Skip to main content

Life Cycle Assessment and Multi-criteria Analysis in Agriculture: Synergies and Insights

  • Chapter
  • First Online:
Multicriteria Analysis in Agriculture

Part of the book series: Multiple Criteria Decision Making ((MCDM))

Abstract

The simultaneous and increasing needs for safe and quality food products, along with the environmental and socio-economic sustainability, develop a multi-level problem with controversies and arbitrary assumptions for farmers and policy makers. In order to assess the aspect of sustainability in agricultural production, different impact assessment tools could be implemented. Although LCA gives the potential to develop alternative scenarios in order to achieve the optimal environmental performance, in the context of sustainability, at the same time subjective measures are developed which are difficult to quantify. Multi-criteria analysis (MCA) is the key to solve the current weakness, since it takes into account multiple criteria in a wide assortment of aspects and thus it could integrate sustainability elements. The purpose of this study is to outline the integration of LCA and MCA methodologies and develop a complete literature review regarding the sustainability of the agricultural sector through the above mentioned methodological merge. In this review we analyze scientific papers integrating LCA and different multi-criteria methodologies in agriculture. Through this analysis, we determine the connection between the methodologies through a variety of aspects regarding (a) the number and nature of multi-criteria methods integrated with LCA, (b) the way of integration between the methods in a technical perspective and (c) the benefits developed through the integration as well as the final conclusions which could only be elicited through this complex process. Studies which implemented LCA and MCA simultaneously illustrated positive economic and environmental results, since LCA focused on environmental sustainability and the multi-criteria modeling dealt with the subjective measures of LCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arteaga-Pérez, L. E., Vega, M., Rodríguez, L. C., Flores, M., Zaror, C. A., & Ledón, Y. C. (2015). Life-Cycle Assessment of coal–biomass based electricity in Chile: Focus on using raw vs torrefied wood. Energy for Sustainable Development, 29, 81–90. ISSN 0973-0826, https://doi.org/10.1016/j.esd.2015.10.004

    Article  Google Scholar 

  • Banihabib, M. E., & Shabestari, M. H. (2017). Fuzzy hybrid MCDM model for ranking the agricultural water demand management strategies in arid areas. Water Resources Management, 31(1), 495–513.

    Article  Google Scholar 

  • Beccali, M., Cellura, M., Iudicello, M., & Mistretta, M. (2010). Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios. Journal of Environmental Management, 91, 1415–1428.

    Article  Google Scholar 

  • Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Adhdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200, 198–215.

    Article  Google Scholar 

  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach (1st ed.). Norwell, MA: Kluwer Academic.

    Book  Google Scholar 

  • Bengtsson, M., & Steen, B. (2000). Weighting in LCA-approaches and applications. Environmental Progress, 19, 101–109.

    Article  Google Scholar 

  • Benoit, V., & Rousseaux, P. (2003). International Journal of LCA, 8, 74. https://doi.org/10.1007/BF0297843

    Article  Google Scholar 

  • Bessou, C., Ferchaud, F., Gabrielle, B., et al. (2011). Biofuels, greenhouse gases and climate change: A review. Agronomy for Sustainable Development, 31(1), 1–79. https://doi.org/10.1051/agro/2009039.

    Article  Google Scholar 

  • Blengini, G., & Busto, M. (2009). The life cycle of rice: LCA of alternative agrifood chain management systems in Vercelli (Italy). Journal of Environmental Management, 90, 1512–1522.

    Article  Google Scholar 

  • Blind, M. W., & Refsgaard, J. C. (2007). Operationalising uncertainty in data and models for integrated water resources management. Water Science and Technology, 56(9), 1–12. https://doi.org/10.2166/wst.2007.593

    Article  Google Scholar 

  • Boufateh, I., Perwuelz, A., & Rabenasolo, B. (2011). Multiple criteria decision-making for environmental impacts optimization. International Journal Business Performance and Supply Chain Modeling, 3(1), 28–42.

    Article  Google Scholar 

  • Bournaris, T., & Manos, B. (2012). European union agricultural policy scenarios’ impacts on social sustainability of agricultural holdings. International Journal of Sustainable Development & World Ecology, 19(5), 426–432. https://doi.org/10.1080/13504509.2012.670670.

    Article  Google Scholar 

  • Bournaris, T., Papathanasiou, J., Moulogianni, C., & Manos, B. (2009). A fuzzy multicriteria mathematical programming model for planning agricultural regions. New Medit, 8(4), 22–27.

    Google Scholar 

  • Bournaris, T., Moulogianni, C., & Manos, B. (2014). A multicriteria model for the assessment of rural development plans in Greece. Land Use Policy, 38, 1–8.

    Article  Google Scholar 

  • Bournaris, T., Papathanasiou, J., Manos, B., Kazakis, N., & Voudouris, K. (2015). Support of irrigation water use and eco-friendly decision process in agricultural production planning. Operational Research, 15(2), 289–306.

    Article  Google Scholar 

  • Brans, J. P. (1982). Lingenierie de la decision. Elaboration dinstruments daide a la decision. Methode PROMETHEE. In R. Nadeau & M. Landry (Eds.), Laide a la Decision: Nature, Instruments et Perspectives Davenir (pp. 183–214). Quebec: Presses de Universite Laval.

    Google Scholar 

  • Breiling, M., Tatsuo, H., & Matsuhashi, R. (1999). Contribution of rice production to Japanese greenhouse gas emissions applying life cycle assessment as a methodology. University of Tokyo, Japan. Accessed July 12, 2017, from http://www.breiling.org/publ/lcaricejap-en.pdf

  • Brentrup, F., Kusters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20, 247–264.

    Article  Google Scholar 

  • Buchholz, T., Rametsteiner, E., Volk, T. A., & Luzadis, V. A. (2009). Multi criteria analysis for bioenergy systems assessments. Energy Policy, 37(2), 484–495. ISSN 0301-4215. https://doi.org/10.1016/j.enpol.2008.09.054

    Article  Google Scholar 

  • Budsberg, E., Rastogi, M., Puettmann, M. E., & Johnson, L. (2012). Life-cycle assessment for the production of bioethanol from willow biomass crops via biochemical conversion. Accessed July 30, 2017, from https://www.researchgate.net/publication/259910766_Life-Cycle_Assessment_for_the_Production_of_Bioethanol_from_Willow_Biomass_Crops_via_Biochemical_Conversion. https://doi.org/10.13073/FPJ-D-12-00022.1

  • Cai, Y., Applegate, S., Yue, W., Cai, J., Wang, X., Liu, G., & Li, C. (2017). A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing’s taxi fleet. Energy Policy, 100, 314–325. ISSN 0301-4215, https://doi.org/10.1016/j.enpol.2016.09.047

    Article  Google Scholar 

  • CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability). (2009). D20 Blue Paper on Life Cycle Sustainability Analysis Revision 1 after the open consultation. Final version of Deliverable D20 of Work package 7, revised with the comments received during the Open Consultation.

    Google Scholar 

  • Capitanescu, F., Marvuglia, A., Navarrete Gutiérrez, T., & Benetto, E. (2017, March). Multi-stage farm management optimization under environmental and crop rotation constraints. Journal of Cleaner Production, 147(20), 197–205. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2017.01.076

    Article  Google Scholar 

  • Caprara, C., & Martelli, R. (2016). Multi-criteria analysis of suitability for energy crops under structural and environmental constraints: A case study in a northeastern Italian region. Transactions of the ASABE, 59(4), 815–828.

    Article  Google Scholar 

  • Castellini, C., Boggia, A., Cortina, C., Dal Bosco, A., Paolotti, L., Novelli, E., & Mugnai, C. (2012). A multicriteria approach for measuring the sustainability of different poultry production systems. Journal of Cleaner Production, 37, 192–201.

    Article  Google Scholar 

  • Castellani, V., Sala, S., & Benini, L. (2017, January 1). Hotspots analysis and critical interpretation of food life cycle assessment studies for selecting eco-innovation options and for policy support. Journal of Cleaner Production, 140(Part 2), 556–568. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2016.05.078

    Article  Google Scholar 

  • Cherubini, F., & Ulgiati, S. (2010). Crop residues as raw materials for biorefinery systems – A LCA case study. Applied Energy, 87(1), 47–57.

    Article  Google Scholar 

  • Chiotti, Q. P., & Johnston, T. (1995). Extending the boundaries of climate change research: A discussion on agriculture. Journal of Rural Studies, 11, 335–350.

    Article  Google Scholar 

  • Corrado, S., Castellani, V., Zampori, L., & Sala, S. (2017). Systematic analysis of secondary life cycle inventories when modelling agricultural production: A case study for arable crops. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.03.179.

  • Cristóbal, J. R. S. (2011). Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renewable Energy, 36(2), 498–502. ISSN 0960-1481. https://doi.org/10.1016/j.renene.2010.07.031

    Article  Google Scholar 

  • Čuček, L., Klemeš, J. J., Varbanov, P., & Kravanja, Z. (2011). Life cycle assessment and multi-criteria optimization of regional biomass and bioenergy supply chains. Chemical Engineering Transactions, 25, 575–580. https://doi.org/10.3303/CET1125096.

  • Čuček, L., Varbanov, P. S., Klemeš, J. J., & Kravanja, Z. (2012). Total footprints-based multi-criteria optimisation of regional biomass energy supply chains. Energy, 44(1), 135–145. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2012.01.040

    Article  Google Scholar 

  • Dace, E., & Blumberga, D. (2016). How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis. Ecological Indicators, 71, 352–358. ISSN 1470-160X. https://doi.org/10.1016/j.ecolind.2016.07.016

    Article  Google Scholar 

  • De Luca, A. I., Iofrida, N., Strano, A., Falcone, G., & Gulisano, G. (2015a). Social life cycle assessment and participatory approaches: A methodological proposal applied to citrus farming in Southern Italy. Integrated Environmental Assessment and Management, 11(3), 383–396. https://doi.org/10.1002/ieam.1611

    Article  Google Scholar 

  • De Luca, A. I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., & Vittuari, M. (2015b). Multidisciplinary and innovative methodologies for sustainable management in agricultural systems. Environmental Engineering and Management Journal, 14(7), 1–11. Accessed July 13, 2017, from http://www.eemj.icpm.tuiasi.ro/pdfs/vol14/no7/Full/11_1052_De_Luca_14.pdf

  • De Luca, A. I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., & Gulisano, G. (2017). Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Science of the Total Environment, 595(1), 352–370. ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2017.03.284

    Article  Google Scholar 

  • Dias, L. C., Passeira, C., & Malça, J. F. F. (2016). Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2329-7

  • Dinh, L. T. T., Guo, Y., & Mannan, M. S. (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environmental Progress & Sustainable Energy, 28(1), 38–46.

    Article  Google Scholar 

  • Dogliotti, S., Rodríguez, D., López-Ridaura, S., Tittonell, P., & Rossing, W. (2014). Designing sustainable agricultural production systems for a changing world: Methods and applications. Agricultural Systems, 126, 1–2.

    Article  Google Scholar 

  • Dorini, G., Kapelan, Z., & Azapagic, A. (2011). Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technology Environmental Policy, 13, 133–139.

    Article  Google Scholar 

  • EC EU Energy in Figures, Statistical Pocketbook. (2016). Accessed June 28, 2017, from https://ec.europa.eu/energy/sites/ener/files/documents/pocketbook_energy-2016_web-final_final.pdf

  • Eranki, P. L., & Dale, B. E. (2011). Comparative life cycle assessment of centralized and distributed biomass processing systems combined with mixed feedstock landscapes. GCB Bioenergy, 3, 427–438. https://doi.org/10.1111/j.1757-1707.2011.01096.x

    Article  Google Scholar 

  • European Commission. (2016, June 8). European platform on life cycle assessment (LCA). Accessed July 15, 2017, from http://ec.europa.eu/environment/ipp/lca.htm

  • European Commission – Directorate-General for Communication (European Commission). (2014). Environment A healthy and sustainable environment for present and future generations. Luxembourg: Publications Office of the European Union. ISBN 978-92-79-42633-9. https://doi.org/10.2775/90841

  • European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD). (2010, March). Handbook – General guide for Life Cycle Assessment – Detailed guidance (1st ed.). EUR 24708 EN. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD). (2011, November). Handbook – Recommendations for life cycle impact assessment in the European context (1st ed.). EUR24571 EN. Luxemburg: Publications Office of the European Union.

    Google Scholar 

  • European Parliament. (2009). Directive 2009/28/EC of the European parliament and of the council of 23 April 2009. Official Journal of the European Union, 140(16), 16–62. https://doi.org/10.3000/17252555.L_2009.140.eng.

    Article  Google Scholar 

  • Falcone, G., De Luca, A., Stillitano, T., Strano, A., Romeo, G., & Gulisano, G. (2016). Assessment of environmental and economic impacts of vine-growing combining life cycle assessment, life cycle costing and multicriterial analysis. Sustainability, 8(8), 793. https://doi.org/10.3390/su8080793

    Article  Google Scholar 

  • Finco, A., Bentivoglio, D., & Nijkamp, P. (2012). International Journal of Foresight and Innovation Policy, 8(2–3), 173–188.

    Article  Google Scholar 

  • Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010). Towards life cycle sustainability assessment. Sustainability, 2, 3309–3322.

    Article  Google Scholar 

  • Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2009.06.018

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO). (2003). World agriculture: Towards 2015/2030 an FAO perspective. ISBN: 92 5 104835 5 (FAO paperback).

    Google Scholar 

  • Gaudreault, C., Samson, R., & Stuart, P. (2009). Implications of choices and interpretation in LCA for multi-criteria process design: De-inked pulp capacity and cogeneration at a paper mill case study. Journal of Cleaner Production, 17, 1535–1546.

    Article  Google Scholar 

  • Gaudreault, C., Bently Wigley, T., Margni, M., Verschuyl, J., & Titus, K. V. B. (2016). Addressing biodiversity impacts of land use in life cycle assessment of forest biomass harvesting. WIREs Energy and Environment. https://doi.org/10.1002/wene.211

    Article  Google Scholar 

  • Geneletti, D. (2013). Multi-criteria analysis. LIAISE Toolbox. Accessed July 31, 2017, from http://www.liaise-kit.eu/ia-method/multi-criteria-analysis

  • Ghafghazi, S., Sowlati, T., Sokhansanj, S., & Melin, S. (2010). A multicriteria approach to evaluate district heating system options. Applied Energy, 87, 1134–1140.

    Article  Google Scholar 

  • Giampietro, M., Mayumi, K., & Munda, G. (2006). Integrated assessment and energy analysis: Quality assurance in multi-criteria analysis of sustainability. Energy, 31, 59–86.

    Article  Google Scholar 

  • Gómez-Limón, J. A., Riesgo, L., & Arriaza, M. (2004). Multi-criteria analysis of input use in agriculture. Journal of Agricultural Economics, 55(3), 541–564.

    Article  Google Scholar 

  • Guinée, J. B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T., & Rydberg, T. (2011). Life cycle assessment: Past, present, and future. Environmental Science & Technology, 45(1), 90–96. https://doi.org/10.1021/es101316v

    Article  Google Scholar 

  • Guitouni, A., & Martel, J.-M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research, 109(2), 501–521. ISSN 0377-2217, https://doi.org/10.1016/S0377-2217(98)00073-3

    Article  Google Scholar 

  • Haas, G., Wetterich, F., & Köpke, U. (2001). Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment, 83(1–2), 43–53.

    Article  Google Scholar 

  • Harris, G. (2002). Integrated assessment and modeling – science for sustainability. In R. Costanza & S. E. Joergensen (Eds.), Understanding and solving environmental problems in the 21st century (pp. 5–17). London: Elsevier.

    Chapter  Google Scholar 

  • Hayashi, K. (2006). Environmental indicators for agricultural management: Integration and decision making. International Journal of Materials & Structural Reliability, 4(2), 115–127.

    Google Scholar 

  • Hayashi, K., Gaillard, G., Nemecek, T., & Reckenholz, A. F. (2005). Life cycle assessment of agricultural production systems: Current issues and future perspectives (pp. 25–26). Proceedings of the International Seminar on Technology Development for Good Agriculture Practice in Asia and Oceania, Epochal Tsukuba.

    Google Scholar 

  • Hayashi, T., van Ierland, E. C., & Zhu, X. (2014). A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators. Biomass and Bioenergy, 66, 70–80. ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2014.01.040

    Article  Google Scholar 

  • Henriksen, H. J., Kjær, J., Brüsh, W., Jacobsen, L.-B., Jensen, J. D., Grinderslev, D., & Andersen, P. (2007). Environmental benefits and social cost – An example of combining Bayesian networks and economic models for analysing pesticide management instruments. Nordic Hydrology, 38(4–5), 351–371. https://doi.org/10.2166/nh.2007.017

    Article  Google Scholar 

  • Hermann, B. G., Kroeze, C., & Jawjit, W. (2007). Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. Journal of Cleaner Production, 15(18), 1787–1796. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2006.04.004

    Article  Google Scholar 

  • Hermans, C. M. L., Geijzendorffer, I. R., Ewert, F., Metzger, M. J., Vereijken, P. H., Woltjer, G. B., & Verhagen, A. (2010). Exploring the future of European crop production in a liberalized market, with specific consideration of climate change and the regional competitiveness. Ecological Modelling, 221, 2177–2187.

    Article  Google Scholar 

  • Herva, M., & Roca, E. (2013). Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. Journal of Cleaner Production, 39, 355–371. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2012.07.058

    Article  Google Scholar 

  • Hiloidhari, M., Baruah, D. C., Singh, A., Kataki, S., Medhi, K., Kumari, S., Ramachandra, T. V., Jenkins, B. M., & Thakur, I. S. (2017). Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Bioresource Technology. ISSN 0960-8524. Accessed March 15, 2017, from https://doi.org/10.1016/j.biortech.2017.03.079

    Article  Google Scholar 

  • Hobbs, B., & Meier, P. (2000). Energy decisions and the environment: A guide to the use of multicriteria methods. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Holman, I. P., Brown, C., Janes, V., & Sandars, D. (2017). Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis. Agricultural Systems, 151, 126–135.

    Article  Google Scholar 

  • Hunkeler, D., Saur, K., Rebitzer, G., Schmidt, W., Jensen, A., Stranddorf, H., & Christiansen, K. (2004). Life cycle management. Pensacola, FL: SETAC.

    Google Scholar 

  • Hunkeler, D., Lichtenvort, K., & Rebitzer, G. (Eds.). (2008). Environmental life cycle costing. Pensacola, FL: SETAC. ISBN 9781420054705 – CAT# 54708.

    Google Scholar 

  • Islam, S., Ponnambalam, S. G., & Lam, H. L. (2016). Review on life cycle inventory: Methods, examples and applications. Journal of Cleaner Production, 136, 266–278. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2016.05.144

    Article  Google Scholar 

  • ISO 14040. (2006). International Standard Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO 14044. (2006). International Standard Environmental management – Life cycle assessment – Requirements and guidelines. Geneva: International Organization for Standardization.

    Google Scholar 

  • Jørgensen, A., Le Bocq, A., & Hauschild, M. Z. (2008). Methodologies for social Life Cycle Assessment – A review. International Journal of Life Cycle Assessment, 13, 96–103.

    Article  Google Scholar 

  • Karklina, K., Slisane, D., Romagnoli, F., & Blumberga, D. (2015). Social life cycle assessment of biomethane production and distribution in Latvia (Vol. II, pp. 128–132). Environment. Technology. Resources. Proceedings of the 10th International Scientific and Practical Conference, Rezekne, Latvia. https://doi.org/10.17770/etr2015vol2.628

    Article  Google Scholar 

  • Kasie, F. M. (2013). Combining simple multiple attribute rating technique and analytical hierarchy process for designing multi-criteria performance measurement framework. Global Journal of Researches in Engineering Industrial Engineering, 13(1), 15–30.

    Google Scholar 

  • Keyes, S., Tyedmers, P., & Beazley, K. (2015). Evaluating the environmental impacts of conventional and organic apple production in Nova Scotia, Canada, through life cycle assessment. Journal of Cleaner Production, 104, 40–54.

    Article  Google Scholar 

  • Kralisch, D., Staffel, C., Ott, D., Bensaid, S., Saracco, G., Bellantoni, P., & Loeb, P. (2013). Process design accompanying life cycle management and risk analysis as a decision support tool for sustainable biodiesel production. Green Chemistry, 15(2), 463.

    Article  Google Scholar 

  • Kurka, T., & Blackwood, D. (2013). Selection of MCA methods to support decision making for renewable energy developments. Renewable and Sustainable Energy Reviews, 27, 225–233. ISSN 1364-0321. https://doi.org/10.1016/j.rser.2013.07.001

    Article  Google Scholar 

  • Kylili, A., Christoforou, E., Fokaides, P. A., & Polycarpou, P. (2016). Multicriteria analysis for the selection of the most appropriate energy crops: The case of Cyprus. International Journal of Sustainable Energy, 35(1), 47–58.

    Article  Google Scholar 

  • Laurin, L., & Dhaliwal, H. (2017). Life cycle environmental impact assessment. In M. A. Abraham (Ed.), Encyclopedia of sustainable technologies (pp. 225–232). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10060-0.

    Chapter  Google Scholar 

  • Lipuscek, I., Bohanec, M., Oblak, L., & Zadnik Stirn, L. (2010). A multi-criteria decision-making model for classifying wood products with respect to their impact on environment. International Journal of Life Cycle Assessment, 15(4), 359–367.

    Article  Google Scholar 

  • Lorenz, K., & Lal, R. (2016). Environmental impact of organic agriculture. Advances in Agronomy, 139, 99–152. ISSN 0065-2113. https://doi.org/10.1016/bs.agron.2016.05.003

  • Maia Angelo, A. C., Saraiva, A. B., Clímaco, J. C. N., Infante, C. E., & Valle, R. (2017). Life cycle assessment and multi-criteria decision analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143(1), 744–756. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2016.12.049

    Article  Google Scholar 

  • Manos, B., Bournaris, T., Kamruzzaman, M., Begum, M., Anjuman, A., & Papathanasiou, J. (2006). Regional impact of irrigation water pricing in Greece under alternative scenarios of European policy: A multicriteria analysis. Regional Studies, 40(9), 1055–1068.

    Article  Google Scholar 

  • Manos, B., Papathanasiou, J., Bournaris, T., & Voudouris, K. (2010). A multicriteria model for planning agricultural regions within a context of groundwater rational management. Journal of Environmental Management, 91(7), 1593–1600.

    Article  Google Scholar 

  • Manos, B., Bournaris, T., Chatzinikolaou, P., Berbel, J., & Nikolov, D. (2013). Effects of CAP policy on farm household behaviour and social sustainability. Land Use Policy, 31, 166–181.

    Article  Google Scholar 

  • Margni, M., Rossier, D., Crettaz, P., & Jolliet, O. (2002). Life cycle assessment of pesticides on human health and ecosystems. Agriculture, Ecosystem and Environment, 93(1–3), 379–392.

    Article  Google Scholar 

  • Matthews, J., Parr, C., Araoye, O., & McManus, M. (2014, July). Environmental auditing of a packaging system for redesign: A case study exploration. Journal of Clean Energy Technologies, 2(3), 267.

    Article  Google Scholar 

  • Miettinen, P., & Hamalainen, R. P. (1997). How to benefit from decision analysis in environmental life cycle assessment (LCA). European Journal of Operational Research, 102, 279–294.

    Article  Google Scholar 

  • Mohamadabadi, H. S., Tichkowsky, G., & Kumar, A. Ã. (2009). Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy, 34, 112–125. https://doi.org/10.1016/j.energy.2008.09.004

    Article  Google Scholar 

  • Muñoz, P., Antón, A., Montero, J. I., & Castells, F. (2004). Using LCA for the improvement of waste management in greenhouse tomato production. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector, Bygholm, Denmark.

    Google Scholar 

  • Murphy, F., Sosa, A., McDonnell, K., & Devlin, G. (2016). Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction. Energy, 109, 1040–1055. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2016.04.125

    Article  Google Scholar 

  • Myllyviita, T., Holma, A., Antikainen, R., Lähtinen, K., & Leskinen, P. (2012). Assessing environmental impacts of biomass production chains – Application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). Journal of Cleaner Production, 29, 238–245. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2012.01.019

    Article  Google Scholar 

  • Myllyviita, T., Leskinen, P., & Seppälä, J. (2014). Impact of normalization, elicitation technique and background information on panel weighting results in life cycle assessment. International Journal of Life Cycle Assessment, 19, 377–386.

    Article  Google Scholar 

  • Narayanan, D., Zhang, Y., & Mannan, M. S. (2007). Engineering for sustainable development (ESD) in bio-diesel production. Process Safety and Environmental Protection Trans IChemE, Part B, 85(B5), 349–359. https://doi.org/10.1205/psep07016

    Article  Google Scholar 

  • Nijkamp, P., Van Wissen, L., & Rima, A. (1993). A household life cycle model for residential relocation behaviour. Socio-Economic Planning Sciences, 27(1), 35–53. https://doi.org/10.1016/0038-0121(93)90027-G.

    Article  Google Scholar 

  • Notarnicola, B., Tassielli, G., Renzulli, P. A., & Lo Giudice, A. (2015). Life Cycle Assessment in the agri-food sector: An overview of its key aspects, international initiatives, certification, labeling schemes and methodological issues. In B. Notarnicola, R. Salomone, L. Petti, P. A. Renzulli, R. Roma, & A. K. Cerutti (Eds.), Life cycle assessment in the agri-food sector case studies, methodological issues and best practices. Switzerland: Springer.

    Google Scholar 

  • Parajuli, R., Knudsen, M. T., Djomo, S. N., Corona, A., Birkved, M., & Dalgaard, T. (2017, May). Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Science of the Total Environment, 586(15), 226–240. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2017.01.207

    Article  Google Scholar 

  • Parker, P., et al. (2002). Progress in integrated assessment and modeling. Environmental Modelling and Software, 17, 209–217.

    Article  Google Scholar 

  • Parson, E. A. (1995). Integrated assessment and environmental policy making. Energy Policy, 23, 463–475.

    Article  Google Scholar 

  • Peters, K. (2016). Methodological issues in life cycle assessment for remanufactured products: A critical review of existing studies and an illustrative case study. Journal of Cleaner Production, 126, 21–37. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2016.03.050

    Article  Google Scholar 

  • Popescu, G., & Bara, S. (2015). Regional development disparities in Romanian agriculture and rural development: A multi-criteria approach. In G. Popescu & A. Jean-Vasile (Eds.), Agricultural management strategies in a changing economy (pp. 1–29). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-4666-7521-6.ch001.

    Chapter  Google Scholar 

  • Rabl, A., & Holland, M. (2008). Environmental assessment framework for policy applications: Life cycle assessment, external costs and multi-criteria analysis. Journal of Environmental Planning and Management, 51(1), 81–105. https://doi.org/10.1080/09640560701712275

    Article  Google Scholar 

  • Razza, F., Sollima, L., Falce, M., Costa, R. M. S., Toscano, V., Novelli, A., Ciancolini, A., & Raccuia, S. A. (2016). Life cycle assessment of cardoon production system in different areas of Italy. Acta Horticulturae, 1147, 329–334. https://doi.org/10.17660/ActaHortic.2016.1147.46

    Article  Google Scholar 

  • Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004, July). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701–720. ISSN 0160-4120

    Article  Google Scholar 

  • Rebolledo-Leiva, R., Angulo-Meza, L., Iriarte, A., & González-Araya, M. C. (2017). Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Science of the Total Environment, 593, 36–46. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2017.03.147

    Article  Google Scholar 

  • Reeb, C., Venditti, R., Gonzalez, R., & Kelley, S. (2016, May 11). Environmental LCA and financial analysis to evaluate the feasibility of bio-based sugar feedstock biomass supply globally: Part 2. Application of multi-criteria decision-making analysis as a method for biomass feedstock comparisons. BioResources. Accessed July 18, 2017, from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_3_6062_Reeb_Environmental_LCA_Financial_Analysis_Sugar_Feedstock

  • Ren, J., Manzardo, A., Mazzi, A., Zuliani, F., & Scipioni, A. (2015). Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. International Journal of Life Cycle Assessment, 20(6), 842–853.

    Article  Google Scholar 

  • Riesgo, L., & Gómez-Limón, J. A. (2006). Multi-criteria policy scenario analysis for public regulation of irrigated agriculture. Agricultural Systems, 91(1–2), 1–28.

    Article  Google Scholar 

  • Risawandi, & Rahim, R. (2016). Study of the simple multi-attribute rating technique for decision support. IJSRST, 2(6). Print ISSN: 2395-6011; Online ISSN: 2395-602X.

    Google Scholar 

  • Rogers, K., & Seager, T. P. (2009). Environmental decision-making using life cycle impact assessment and stochastic multiattribute decision analysis: A case study on alternative transportation fuels. Environmental Science and Technology, 43(6), 1718–1723. https://doi.org/10.1021/es801123h

    Article  Google Scholar 

  • Rowley, H. V., & Peters, G. (2009). Multi-criteria methods for the aggregation of life cycle impacts. Proceedings of Sixth Australian Conference on Life Cycle Assessment, Australian Life Cycle Assessment Society, Australia.

    Google Scholar 

  • Rowley, H. V., & Shiels, S. (2011). Valuation in LCA: Towards a best-practice approach. Proceedings of Seventh Australian Conference on Life Cycle Assessment, Australian Life Cycle Assessment Society, Australia.

    Google Scholar 

  • Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., & Shiina, T. (2009). A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 90(1), 1–10. ISSN 0260-8774. https://doi.org/10.1016/j.jfoodeng.2008.06.016

    Article  Google Scholar 

  • Sabiha, N.-E., Salim, R., Rahman, S., & Rola-Rubzen, M. F. (2016). Measuring environmental sustainability in agriculture: A composite environmental impact index approach. Journal of Environmental Management, 166, 84–93. ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2015.10.003

    Article  Google Scholar 

  • Sastre, C. M., Carrasco, J., Barro, R., González-Arechavala, Y., Maletta, E., Santos, A. M., & Ciria, P. (2016, October). Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass. Applied Energy, 179(1), 847–863. ISSN 0306-2619

    Article  Google Scholar 

  • Schaubroeck, T., Alvarenga, R. A. F., Verheyen, K., Muys, B., & Dewulf, J. (2013). Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; A case study on a forest and wood processing chain. Environmental Science and Technology, 47(23), 13578–13586. https://doi.org/10.1021/es4046633

    Article  Google Scholar 

  • Scott, R. P., Cullen, A. C., Fox-Lent, C., & Linkov, I. (2016). Can carbon nanomaterials improve CZTS photovoltaic devices? Evaluation of performance and impacts using integrated life-cycle assessment and decision analysis. Risk Analysis, 36, 1916–1935.

    Article  Google Scholar 

  • Seghetta, M., Hou, X., Bastianoni, S., Bjerre, A.-B., & Thomsen, M. (2016). Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – A step towards a regenerative bioeconomy. Journal of Cleaner Production, 137, 1158–1169. ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2016.07.195

    Article  Google Scholar 

  • Seppälä, J., Basson, L., & Norris, G. A. (2002). Decision analysis frameworks for life-cycle impact assessment. Journal of Industrial Ecology, 5, 45–68.

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., & Sirotenko, O. (2007). Agriculture. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sundaram, S., Kolb, G., Hessel, V., & Wang, Q. (2017). Energy-efficient routes for the production of gasoline from biogas and pyrolysis oil process design and life-cycle assessment. Industrial and Engineering Chemistry Research, 56(12), 3373–3387. https://doi.org/10.1021/acs.iecr.6b04611

    Article  Google Scholar 

  • Tasca, A. L., Nessi, S., & Rigamonti, L. (2016). Environmental sustainability of agri-food supply chains: An LCA comparison between two alternative forms of production and distribution of endive in northern Italy. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.06.170.

  • Teshome, A., de Graaff, J., & Stroosnijder, L. (2014). Evaluation of soil and water conservation practices in the north-western Ethiopian highlands using multi-criteria analysis. Frontiers in Environmental Science, 2, 60. https://doi.org/10.3389/fenvs.2014.00060

    Article  Google Scholar 

  • Tiwari, D. N., Loof, R., & Paudyal, G. N. (1999). Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agricultural Systems, 60(2), 99–112.

    Article  Google Scholar 

  • Togarcheti, S. C., Mediboyina, M. K., Chauhan, V. S., Mukherji, S., Ravi, S., & Mudliar, S. N. (2017, July). Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resources, Conservation and Recycling, 122, 286–294. ISSN 0921-3449. https://doi.org/10.1016/j.resconrec.2017.01.008

    Article  Google Scholar 

  • Tukker, A., Huppes, G., Guinée, J., Heijungs, R., de Koning, A., van Oers, L., & Suh, S. (2006). Environmental Impact of Products (EIPRO) analysis of the life cycle environmental impacts related to the final consumption of the EU-25. EUR 22284 EN. Catalogue number: ISBN-10. European Communities.

    Google Scholar 

  • Tziolas, E., Bournaris, T., Nastis, S., & Manos, B. (2017a, June 8–10). A taxonomy survey of Life Cycle Assessment used for the evaluation of biomass production. 6th International Symposium and 28th National Conference on Operational Research, Thessaloniki, Greece.

    Google Scholar 

  • Tziolas, E., Manos, B., & Bournaris, T. (2017b). Planning of agro-energy districts for optimum farm income and biomass energy from crops residues. Operational Research, 17(2), 535–546.

    Article  Google Scholar 

  • US EPA – National Service Center for Environmental Publications (NSCEP). (2006, May). Life cycle assessment: Principles and practice. EPA/600/R-06/060.

    Google Scholar 

  • van der Sluijs, J. P. (2002). Definition of integrated assessment. In M. K. Tolba (Ed.), Encyclopedia of global environmental change. Responding to global environmental change (Vol. 4). Chichester: Wiley.

    Google Scholar 

  • Vázquez-Rowe, I., Villanueva-Rey, P., Iribarren, D., Teresa Moreira, M., & Feijoo, G. (2012). Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rias Baixas appellation (NW Spain). Journal of Cleaner Production, 27, 92–102. https://doi.org/10.1016/j.jclepro.2011.12.039.

    Article  Google Scholar 

  • Verones, F., Bare, J., Bulle, C., Frischknecht, R., Hauschild, M., Hellweg, S., Henderson, A., Jolliet, O., Laurent, A., Liao, X., Lindner, J. P., de Souza, D. M., Michelsen, O., Patouillard, L., Pfister, S., Posthuma, L., Prado, V., Ridoutt, B., Rosenbaum, R. K., Sala, S., Ugaya, C., Vieira, M., & Fantke, P. (2017, September 10). LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 161, 957–967. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2017.05.206

    Article  Google Scholar 

  • von Doderer, C. C. C., & Kleynhans, T. E. (2014). Determining the most sustainable lignocellulosic bioenergy system following a case study approach. Biomass and Bioenergy, 70, 273–286. ISSN 0961-9534. https://doi.org/10.1016/j.biombioe.2014.08.014

    Article  Google Scholar 

  • Xevi, E., & Khan, S. (2005). A multi-objective optimisation approach to water management. Journal of Environmental Management, 77(4), 269–277.

    Article  Google Scholar 

  • Xiao, J., Shen, L., Zhang, Y., & Jiqing, G. (2009). Integrated analysis of energy, economic, and environmental performance of biomethanol from rice straw in China. Industrial and Engineering Chemistry Research, 48(22), 9999–10007. https://doi.org/10.1021/ie900680d

    Article  Google Scholar 

  • Yazdani, M., & Graeml, F. R. (2014). VIKOR and its applications: A state-of-the-art survey. International Journal of Strategic Decision Sciences, 5(2), 56–83.

    Article  Google Scholar 

  • Yongmei, W., Xingping, Z., Luo, K., & Yuan, L. (2016). External performance of biomass power generation in china based on life cycle analysis. Accessed July 15, 2017, from https://www.researchgate.net/publication/312203847_External_Performance_of_Biomass_Power_Generation_in_China_Based_on_Life_Cycle_Analysis. https://doi.org/10.1166/jbmb.2016.1612

  • Yu, S., & Tao, J. (2009). Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation. Applied Energy, 86, S178–S188. ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2009.04.016

    Article  Google Scholar 

  • Zare, R., Nouri, J., Abdoli, M. A., & Atabi, F. (2016). Application integrated fuzzy TOPSIS based on LCA results and the nearest weighted approximation of FNs for industrial waste management-aluminum industry: Arak-Iran. Indian Journal of Science and Technology, 9(2).

    Google Scholar 

  • Zhou, Z., Jiang, H., & Qin, L. (2007). Life cycle sustainability assessment of fuels. Fuel, 86(1), 256–263. ISSN 0016-2361. https://doi.org/10.1016/j.fuel.2006.06.004

    Article  Google Scholar 

  • Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158–181. ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2017.02.016

    Article  Google Scholar 

Download references

Acknowledgements

The article is written as part of a PhD study at the Department of Agricultural Economics, School of Agriculture, Aristotle University of Thessaloniki (AUTh), Greece. The study is funded by General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Tziolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tziolas, E., Bournaris, T., Manos, B., Nastis, S. (2018). Life Cycle Assessment and Multi-criteria Analysis in Agriculture: Synergies and Insights. In: Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D. (eds) Multicriteria Analysis in Agriculture. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-76929-5_12

Download citation

Publish with us

Policies and ethics