Skip to main content

Allocating Shadow Prices in a Multi-objective Chance Constrained Problem of Biodiesel Blending

  • Chapter
  • First Online:
Multicriteria Analysis in Agriculture

Part of the book series: Multiple Criteria Decision Making ((MCDM))

Abstract

Biodiesel can be produced from different vegetable oils and the choice of the blend (mix of oils) to be used for biodiesel production has an important impact on its cost and environmental performance. This chapter presents a model that determines the optimal blend that minimizes production costs and GHG emissions and assesses the influence of technical constraints on the decision objectives. For this purpose, an algorithm for the allocation of shadow prices to the constituent parts of the composite objective function was implemented. The technical constraints in the model control biodiesel properties based on the feedstock’s chemical composition, taking into account inherent compositional uncertainty. The information obtained from the shadow prices allowed the identification of which technical constraint limits GHG reduction and cost effectiveness. Thus, the model can be used for evaluating the effects of technical progress or policy mandatory measures relatively to the cost and GHG emissions of the biodiesel production process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgul, O., Shah, N., & Papageorgiou, L. G. (2012). An optimisation framework for a hybrid first/second generation bioethanol supply chain. Computers and Chemical Engineering, 42, 101–114. https://doi.org/10.1016/j.compchemeng.2012.01.012

    Article  Google Scholar 

  • ASTM. (2008). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. Report no. D6751–08.

    Google Scholar 

  • Bairamzadeh, S., Pishvaee, M. S., & Saidi-Mehrabad, M. (2016). Multiobjective robust possibilistic programming approach to sustainable bioethanol supply chain design under multiple uncertainties. Industrial and Engineering Chemistry Research, 55, 237–256. https://doi.org/10.1021/acs.iecr.5b02875

    Article  Google Scholar 

  • Bamgboye, A. I., & Hansen, A. C. (2008). Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 22, 21–29.

    Google Scholar 

  • Buratti, C., Barbanera, M., & Fantozzi, F. (2012). A comparison of the European renewable energy directive default emission values with actual values from operating biodiesel facilities for sunflower, rape and soya oil seeds in Italy. Biomass and Bioenergy, 47, 26–36. https://doi.org/10.1016/j.biombioe.2012.10.008

    Article  Google Scholar 

  • Caldeira, C., GĂĽlsen, E., Olivetti, E. A., et al. (2014). A multiobjective model for biodiesel blends minimizing cost and greenhouse gas emissions. In B. Murgante, et al. (Eds), Computational science and its applications – ICCSA 2014. Lecture Notes in Computer Science, 8581, 653–666. https://doi.org/10.1007/978-3-319-09150-1_48

  • Caldeira, C., Freire, F., Olivetti, E. A., & Kirchain, R. (2017). Fatty acid based prediction models for biodiesel properties incorporating compositional uncertainty. Fuel, 196, 13–20. https://doi.org/10.1016/j.fuel.2017.01.074

    Article  Google Scholar 

  • CEN. (2008). EN 14214: Automotive fuels – fatty acid methyl esters (FAME) for diesel engines – requirements and test methods.

    Google Scholar 

  • Charnes, A., & Cooper, W. (1959). Chance-constrained programming. Management Science, 6, 73–79.

    Article  Google Scholar 

  • Cohon, J. L. (1978). Multiobjective programming and planning (1st ed.). New York: Academic Press.

    Google Scholar 

  • European Comission. (2009). Directive 2009/28/EC of the European Parliament and the council of 23 April 2009 on the promotion of the use of energy from renewable sources, pp. 16–62.

    Google Scholar 

  • Gal, T. (1986). Shadow prices and sensitivity analysis in linear programming under degeneracy. State-of-the-Art-Survey, Operational Research Spectrum, 8, 59–71.

    Article  Google Scholar 

  • GAMS. (2011). GAMS Development Corporation: General Algebraic Modeling System (GAMS) Release 23.7.3. Washington, DC, USA.

    Google Scholar 

  • Giakoumis, E. G. (2013). A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy, 50, 858–878. https://doi.org/10.1016/j.renene.2012.07.040

    Article  Google Scholar 

  • GĂĽlĹźen, E., Olivetti, E., Freire, F., et al. (2014). Impact of feedstock diversification on the cost-effectiveness of biodiesel. Applied Energy, 126, 281–296. https://doi.org/10.1016/j.apenergy.2014.03.063

    Article  Google Scholar 

  • Ho, J. (2000). Computing true shadow prices in linear programming. Informatica, 11(4), 421–434.

    Google Scholar 

  • Hoekman, S. K., Broch, A., Robbins, C., et al. (2012). Review of biodiesel composition, properties and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  Google Scholar 

  • Hwang, C.-L., & Masud, A. S. M. (1979). Multiple objective decision making — Methods and applications: A state-of-the-art survey. Systems, Lecture Notes in Economics and Mathematical Volume 164.

    Book  Google Scholar 

  • IndexMundi. (2014). Retrieved May 19, 2014, from http://www.indexmundi.com/. http://www.indexmundi.com/

  • Kampempe, J. D. B. (2012). Chance-constrained approaches for multiobjective stochastic linear programming problems. American Journal of Operations Research, 2, 519–526. https://doi.org/10.4236/ajor.2012.24061

    Article  Google Scholar 

  • Koltai, T., & Terlaky, T. (2000). The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming. International Journal of Production Economics, 65, 257–274.

    Article  Google Scholar 

  • Kumral, M. (2003). Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem. Engineering Optimization, 35, 661–673. https://doi.org/10.1080/03052150310001614837

    Article  Google Scholar 

  • Malça, J., Coelho, A., & Freire, F. (2014). Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations. Applied Energy, 114, 837–844. https://doi.org/10.1016/j.apenergy.2013.06.048

    Article  Google Scholar 

  • Mavrotas, G. (2009). Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 213, 455–465.

    Article  Google Scholar 

  • McCarl, B., Rister, M. E., Stokes, J., & Ziari, H. (1996). Improving shadow price information: Obtaining relevant shadow prices from problems with decomposable objectives. American Journal of Agricultural Economics, 78, 599–705.

    Article  Google Scholar 

  • Moghaddam, A. T. N., & Michelot, C. (2009). A contribution to the linear programming approach to joint cost allocation: Methodology and application. European Journal of Operational Research, 197, 999–1011. https://doi.org/10.1016/j.ejor.2007.12.043

    Article  Google Scholar 

  • Nejad, M. A. T. (2007). Allocation of CO2 emissions in petroleum refineries to petroleum joint products: A linear programming model for practical application. Energy Economics, 29, 974–997. https://doi.org/10.1016/j.eneco.2006.11.005

    Article  Google Scholar 

  • Olivetti, E., Gaustad, G. G., Fiels, F. R., & Kirchain, R. E. (2011). Increasing secondary and renewable material use: A chance constrained modeling approach to manage feedstock quality variation. Environmental Science & Technology, 45, 4118–4126.

    Article  Google Scholar 

  • Olivetti, E., GĂĽlĹźen, E., Malça, J., et al. (2014). Impact of policy on greenhouse gas emissions and economics of biodiesel production. Environmental Science & Technology, 48, 7642–7650. https://doi.org/10.1021/es405410u

    Article  Google Scholar 

  • Palak, G., EkĹźioÄźlu, S. D., & Geunes, J. (2014). Analyzing the impacts of carbon regulatory mechanisms on supplier and mode selection decisions: An application to a biofuel supply chain. International Journal of Production Economics, 154, 198–216. https://doi.org/10.1016/j.ijpe.2014.04.019

    Article  Google Scholar 

  • Park, J.-Y., Kim, D.-K., Lee, J.-P., et al. (2008). Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource Technology, 99, 1196–1203. https://doi.org/10.1016/j.biortech.2007.02.017

    Article  Google Scholar 

  • Ramos, M. J., Fernández, C. M., Casas, A., et al. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  Google Scholar 

  • Refaat, A. A. (2009). Correlation between the chemical structure of biodiesel and its physical properties. International journal of Environmental Science and Technology, 6, 677–694. https://doi.org/10.1007/BF03326109

    Article  Google Scholar 

  • Rong, A., Lahdelma, R., Rong, A., & Lahdelma, R. (2008). Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production. European Journal of Operational Research, 186, 953–964. https://doi.org/10.1016/j.ejor.2007.02.017

    Article  Google Scholar 

  • Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and opportunities. Computers and Chemical Engineering, 28, 971–983. https://doi.org/10.1016/j.compchemeng.2003.09.017

    Article  Google Scholar 

  • Sakallı, Ăś. S., & Baykoç, Ă–. F. (2013). Strong guidance on mitigating the effects of uncertainties in the brass casting blending problem: A hybrid optimization approach. The Journal of the Operational Research Society, 64, 562–576. https://doi.org/10.1057/jors.2012.50

    Article  Google Scholar 

  • Sakallı, Ăś. S., Baykoç, Ă–. F., & Birgören, B. (2011). Stochastic optimization for blending problem in brass casting industry. Annals of Operations Research, 186, 141–157. https://doi.org/10.1007/s10479-011-0851-1

    Article  Google Scholar 

  • Segarra, E., Kramer, R. A., & Taylor, D. B. (1985). Stochastic programming analysis of the farm level implications of soil erosion control. Southern Journal of Agricultural Economics, 17, 147–154.

    Article  Google Scholar 

  • Shaik, S., Helmers, G. A., & Langemeier, M. R. (2002). Direct and indirect shadow price and cost estimates of nitrogen pollution abatement direct and indirect shadow price pollution abatement.

    Google Scholar 

  • Soimakallio, S., & Koponen, K. (2011). How to ensure greenhouse gas emission reductions by increasing the use of biofuels? – Suitability of the European Union sustainability criteria. Biomass and Bioenergy, 35, 3504–3513.

    Article  Google Scholar 

  • Thomas, A. R. C., Bond, A. J., & Hiscock, K. M. (2013). A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy, 5, 227–242. https://doi.org/10.1111/j.1757-1707.2012.01198.x

    Article  Google Scholar 

  • Tomaschek, J., Ă–zdemir, E. D., Fahl, U., & Eltrop, L. (2012). Greenhouse gas emissions and abatement costs of biofuel production in South Africa. GCB Bioenergy, 4, 799–810. https://doi.org/10.1111/j.1757-1707.2011.01154.x

    Article  Google Scholar 

  • You, F., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input – output analysis. AIChE Journal, 58, 1157–1180. https://doi.org/10.1002/aic

    Article  Google Scholar 

Download references

Acknowledgements

Carla Caldeira acknowledges financial support from the Portuguese Science and Technology Foundation (FCT) through grant SFRH/BD/51952/2012. This work has also been supported by FCT project FEDER/FCT|PTDC/AAG-MAA/6234/2014 (POCI-01-0145-FEDER-016765). The research presented in this article has been developed under the framework of Energy for Sustainability Initiative of the University of Coimbra and the MIT Portugal Program. Stelios Rozakis acknowledges financial support from BioEcon project (ID: 669062) financed from the EU H2020-WIDESPREAD-2014-2 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Caldeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caldeira, C., Dias, L., Freire, F., Kremmydas, D., Rozakis, S. (2018). Allocating Shadow Prices in a Multi-objective Chance Constrained Problem of Biodiesel Blending. In: Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D. (eds) Multicriteria Analysis in Agriculture. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-76929-5_5

Download citation

Publish with us

Policies and ethics