
definition.

Definition 2 (Interactive Argument). An r-round 2-Party protocol 〈P,V〉
between a polynomial-time verifier V and a polynomial-time prover P is an inter-
active argument with soundness error ε for language L with associated relation
R if the following two conditions hold:

1. Completeness: For all (x,w) ∈ R it holds that PrP,V [1 ← 〈P(x,w),V(x)〉] =
1 − negl(n).

2. Soundness: For all x∗ �∈ L and all polynomial-time malicious provers P∗ it
holds that PrP∗,V [1 ← 〈P∗,V(x∗)〉] ≤ ε.
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An especially powerful class of interactive proofs and arguments are those
that are zero-knowledge. Intuitively a zero-knowledge proof or argument ensures
that a malicious polynomial time verifier cannot learn anything from an exe-
cution of the protocol, except that x ∈ L. This was first formalized in [32] by
requiring the existence of a polynomial time simulator capable of – without
knowledge of an NP witness for x – simulating any interaction a malicious ver-
ifier might have with the prover. This implies that anything the verifier learns
from a protocol execution it could have also learned without interacting with
the prover. To obtain a contradiction in the main proof in Sect. 3 we will use the
notion of non-uniform zero-knowledge, where both the malicious verifier as well
as the distinguisher may be non-uniform.

Definition 3 (Non-uniform Zero-Knowledge with Auxiliary Input). Let
〈P,V〉 be a 2-Party protocol. 〈P,V〉 is said to be non-uniformly zero-knowledge
with auxiliary input, if for all (possibly malicious) PPT algorithms V∗ there exists
a PPT simulator Sim, such that for all PPT distinguishers D and all auxiliary
inputs aux and aux′, it holds that for all statements x

∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]
−Pr[D(Sim(x, aux), aux′) = 1]

∣
∣
∣
∣
∣
≤ negl(n).

2.2 Puncturable Pseudorandom Functions

The notion of puncturable pseudorandom functions was independently intro-
duced in [17,18,38]. A puncturable pseudorandom function allows to puncture a
key k on some fixed input x. This punctured key should still allow to correctly
evaluate the PRF on any input other than x. However, the value of the func-
tion on input x should be indistinguishable from a unform random value, even
given the punctured key. We define a strong notion of puncturable pseudorandom
functions in the following.

Definition 4 (T-Secure Puncturable Pseudorandom Functions). A pair
of probabilistic polynomial time algorithms (PRF,Puncture) is a T -secure punc-
turable pseudorandom function with key length κ(n) input length i(n) and output
length o(n) if the following conditions hold:

1. Functionality Preserved Under Puncturing: For every n ∈ N, every key
k ←$ {0, 1}κ(n), every input x ∈ {0, 1}i(n), every punctured key k{x}, and
every input x′ ∈ {0, 1}i(n) \ {x} it holds that PRFk(x′) = PRFk{x}(x′).

2. Pseudorandomness: For any fixed x ∈ {0, 1}i(n) it holds that for every distin-
guisher D that runs in time at most poly(T (n)) it holds that

∣
∣
∣
∣
∣
∣
∣

Pr
k,Puncture

[D(Puncture(k, x), x,PRFk(x)) = 1]

− Pr
k,Puncture,y

[D(Puncture(k, x), x, y) = 1]

∣
∣
∣
∣
∣
∣
∣

≤ negl(T (n))
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Our impossibility result uses 22n-secure puncturable pseudorandom func-
tions. Note that these can be constructed using the GGM construction from
any subexponentially secure one-way function [28,34] by for example using keys
length κ(n) = n2.

2.3 Obfuscation

Our impossibility result uses two different kinds of obfuscation, indistinguisha-
bility obfuscation and input-hiding obfuscation for multi-input point functions.
Indistinguishability obfuscation (iO) was first suggested as a notion by Barak
et al. [7] as a weaker form of obfuscation. The security guarantee of iO is that
the obfuscation of two functionally equivalent circuits should result in indistin-
guishable output distributions. That is, any polnomial-time reverse engineering
cannot detect which of two equivalent implementations was the source of an
obfuscated program. This security may seem rather weak at first glance. How-
ever, following the introduction of a first candidate construction by Garg et
al. [25] it has been shown in several works that even this seemingly weak notion
of obfuscation is a very powerful tool. We formally define indistinguishability
obfuscation below.

Definition 5 (T-Secure Indistinguishability Obfuscation). Let C be a
family of polynomial size boolean circuits. Let iO be a probabilistic polynomial
time algorithm, which takes as input a circuit C ∈ C and a security parame-
ter 1n, and outputs a boolean circuit B (not necessarily in C). iO is a T -secure
indistinguishability obfuscator if the following two conditions hold:

1. Correctness: For every n ∈ N, every circuit C ∈ C with input length �,
every obfuscated circuit B ← iO(C, 1n) and every x ∈ {0, 1}� it holds that
B(x) = C(x).

2. Indistinguishability: For every n ∈ N, every pair of circuit C1,C2 ∈ C with
identical input length � and |C1| = |C2|, and every poly(T (n))-time distin-
guisher D it holds that

∣
∣
∣
∣
∣
Pr
iO,D

[D(iO(C1, 1n)) = 1] − Pr
iO,D

[D(iO(C2, 1n)) = 1]

∣
∣
∣
∣
∣
≤ negl(T (n))

Our impossibility result uses a strong notion of 22n-secure indistinguishability
obfuscation for general circuits. This notion is implied by any subexponentially
secure indistinguishability obfuscator by instantiating the security parameter
with κ(n) = n2.

The second form of obfuscation used in our result is input-hiding obfuscation
for multi-bit point functions. The notion of input-hiding obfuscation was first
suggested by Barak et al. in [5]. An input-hiding obfuscator for a family of
circuits C guarantees that, given an obfuscation of a circuit C drawn uniformly
at random from C it is hard for an adversary to find any input on which the
circuit doesn’t output 0.
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Definition 6 (T-Secure Input-Hiding Obfuscation). Let C = {Cn}n∈N be
a family of polynomial size boolean circuits, where Cn is a set of circuits operating
on inputs of length n. A polynomial time obfuscator hideO is a T -secure input
hiding obfuscator for C if the following two conditions hold:

1. Correctness: For every n ∈ N, every circuit C ∈ Cn, every obfuscated circuit
B ← iO(C, 1n) and every x ∈ {0, 1}n it holds that B(x) = C(x).

2. Input Hiding: For every n ∈ N, and all probabilistic polynomial time adversary
A it holds that

Pr
C←Cn,hideO,A

[C(A(hideO(C, 1n))) �= 0] ≤ T−1(n).

Note that this security definition differs from previous definitions of T -security
in so far as it requires the adversary to run in polynomial time (in n). Our result
specifically uses input-hiding obfuscation for multi-bit point functions. A multi-
bit point function is characterized by two values x and y and is defined as the
function that on input x outputs y and outputs 0 on all other inputs.

Definition 7 (T-Secure Input-Hiding Obfuscation for Multi-bit Point
Functions). Let Ix,y denote the multi-bit point function with Ix,y(x) = y and
Ix,y(x′) = 0 for all x′ �= x and let k be a function k : N → N. A polynomial time
obfuscator hideO is a T -secure input hiding obfuscator for (n, k)-multi-bit point
functions if it is a T -secure input-hiding obfuscator for all circuit families C for
which the following properties hold.

1. All circuits in C = {Cn}n∈N
describe point functions with n-bit input and

k(n)-bit output. I.e., Cn ⊆ {

Ix,y

∣
∣x ∈ {0, 1}n ∧ y ∈ {0, 1}k(n)

}

.
2. The marginal distribution on x is uniform for a uniformly sampled circuit

Ix,y ←$Cn.

This notion was first studied by Bitansky and Cannetti in [11]. They also showed
that an earlier candidate construction by Cannetti and Dakdouk [19] can be
proven secure in the generic group model based on a strong variant of the DDH
assumption. Our impossibility result requires 2n-secure input hiding obfusca-
tor for multi-bit point functions. This may on first glance seem problematic,
since DDH (and thereby the instantiation due to Cannetti and Dakdouk [19])
can be broken in time less than 2n even in the generic group model. However,
in Definition 6 we explicitly – and in contrast to the other definitions in this
section – require that the adversary runs in polynomial time. And known subex-
ponential time attacks do not imply a polynomial time attack that is successful
with probability greater than poly/2(n).

3 Impossibility of Three-Round Zero-Knowledge Proofs

In this section we will prove our main result, i.e., that under the stated assump-
tions, zero-knowledge 3-round interactive proof systems for non-trivial languages
cannot exist. Our result is formally stated in Theorem 2.
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Theorem 2. Let Π̂ be a 3-round interactive proof system for a language L �∈
BPP with negligible soundness error μ. Assume the existence of a 22n-secure
puncturable pseudorandom function, a 22n-secure indistinguishability obfuscator,
and a μ · 2npoly(n)-secure input-hiding obfuscator for multi-bit point functions.
Then Π̂ cannot be non-uniformly zero-knowledge with auxiliary input.

Proof (Theorem 2). Let Π̂ = 〈P̂, V̂〉 be a 3-round interactive proof system as
described in Theorem 2. We consider the prover and verifier as two-stage algo-
rithms, V̂ = (V̂1, V̂2), P̂ = (P̂1, P̂2). The first stage of the prover α ← P̂1(x,w; r)
on input the statement x, witness w and random coins r outputs the prover’s
first message α. The first stage of the verifier β ← V̂1(x, α; s) on input the state-
ment x, the prover’s first message α and random coins s outputs the verifier’s
message β. The second stage of the prover γ ← P̂2(x,w, β; r) on input the state-
ment x, witness w, the verifier’s message β and random coins r outputs the
prover’s second message γ. The second stage of the verifier b ← V̂2(x, α, γ; s) on
input the statement x, the prover’s messages α, γ and random coins s outputs a
bit b indicating whether the proof is accepted of not. Note that without loss of
generality we assume that the second stages do not take their own messages as
input and instead recompute them when necessary.

First we slightly modify the protocol Π̂ into the protocol Π = 〈P,V〉. The
protocol behaves exactly as Π̂, except that V1 takes as its random coins s = σ‖ŝ

with |σ| =
⌈

log μ−1
⌉

and after running β̂ ← V1(x, α; ŝ) outputs β := σ‖β̂. The
prover’s second stage P2 then again behaves exactly as P̂2, and ignores σ. The
following claim is immediately apparent.

Claim 3. If Π̂ is a 3-round interactive proof system with negligible soundness
error μ, then Π is also a 3-round interactive proof system for the same language
with the same negligible soundness error μ.

This modification is therefore without loss of generality and will allow us to
cleanly define a relaxed version of the verifier later in the proof, leading to a
much simpler proof.

Now, we use the pseudorandom function PRF the indistinguishability obfus-
cator iO to construct a two-round protocol Π̄ = 〈P̄, V̄〉 as depicted in Fig. 1. The
circuit CV1 is defined as follows:

CV1 [k, x](α)

s := PRFk(α)

β := V1(x, α; s)

return β

To prove Theorem 2 we will now use the following two lemmas proven in
Sects. 3.1 and 3.2 respectively.



18 N. Fleischhacker et al.

P̄(x, w; r) V̄(x)

k ←$ {0, 1}κ(n)

α ← P1(x, w; r) B B ← iO(CV1 [k, x])

β := B(α)

γ ← P2(x, w, β; r) α, γ b ← V2(x, α, γ;PRFk(x, α))

return b

Fig. 1. The two-round argument system Π̄ = 〈P̄, V̄〉 resulting from compressing the
three-round proof system Π = 〈P,V〉 into two rounds. The round compression is
achieved by sending an obfuscated version of the verifier’s own code to the prover as
a first message. This allows the prover to compute the verifier’s response to their first
message without additional interaction. This construction is proven sound in Lemma 4.

Lemma 4. Let Π̂ be a 3-round interactive proof system with negligible sound-
ness error μ as in Theorem 2. Let Π be the modified 3-round interactive proof
system as described above. Assume that PRF is a 22n-secure puncturable pseudo-
random function, and iO is a 22n-secure indistinguishability obfuscator. Further
assume that hideO is a 2n-secure input-hiding obfuscator for multi-bit point func-
tions. Then Π̄, described in Fig. 1 is a 2-round interactive argument system with
negligible soundness error μ̄.

Lemma 5. Let Π be a 3-round interactive proof system for a language L �∈
BPP. Let Π̄ be the transformed 2-round argument system described in Fig. 1 with
soundness error μ̄. If μ̄ ≤ negl(n) then Π is not non-uniformly zero-knowledge
with auxiliary input.

Theorem 2 now follows as a simple corollary from combining Lemmas 4 and
5. By our assumption, Π has a negligibly small soundness error μ, which by
Lemma 4 also implies a negligible soundness error μ̄ for Π̄. Since a negligible
soundness error of Π̄ implies that Π is not non-uniformly zero-knowledge with
auxiliary input, the theorem trivially follows. �

3.1 Proof of Lemma 4

Fix a modified 3-round interactive proof system Π = 〈P,V〉. Let μ ≤ negl(n) be
the soundness error of Π. We assume without loss of generality, that all messages
of the protocol have length n.

Assume towards contradiction that there exists a cheating PPT prover P∗

breaking the soundness of Π̄ for some x∗ �∈ L with probability ν = 1/poly(n).
I.e., we have that

Pr
k,iO,P∗

[V2(x∗, α, γ;PRFk(α)) = 1 : (α, γ) ← P∗(iO(CV1 [k, x]))] ≥ ν. (1)
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To obtain a contradiction we analyze a variant of the protocol Π that works
with a relaxed verifier V′. The relaxed verifier V′ works exactly as V, except that
in addition to accepting whenever V does, it also accepts if β = 0�log ν/μ�‖β′

for some arbitrary β′. Remember, that β = σ‖β̂ with |σ| =
⌈

log μ−1
⌉

. I.e., V′

also accepts if the first �log ν/μ� bits of σ are zero. In particular since V′ always
accepts if V accepts, it remains true that

Pr
k,iO,P∗

[V′
2(x

∗, α, β;PRFk(α)) = 1 : P∗(iO(CV1 [k, x])) = (α, γ)] ≥ ν. (2)

Further, using a union bound, we can bound the soundness error μ′ of the relaxed
3-round protocol 〈P,V′〉 to be

μ′ ≤ μ + 2−�log ν/μ� ≤ μ +
μ

ν
≤ 2μ

ν
. (3)

In particular, for any negligible μ, μ′ remains negligible.
Let Sα,β = {s|V′

1(x
∗, α; s) = β} denote the set of all random tapes that given

α lead to the second message β. We define the following set of pairs (α, β), for
which a malicious γ exists that will be accepted by the verifier for a large fraction
of the random tapes that given α lead to β.

ACC =

{

(α, β)

∣
∣
∣
∣
∣
∃γ : Pr

s′ ←$ Sα,β

[V′
2(x

∗, α, γ; s′) = 1] ≥ ν

2

}

.

Observe, that membership in ACC can be tested in time 22n · poly(n) = O22n

by enumerating all messages γ and all random tapes s, checking whether β =
V′
1(x

∗, α; s) and V′
2(x

∗, α, γ; s) = 1 and then computing the probability.3 Given
the cheating prover P∗, there exists an efficient algorithm A that outputs α, such
that (α,V′

1(α;PRFk(α))) ∈ ACC with high probability. Formally this is stated in
the following claim that is proven in Sect. 3.1.1.

Claim 6. If there exists a malicious prover P∗ as assumed above, then
for the efficient algorithm A that on input iO(CV1 [k, x∗])| runs (α, γ) ←
P∗(iO(CV1 [k, x∗])), discards γ and outputs α the following holds:

Pr
k,iO,A

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : α ← A(iO(CV1 [k, x∗]))] ≥ ν

2
− 2−n

Now consider the punctured version of the verifier circuit Cpct defined follows:

Cpct[k, α∗, β∗](α)

if α
?
=α∗

β := β∗

else

s := PRFk(α)

β := V′
1(x, α; s)

return β

3 This assumes without loss of generality that |γ| = |s| = n.
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We will use the following claim, which essentially states that, when given an
obfuscation of the verifier’s circuit punctured at α∗, the A from Claim 6 will
output α∗ with a probability slightly above random chance. The claim is proven
in Sect. 3.1.2.

Claim 7. If PRF is 22n-secure and iO is 22n-secure, then it must hold that

Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

≥ 1
8

· 2−n · ν2

μ′ .

This property of A contradicts the security of the input hiding obfuscator hideO
as shown in the following. We claim that

Pr
k,α∗,s∗,hideO,iO,A

[

A
(

iO
(

Chide[k, hideO(α∗, s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

≥ Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x, α; s∗)

)

∈ ACC
]

− Pr
α∗,s∗

[(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

· negl[22n] (4)

≥ Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x, α; s∗)

)

∈ ACC
]

− 2−2n (5)

≥1
8

· 2−n ν2

μ′ − 2−2n ≥ 1
16

· 2−n ν2

μ′ , (6)

where Chide[k,B] is a circuit that defined as follows

Chide[k,B](α∗)

s∗ := B(α∗)

if s∗ = ⊥
s∗ := PRFk(α∗)

β∗ := V′
1(x

∗, α∗; s∗)

return β∗

Equation 4 follows by reduction to the 22n security of the indistinguishability
obfuscator as depicted in Fig. 2. Clearly, the two circuits are functionally equiv-
alent. Further, if it holds that (α∗, β∗) ∈ ACC then the two cases of the secu-
rity definition of indistinguishability obfuscation directly correspond to the two
cases of Eq. 4. The reduction BiO runs in time O22n and therefore, Eq. 4 follows.
Equation 5 then follows simply by upper bounding the probability with 1 and the



On the Existence of Three Round Zero-Knowledge Proofs 21

BiO
1 (1n)

k ←$ {0, 1}κ(n)α∗ ←$ {0, 1}n

s∗ ←$ {0, 1}n

k{α∗} := Puncture(k, α∗)

β∗ := V′
1(x

∗, α∗; s∗)

C0 = Cpct[k{α∗}, α∗, β∗]

C1 = Chide[k, hideO(α∗, s∗)]

return (C0,C1)

BiO
2 (B)

if (α∗, β∗) �∈ ACC

b ←$ {0, 1}
return b

else if A(B) = α∗

return 0

else

return 1

Fig. 2. The reduction from the claim of Eq. 4 to the 22n security of the indistinguisha-
bility obfuscator.

negligible function by 2−2n. Finally Eq. 6 follows directly from Claim 7 and the
last inequality follows by loosely upper bounding the negligible function 2−2n.

Closely following [36], it remains to be shown that the distribution defined
by uniformly sampling (α∗, β∗) from ACC is close to the distribution defined by
uniformly sampling α∗ and then sampling β∗ conditioned on (α∗, β∗) ∈ ACC.

Formally, we define two distributions. Let D0 be the distribution over pairs
(α∗, β∗) defined by uniformly sampling (α∗, β∗) ←$ACC. Let D1 be the distribu-
tion over pairs (α∗, β∗) defined by uniformly sampling α∗ ←$ {0, 1}n and then
uniformly sampling β∗ ←$ {β|(α∗, β) ∈ ACC}. We denote by Db[α∗, β∗] the prob-
ability of the pair (α∗, β∗) by distribution Db.

Claim 8. For any (α∗, β∗) ∈ {0, 1}n × {0, 1}2n it holds that

D1[α∗, β∗] ≥ ν

4
D0[α∗, β∗]

It follows from Claim 8 that by drawing from D1 instead of D0, the probabil-
ity of A outputting α∗ can decrease at most by a multiplicative factor of 4/ν.
Therefore, Claim 8 and Eq. 6 imply that there exists a PPT algorithm A such
that

Pr
(α∗,β∗,hideO,A) ←$D1,hideO,A

[A(hideO(Chide[α∗, β∗])) = α∗ ]

≥ν

4
· (

1
16

· 2−n · ν2

μ′ ) =
1
64

2−n · ν3

μ′ ≥ μ−1 · 2−n · ν3

128

Since the distribution of α∗ drawn from D1 is uniform, and ν is an inverse
polynomial, this contradicts the T = μ · 2n · poly(n) security of the input hiding
obfuscator and Lemma 4 follows. �

It remains to show that the various claims used in the above proof actually
hold. The proofs for these claims are detailed in the following sections.
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3.1.1 Proof of Claim 6
By definition of A we specifically need to show that

Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))] ≥ ν

2
− 2−n.

To do so, we will use the following claim, stating that if the cheating prover
is successful in getting V′

2 to accept using the random tape PRFk(α), then V′
2

would accept with almost the same probability if the random tape were replaced
with a randomly chosen s ←$ Sα,β .

Claim 9. If PRF is 22n-secure and iO is 22n-secure, then it must hold for any
malicious prover P∗ as assumed above, that
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,iO,P∗

[

V′
2(x

∗, α∗, γ∗;PRFk(α∗)) = 1 :
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

]

− Pr

k,s,iO,P∗

⎡

⎣V′
2(x

∗, α∗, γ∗; s′) = 1 :
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ 2−n.

We observe the following

ν = Pr
k,iO,P∗

[V′
2(x

∗, α, γ;PRFk(α)) = 1 : (α, γ) ← P∗(iO(CV1 [k, x∗]))] (7)

≤ Pr

k,s′,iO,P∗

⎡

⎣V′
2(x

∗, α, γ; s′) = 1 :
(α, γ) ← P∗(iO(CV1 [k, x∗])
β ← V′

1(x
∗, α,PRFk(α))

s′ ←$ Sα,β

⎤

⎦ + 2−n (8)

= Pr

k,s′,iO,P∗

⎡

⎣V′
2(x

∗, α, γ; s′) = 1 :
(α, γ) ← P∗(iO(CV1 [k, x∗])
β ← V′

1(x
∗, α,PRFk(α))

s′ ←$ Sα,β

∣
∣
∣
∣
∣
∣

(α, β) ∈ ACC

⎤

⎦

︸ ︷︷ ︸

≤1

· Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

+ Pr

k,s′,iO,P∗

⎡

⎣V′
2(x

∗, α, γ; s′) = 1 :
(α, γ) ← P∗(iO(CV1 [k, x∗])
β ← V′

1(x
∗, α,PRFk(α))

s′ ←$ Sα,β

∣
∣
∣
∣
∣
∣

(α, β) �∈ ACC

⎤

⎦

︸ ︷︷ ︸

≤ν/2

· Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) �∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

︸ ︷︷ ︸

=1−Prk,iO,P∗[(α,V′
1(x

∗,α;PRFk(α)))∈ACC:(α,γ)←P∗(iO(CV1 [k,x∗]))]

+ 2−n

(9)



On the Existence of Three Round Zero-Knowledge Proofs 23

≥
(

1 − ν

2

)

Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

+
ν

2
+ 2−n (10)

where Eq. 7 follows from the definition of P∗ and Eq. 8 follows directly from
Claim 9. Equation 9 simply splits the probability into two cases and Eq. 10 upper
bounds the probability of the verifier accepting in the two cases.

The above observation gives us

Pr
k,iO,P∗

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : (α, γ) ← P∗(iO(CV1 [k, x∗]))]

≥ν − ν
2 − 2−n

1 − ν
2

≥ ν − ν

2
− 2−n =

ν

2
− 2−n

as claimed. �
Proof of Claim 9. Let δ be any function such that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s′,iO,P∗

⎡
⎣V′

2(x
∗, α∗, γ∗;PRFk(α∗)) = 1 :

(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤
⎦

− Pr

k,s′,iO,P∗

⎡
⎣V′

2(x
∗, α∗, γ∗; s′) = 1 :

(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
beta∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> δ(n).

In this case, we also have that for a uniformly chosen value α,
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗;PRFk(α∗)) = 1
∧ α∗ = α

:
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s′ ←$ Sα∗,β∗

⎤

⎦

− Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s′) = 1
∧ α∗ = α

:
(α∗, γ∗) ← P∗(iO(CV1 [k, x∗]))
β∗ ← V′

1(x
∗, α∗;PRFk(α∗))

s ←$ Sα∗,β∗

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 2−n · δ(n).

Now consider the punctured version of the verifier circuit defined as before.
By the 22n security of the obfuscator, the fact that the two circuits CV1 [k, x∗]
and Cpct[k{α}, α,V′

1(α;PRFk(α))] are functionally equivalent and the fact that
s ←$ Sα∗,β∗ can be sampled in time O(2n), it follows that
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗;PRFk(α∗)) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α;PRFk(α))

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

− Pr

k,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s′) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α;PRFk(α))

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 2−n · δ(n) − negl[22n].

Further, by the 22n security of the pseudorandom function and the fact that
s ←$ Sα∗,β∗ can be sampled in time O(2n), it follows that

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

k,s,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α; s)

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

− Pr

k,s,s′,α,iO,P∗

⎡

⎣
V′
2(x

∗, α∗, γ∗; s′) = 1
∧ α∗ = α

:
β ← V′

1(x
∗, α; s)

(α∗, γ∗) ← P∗(iO(Cpct[k{α}, α, β]))
s′ ←$ Sα∗,β

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≥2−n · δ(n) − negl(22n) − negl(22n) ≥ 2−n · δ(n) − 2−2n,

where the last inequality is obtained by loosely upper bounding the negligible
functions. The circuit Cpct[k{α}, α, β] no longer contains any information about
s besides the fact that s ∈ Sα∗,β∗ . In the case where α∗ = α, s and s′ are,
therefore, distributed identically and the two probabilities must in fact also be
identical. Therefore, 2−n ·δ(n)−2−2n ≤ 0, giving us δ(n) ≤ 2−n. The claim thus
follows. �

3.1.2 Proof of Claim 7
By definition of conditional probability, we have that

Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x, α; s∗)

)

∈ ACC
]

=

Prk,α∗,s∗,iO,A

⎡

⎣
A

(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗

∧
(

α∗,V′
1(x, α; s∗)

)

∈ ACC

⎤

⎦

Prα∗,s∗
[(

α∗,V′
1(x∗, α; s∗)

)

∈ ACC
] ,

where we can easily bound Prα∗,s∗ [(α∗,V′
1(x

∗, α; s∗)) ∈ ACC] ≤ 2μ′/ν using the
soundness error μ′ of 〈P,V′〉. This is due to the fact that otherwise a (computa-
tionally unbounded) malicious prover could simply send a randomly sampled α∗.
Upon receiving β∗, it would hold that (α∗, β∗) ∈ ACC with probability greater
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than 2μ′/ν. In this case, the prover could exhaustively search for a message γ∗

that would lead many verifiers to accept. By definition of ACC, such a prover
would win with probability greater than (2μ′/ν) · (ν/2) = μ′, contradicting the
soundness of the underlying protocol. It remains to bound the numerator, which
we will do in two hops.

Pr

k,α∗,s∗,iO,A

[A(iO(Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)])) = α∗

∧ (α∗,V′
1(x

∗, α; s∗)) ∈ ACC

]

≥ Pr

k,α∗,iO,A

[A(iO(Cpct[k{α∗}, α∗,V′
1(x

∗, α∗;PRFk(α∗))])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α))) ∈ ACC

]

− negl(22n) (11)

≥ Pr

k,α∗,iO,A

[ A(iO(CV1 [k, x∗])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC

]

− negl(22n) − negl(22n) (12)

≥ Pr

k,α∗,iO,A

[ A(iO(CV1 [k, x∗])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC

]

− 2−2n (13)

Equation 11 follows by reduction to the 22n security of the puncturable pseu-
dorandom function as depicted in Fig. 3. Clearly, the two cases of the security
definition for puncturable pseudorandom functions directly map to the two cases
of Eq. 11. Further, the reduction BPRF runs in time O(22n) and therefore, Eq. 11
follows.

BPRF(k{α∗}, s∗)

β∗ := V′
1(x

∗, α; s∗)

B ← iO(Cpct[k{α∗}, α∗, β∗])

if A(B) = α∗ ∧ (α∗, β∗) ∈ ACC

return 1

else return 0

Fig. 3. The reduction from the claim of Eq. 11 to the 22n security of the puncturable
pseudorandom function.

Equation 12 follows by reduction to the 22n security of the indistinguisha-
bility obfuscator as depicted in Fig. 4. Clearly, the two circuits are functionally
equivalent and the two cases of the security definition for puncturable pseudo-
random functions directly map to the two cases of Eq. 11. The reduction BiO

runs in time O(22n) and therefore, Eq. 12 follows. Finally, Eq. 13 then follows
by the fact that the sum of two negligible functions is negligible and by loosely
upper bounding the resulting negligible functions (note that 2−2n is an inverse
polynomial in 22n).
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BiO
1 (1n)

k ←$ {0, 1}κ(n), α∗ ←$ {0, 1}n

k{α∗} := Puncture(k, α∗)

β∗ := V′
1(x

∗, α∗;PRFk(α∗))

C0 = Cpct[k{α∗}, α∗, β∗]

C1 = CV1 [k, x∗]

return (C0,C1)

BiO
2 (B)

if A(B) = α∗ ∧ (α∗, β∗) ∈ ACC

return 1

else return 0

Fig. 4. The reduction from the claim of Eq. 12 to the 22n security of the indistinguisha-
bility obfuscator.

Using basic probability theory and Claim 6, we get

Pr
k,α∗,iO,A

[A(iO(CV1 [k, x∗])) = α∗ ∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC]

= Pr

k,α∗,iO,A

[
⋃

α

( A(iO(CV1 [k, x])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC ∧ α∗ = α

)]

=
∑

α

Pr

k,α∗,iO,A

[ A(iO(CV1 [k, x])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC ∧ α∗ = α

]

=2−n
∑

α

Pr

k,α∗,iO,A

[ A(iO(CV1 [k, x])) = α∗

∧ (α∗,V′
1(x

∗, α∗;PRFk(α∗))) ∈ ACC

]

=2−n Pr
k,iO,A

[(α,V′
1(x

∗, α;PRFk(α))) ∈ ACC : α ← A(iO(CV1 [k, x∗]))]

≥2−n ·
(ν

2
− 2−n

)

.

Combining this with Eq. 13, we get

Pr

k,α∗,s∗,iO,A

[A(iO(Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)])) = α∗

∧ (α∗,V′
1(x

∗, α; s∗)) ∈ ACC

]

≥2−n
(ν

2
− 2−n

)

− 2−2n = 2−n
(ν

2
− 2−n − 2−n

)

≥ 2−n · ν

4
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where the last inequality follows by loosely upper bounding the negligible func-
tion 21−n by the inverse polynomial ν/4. Finally Claim 7 follows by

Pr
k,α∗,s∗,iO,A

[

A
(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗
∣
∣
∣

(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC
]

=

Prk,α∗,s∗,iO,A

⎡

⎣
A

(

iO
(

Cpct[k{α∗}, α∗,V′
1(x

∗, α; s∗)]
))

= α∗

∧
(

α∗,V′
1(x

∗, α; s∗)
)

∈ ACC

⎤

⎦

Prα∗,s∗
[(

α∗,V′
1(x∗, α; s∗)

)

∈ ACC
]

≥ 2−n · ν
2

μ′ =
1
2

· 2−n ν

μ′ �

3.1.3 Proof of Claim 8
For any α∗ denote by Bα∗ := {β|(α∗, β) ∈ ACC}. By construction of the relaxed
verifier we have that Bα∗ contains at least a μ/ν fraction of all β. On the other
hand, soundness of the protocol 〈P,V′〉 guarantees, that Bα does not contain
more than a 2μ′/ν ≤ 4μ/ν2 fraction of all β. Thus, we have

μ

ν
≤ |Bα∗ |

22n
≤ 4μ

ν2

In particular, for any α and α∗, we have that

|Bα| ≥ ν

4
|Bα∗ |

which gives us

D0[α∗, β∗] =
1

ACC
=

1
∑

α∈{0,1}n |Bα| ≤ 2
2n · |Bα∗ | =

4
ν
D1[α∗, β∗]. �

3.2 Proof of Lemma 5

Consider the following malicious verifier V∗ = (V∗
1,V

∗
2). The first stage V∗

1 on
input the statement x, the prover’s first message α and auxiliary input aux simply
interprets the auxiliary input as a circuit, evaluates it on x, α, and outputs the
result β ← aux(x, α). The second stage V∗

2 on input the statement x, the prover’s
messages α, γ and auxiliary input aux recomputes β ← aux(x, α) and then simply
outputs α, β, γ.

Now, assume towards contradiction, that Π is zero-knowledge, i.e., in par-
ticular for V∗ as described above there exists a PPT simulator Sim such that for
all PPT distinguishers D, all auxiliary inputs aux and aux′, and all statements x
it holds that

∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]
−Pr[D(Sim(x, aux), aux′) = 1]

∣
∣
∣
∣
∣
≤ negl(n).
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We will use said simulator to construct a malicious prover P∗ against Π̄ as
follows: On input x and the verifier’s message B = iO(CV1 [k]), P∗ invokes the
simulator Sim on x and auxiliary input B. The simulator will produce a transcript
α, β, γ that P∗ also outputs.

If x ∈ L, then the zero-knowledge property and the completeness guaran-
tee that V̄2 will accept the proof with probability 1 − negl(n), since otherwise
we could easily construct a successful distinguisher against Sim as follows. The
distinguisher D on input (α, β, γ) and auxiliary input aux′ simply runs V̄2 on
(α, γ) and random coins aux′ and outputs b ← V̄2((α, γ); aux′). Further, even if
x �∈ L, V̄2 must still accept with all but negligible probability, since otherwise
the combination of P∗ and V̄ could be used to decide L, implying that L ∈ BPP.

Therefore, P∗ succeeds in convincing V̄ of false statements with all but negli-
gible probability. Since this contradicts the premise that μ̄ ≤ negl(n), Sim cannot
exist and therefore Π is not zero-knowledge. �

4 Extending the Lower Bound to ε-Zero Knowledge

In [14] Bitansky et al. introduced a weaker notion of zero-knowledge they called
ε-zero-knowledge. In this weaker notion, the outputs of the simulator may be
distinguishable with non-negligible probability, but the distinguishing advantage
is upper bounded by any inverse monomial in the length of the statement. In
this section we prove that our lower bound extends to this weaker notion of zero-
knowledge. This is particularly interesting because Bitansky et al. [14] are able to
construct a 4-round ε-zero-knowledge proof protocol from keyless multi-collision-
resistant hash functions (MCRH). This provides evidence that our technique is
unlikely to be extend to the case of 4-round proofs, since that would rule out
MCRHs.

We start by defining ε-zero-knowledge. The definition is almost identical to
regular zero-knowledge, except that the advantage of the distinguisher is not
bounded by a negligible function.

Definition 8 (Non-uniform ε-Zero-Knowledge with Auxiliary Input).
Let 〈P,V〉 be a 2-Party protocol. 〈P,V〉 is said to be non-uniformly ε-zero-
knowledge with auxiliary input, if for all (possibly malicious) PPT algorithms
V∗ there exists a PPT simulator Sim, such that for all PPT distinguishers D and
all auxiliary inputs aux and aux′, it holds that for all statements x with |x| = λ
and every noticeable function ε(λ) = λ−O(1)

∣
∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]

− Pr
[

D(Sim(11/ε(λ), x, aux), aux′) = 1
]

∣
∣
∣
∣
∣
∣

≤ ε(λ).

Next, we state our generalized lemma about 3-round ε-zero-knowledge proofs.
This lemma is a straightforward adaption of Lemma 5 to the ε-zero-knowledge
case.
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Lemma 10. Let Π be a 3-round interactive proof system for a language L �∈
BPP. Let Π̄ be the transformed 2-round argument system described in Fig. 1 with
soundness error μ̄. If μ̄ ≤ negl(n) then Π is not non-uniformly ε-zero-knowledge
with auxiliary input.

From combining Lemmas 4 and 10 a statement equivalent to Theorem 2 for
ε-zero-knowledge follows as a simple corollary.

4.1 Proof of Lemma 10

Just like the lemma itself, the proof is a straightforward adaption of the proof for
Lemma 5. We only need to make sure that the weaker requirement on the simu-
lator does not cause the success probability of the cheating prover to deteriorate
too much.

Consider the following malicious verifier V∗ = (V∗
1,V

∗
2). The first stage V∗

1

on input the statement x, the prover’s first message α and auxiliary input aux
simply interprets the auxiliary input as a circuit, evaluates it on x, α, and outputs
the result β ← aux(x, α). The second stage V∗

2 on input the statement x, the
prover’s messages α, γ and auxiliary input aux recomputes β ← aux(x, α) and
then simply outputs α, β, γ.

Now, assume towards contradiction, that Π is ε-zero-knowledge, i.e., in par-
ticular for V∗ as described above there exists a PPT simulator Sim such that for
all PPT distinguishers D, all auxiliary inputs aux and aux′, all statements x and
all noticeable function ε(λ) = λ−O(1) it holds that

∣
∣
∣
∣
∣
∣

Pr[D(〈P(x,w),V∗(x, aux)〉 , aux′) = 1]

− Pr
[

D(Sim(11/ε(|x|), x, aux), aux′) = 1
]

∣
∣
∣
∣
∣
∣

≤ ε(|x|).

We will use said simulator to construct a malicious prover P∗ against Π̄ as
follows: On input x and the verifier’s message B = iO(CV1 [k]), P∗ invokes the
simulator Sim on 1/ε(λ), x and auxiliary input B. The simulator will produce a
transcript α, β, γ that P∗ also outputs.

If x ∈ L, then the zero-knowledge property guarantees that V̄2 will accept
the proof with probability greater than 1 − |x|−c for any constant c ∈ N, since
otherwise we could easily construct a successful distinguisher against Sim as
follows. The distinguisher D on input (α, β, γ) and auxiliary input aux′ simply
runs V̄2 on (α, γ) and random coins aux′ and outputs b ← V̄2((α, γ); aux′). This
distinguisher would therefore be able to distinguish between a real transcript
and a simulated transcript with probability greater than |x|−c for some constant
c ∈ N, thus clearly clearly contradicting the fact that Sim is a valid simulator.
Further, even if x �∈ L, V̄2 must still accept with probability at least 1 − |x|−c −
negl(n), since otherwise the combination of P∗ and V̄ could be used to decide L,
implying that L ∈ BPP.

Therefore, P∗ succeeds in convincing V̄ of false statements with probability
greater than 1 − |x|−c − negl(n) for any constant c ∈ N, which is clearly non-
negligible. Since this contradicts the premise that μ̄ ≤ negl(n), Sim cannot exist
and therefore Π is not zero-knowledge. �
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