Skip to main content

Multi-scaling Agroclimatic Classification for Decision Support Towards Sustainable Production

  • Chapter
  • First Online:
Multicriteria Analysis in Agriculture

Abstract

Agriculture is highly affected by environmental conditions and the assessment of the agroclimatic potential is necessary for sustainability and productivity. The climate is among the most important factors that determine the agricultural potentialities of a region and the suitability of a region for a specific crop, whereas the yield is determined by weather conditions. In this chapter the first objective is to identify sustainable production zones in Thessaly by conducting contemporary agroclimatic classification based on remote sensing and GIS. The agroclimatic conditions of agricultural areas have to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production optimization. Thus, a quantitative understanding of the climate of a region is essential for developing improved farming systems. The second objective derives from the first; it develops a decision support system (DSS) by using multi-criteria analysis combining different criteria to a utility function under a set of constraints concerning different categories of agroclimatic, social, cultural and economic conditions and so we can achieve an optimum agricultural production plan. In order to support the realization of the proposed production zoning and DSS in real-time, a Sensor Web service platform is proposed to be implemented based on the Sensor Web technologies, which extracts Real-time environmental and agronomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Bakri, J. T., & Taylor, J. C. (2003). Application of NOAA–AVHRR for monitoring vegetation conditions and biomass in Jordan. Journal of Arid Environments, 54, 579–593.

    Article  Google Scholar 

  • Amador, F., Sumpsi, M. J., & Romero, C. (1998). A non-interactive methodology to assess farmers’ utility functions: An application to large farms in Andalusia, Spain. European Review of Agricultural Economics, 25, 92–109.

    Article  Google Scholar 

  • Arneth, A., Brown, C., & Rounsevell, M. D. A. (2014). Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 4(7), 550–557.

    Article  Google Scholar 

  • Badini, O., Stocle, C. O., & Franz, E. H. (1997). Application of crop simulation modeling and GIS to agroclimatic assessment in Burkina Faso. Agriculture, Ecosystems and Environment, 64, 233–244.

    Article  Google Scholar 

  • Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & Viaggi, D. (2007). The impact of water and agricultural policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93(1–3), 90–114.

    Article  Google Scholar 

  • Bartolini, F., Gallerani, V., Raggi, M., & Viaggi, D. (2007). Implementing the water framework directive: Contract design and the cost of measures to reduce nitrogen pollution from agriculture. Environmental Management, 40(4), 567–577.

    Article  Google Scholar 

  • Becker, F., & Li, Z. (1990). Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11, 369–393.

    Article  Google Scholar 

  • Berbel, J., & Rodriguez, A. O. (1998). An MCDM approach to production analysis: An application to irrigated farms in southern Spain. European Journal of Operational Research, 107, 108–118.

    Article  Google Scholar 

  • Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8, 289–302.

    Article  Google Scholar 

  • Blaney, H. F., & Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological and irrigation data. USDA Soil Conservation Service, Technical Paper, No. 96, 48 pp.

    Google Scholar 

  • Botts, M. (2012). OGC® SensorML: Model and XML encoding standard. Open Geospatial Consortium 12-000. Retrieved from https://portal.opengeospatial.org/files/?artifact_id=55939

  • Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., et al. (2011). New generation sensor web enablement. Sensors, 11(3), 2652–2699.

    Article  Google Scholar 

  • Bröring, A., Stasch, C., & Echterhoff, J. (2012). OGC® sensor observation service interface standard. Open Geospatial Consortium, 12-006. Retrieved from https://portal.opengeospatial.org/files/?artifact_id=47599.

  • Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, J. J., & Reed, B. C. (2008). The Vegetation Drought Response Index (VegDri): An integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing, 45(1), 16–46.

    Article  Google Scholar 

  • Bruce, J. P. (1994). Natural disaster reduction and global change. AMS Bulletin, 75(10), 1831–1835.

    Google Scholar 

  • Chen, P. P. (1976). The entity-relationship model–toward a unified view of data. ACM Transactions on Database Systems, 1(1), 9–36.

    Article  Google Scholar 

  • Dalezios, N. R. (2015, November). AGROMETEOROLOGY: Analysis and simulation (in Greek). KALLIPOS: Libraries of Hellenic Universities (also e-book), 481 pp. ISBN: 978-960-603-134-2.

    Google Scholar 

  • Dalezios, N. R., Blanta, A., Spyropoulos, N. V., & Tarquis, A. M. (2014). Risk identification of agricultural drought for sustainable agroecosystems. NHESS, 14, 2435–2448.

    Google Scholar 

  • Dalezios, N. R., Spyropoulos, N. V., & Eslamian, S. (2017). Remote sensing in drought quantification and assessment (Chapter 21). In S. Eslamian & F. Eslamian (Eds.), Handbook of drought and water scarcity (HDWS) (Vol. 1, pp. 377–396). Boca Raton, FL: Taylor and Francis.

    Chapter  Google Scholar 

  • Danalatos, N. (2007). An introduction in crop production simulation. Volos, Greece: University of Thessaly Press.

    Google Scholar 

  • Dilley, M., & Heyman, B. N. (1995). ENSO and disaster: Droughts, floods and El Niño-Southern Oscillation warm events. Disasters, 19(2), 181–193.

    Article  Google Scholar 

  • EC COM 672. (2010, November 18). The CAP towards 2020: Meeting the food, natural resources and territorial challenges of the future. Brussels.

    Google Scholar 

  • Echterhoff, J., & Everding, T. (2008). OpenGIS® sensor event service interface specification (proposed). Open Geospatial Consortium 08-133. Retrieved from http://portal.opengeospatial.org/files/?artifact_id=29576

  • Eitzinger, J., Utset, A., Trnka, M., Zalud, Z., Nikolaev, M., & Uskov, I. (2007). Weather and climate and optimization of farm technologies at different input levels. In M. V. K. Sivakumar & R. Motha (Eds.), Managing weather and climate risks in agriculture (Vol. 554). Berlin: Springer. ISBN 3540727442.

    Google Scholar 

  • ESA. (2014). Sentinel. Earthonline – ESA. Retrieved April 6, 2014, from https://earth.esa.int/web/guest/missions/esa-future-missions/sentinel-1

  • European Commission. (2009). Consultation on the future “EU 2020” strategy. Brussels: Commission of the European Communities.

    Google Scholar 

  • Gomez-Limon, J. A., & Berbel, J. (2000). Multi-criterion analysis of derived water demand functions: A Spanish case study. Agricultural Systems, 63, 49–72.

    Article  Google Scholar 

  • Gomez-Limon, J. A., & Riesgo, L. (2004). Irrigation water pricing: Differential impacts on irrigated farms. Agricultural Economics, 31(1), 47–66.

    Article  Google Scholar 

  • Gomez-Limon, J. A., & Sanchez-Fernandez, G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69, 1062–1075.

    Article  Google Scholar 

  • Gomez-Limon, J. A., Arriaza, M., & Berbel, J. (2002). Conflicting implementation of agricultural and water policies in irrigated areas in the EU. Journal of Agricultural Economics, 53, 259–277.

    Article  Google Scholar 

  • Gong, J., Geng, J., & Chen, Z. (2015). Real-time GIS data model and sensor web service platform for environmental data management. International Journal of Health Geographics, 14, 2. Retrieved from http://www.ij-healthgeographics.com/content/14/1/2

    Article  Google Scholar 

  • Gong, J., Wu, H., Gao, W., Yue, P., & Zhu, X. (2009). Geospatial service Web (Chapter 13). In D. Li, J. Shan, & J. Gong (Eds.), Geospatial technology for earth observation (1st ed., pp. 355–379). New York: Springer. Retrieved from http://www.barnesandnoble.com/w/geospatial-technology-for-earth-observation-deren-li/1117115908?ean=9781441900500

    Google Scholar 

  • Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., & Yang, J. (1991). Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sensing of Environment, 35, 257–277.

    Article  Google Scholar 

  • Hatcher, G., & Maher, N. (2000). Real-time GIS for marine applications. In D. J. Wright & D. J. Barlett (Eds.), Marine and coastal geographical information systems (pp. 137–147). New York: Taylor & Francis.

    Google Scholar 

  • Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

    Google Scholar 

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Special Report of IPCC, 582 p.

    Google Scholar 

  • IPCC. (2013). Climate change 2013. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 1535 p.

    Google Scholar 

  • Janjic, Z. I. (2001). A nonhydrostatic model based on a new approach. Meteorology and Atmospheric Physics, 82, 271–285. https://doi.org/10.1007/s00703-001-0587-6.

    Article  Google Scholar 

  • Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Article  Google Scholar 

  • Kioutsioukis, I., Melas, D., & Zerefos, C. (2010). Statistical assessment of changes in climate extremes over Greece (1955–2002). International Journal of Climatology, 30(11), 1723–1737.

    Article  Google Scholar 

  • Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91–100.

    Article  Google Scholar 

  • Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82, 1949–1964.

    Article  Google Scholar 

  • Malheiro, A. C., Santos, J. A., Fraga, H., & Pinto, J. G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 83, 163–177.

    Article  Google Scholar 

  • Manos, B., Bournaris, T., Kamruzzaman, M., Begum, A. A., & Papathanasiou, J. (2006). The regional impact of irrigation water pricing in Greece under alternative scenarios of European policy: A multicriteria analysis. Regional Studies, 40(9), 1055–1068.

    Article  Google Scholar 

  • Manos, B., Begum, A. A., Kamruzzaman, M., Nakou, I., & Papathanasiou, J. (2007). Fertilizer Price Policy, the environment and farms behavior. Journal of Policy Modeling, 29(1), 87–97.

    Article  Google Scholar 

  • Manos, B., Bournaris, T., Papathanasiou, J., & Chatzinikolaou, P. (2008). Evaluation of tobacco cultivation alternatives under the EU common agricultural policy (CAP). Journal of Policy Modeling, 31(2), 225–238.

    Article  Google Scholar 

  • Manos, B., Papathanasiou, J., Bournaris, T., & Voudouris, K. (2010a). A multicriteria model for planning agricultural regions within a context of groundwater rational management. Journal of Environmental Management, 91, 1593–1600.

    Article  Google Scholar 

  • Manos, B., Papathanasiou, J., Bournaris, T., & Voudouris, K. (2010b). A DSS for sustainable development and environmental protection of agricultural region. Environmental Monitoring and Assessment, 164(1–4), 43–52.

    Article  Google Scholar 

  • Manos, B., Bournaris, T., & Chatzinikolaou, P. (2011). Impact assessment of CAP policies on social sustainability in rural areas: An application in Northern Greece. Operational Research, 11(1), 77–92.

    Article  Google Scholar 

  • Mavi, H. S., & Tupper, G. J. (2004). Agrometeorology: Principles and applications of climate studies in agriculture (364 p.). Australia: Food Products Press.

    Google Scholar 

  • McVicar, T. R., & Jupp, D. L. B. (1998). The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia. A review. Agricultural Systems, 57(3), 399–468.

    Article  Google Scholar 

  • Nastos, P., Dalezios, N. R., & Ulbrich, U. (Eds.). (2016). Advances in meteorological hazards and extreme events. Special Issue of NHESS.

    Google Scholar 

  • Niemeyer, S. (2008). New drought indices. Options Méditerranéennes. Série A: Séminaires Méditerranéens, 80, 267–274.

    Google Scholar 

  • Olesen, J. E., & Bindi, B. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.

    Article  Google Scholar 

  • Pereira, L. S. (2017). Water, agriculture and food: Challenges and issues. Water Resources Management, 31, 2985–2999.

    Article  Google Scholar 

  • Politi, N., Nastos, P. T., Sfetsos, A., Vlachgiannis, D., Dalezios, N. R., Gounaris, N., Cardoso, M. R., & Soares, M. M. P. (2016). Comparison and evaluation of WRF model physics parameterizations over the domain of Greece. Proceedings, COMECAP2016. AUTH, Thessaloniki, Greece, September 19–21 (in CD).

    Google Scholar 

  • Schut, P. OpenGIS® web processing service. Retrieved from http://portal.opengeospatial.org/files/?artifact_id=24151

  • Simonis, I., & Echterhoff, J. (2009). Sensor planning service implementation standard. Open Geospatial Consortium 09-000. Retrieved from http://portal.opengeospatial.org/files/?artifact_id=38478

  • Sivakumar, M. V. K., Motha, R. P., & Das, H. P. (Eds.). (2005). Natural disaster and extreme events in agriculture (367 p.). Berlin: Springer. ISBN-10 3-540-22490-4.

    Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G., (2006). A description of the advanced research WRF version 3. NCAR tech. note TN-475_STR, 113 p.

    Google Scholar 

  • Soares, P. M. M., Cardoso, R. M., Miranda, P. M. A., Medeiros, J., Belo-Pereira, M., & Espirito-Santo, F. (2012). WRF high resolution dynamical downscaling of ERA-interim for Portugal. Climate Dynamics, 39, 2497–2522. https://doi.org/10.1007/s00382-012-1315-2

    Article  Google Scholar 

  • Steinemann, A., Hayes, M. A., & Cavalcanti, L. (2005). Drought indicators and triggers. In D. A. Wilhite (Ed.), Drought and water crises: Science technology and management issues (pp. 71–90). New York: Marcer Dekker.

    Google Scholar 

  • Sumpsi, M. J., Amador, F., & Romero, C. (1997). On farmers objectives: A multi-criteria approach. European Journal of Operational Research, 96, 64–71.

    Article  Google Scholar 

  • Tarquis, A. M., Gobin, A., Ulbrich, U., & Dalezios, N. R. (Eds.). (2013). Weather related hazards and risks in agriculture. Special Issue of NHESS journal.

    Google Scholar 

  • Thenkabail, P. S., Gamage, M. S. D. N., & Smakhtin, V. U. (2004). The use of remote sensing data for drought assessment and monitoring in Southwest Asia. Research Report, International Water Management Institute, No. 85, 1–25.

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Tsiros, E. C. (2009). Satellite methodologies of agroclimatic-hydroclimatic zoning for agricultural production. Ph.D. Thesis, School of Agricultural Sciences, University of Thessaly, Volos, Greece, 259 p.

    Google Scholar 

  • Tsiros E., Domenikiotis, C., Kanellou, E., & Dalezios, N. R. (2008). Identification of water limited growth environment zones using NOAA/AVHRR data (pp. 150–155). In 4th International Conference on Information and Communication Technologies in Bio and Earth Sciences HAICTA 2008, Athens, Greece, September 18–20.

    Google Scholar 

  • Tsiros, E., Domenikiotis, C., & Dalezios, N. R. (2009). Sustainable production zoning for agroclimatic classification using GIS and remote sensing. IDŐJÁRÁS, 113(1–2), 55–68.

    Google Scholar 

  • UNESCO. (1979). Map of the world distribution of Arid regions: Explanatory note. Man and the Biosphere. Technical Notes 7, Paris.

    Google Scholar 

  • Van De Griend, A. A., & Owe, M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing, 14, 1119–1131.

    Article  Google Scholar 

  • Van Dijk, A., Callis, S. L., & Sakamoto, C. M. (1987). Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Journal of Photogrammetric Engineering and Remote Sensing, 63, 1059–1067.

    Google Scholar 

  • Van Westen, C. J. (2013). Remote sensing and GIS for natural hazards assessment and disaster risk management. In J. F. Shroder (Ed.), Treatise on geomorphology (Vol. 3, pp. 259–298). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Waseem, M., Ajimal, M., & Kim, T.-W. (2015). Development of a new composite drought index for multivariate drought assessment. Journal of Hydrology, 527, 30–37.

    Article  Google Scholar 

  • Weiss, J. L., Gutzler, D. S., Coonrod, J. E., & Dahm, C. N. (2004). Seasonal and inter-annual relationships between vegetation and climate in central New Mexico, USA. Journal of Arid Environment, 57, 507–534.

    Article  Google Scholar 

  • Yassoglou, N. J. (2004). Soil associations map of Greece. Greek National Committee for Combating Desertification. Athens: Agricultural University of Athens Press.

    Google Scholar 

  • Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19, 333–349.

    Article  Google Scholar 

  • Zittis, G., Hadjinicolaou, P., & Lelieveld, J. (2014). Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. American Journal of Climate Change, 3, 490–511. https://doi.org/10.4236/ajcc.2014.35042

    Article  Google Scholar 

Download references

Acknowledgements

The conventional meteorological data was provided by the National Meteorological Service. The satellite data was provided by NASA-NOAA from the USA. The rainfall maps were provided by EU-JRC at Ispra-Varese, Italy. The technical and economic coefficients of crops in each Prefecture resulted from the Regional Authority of Thessaly and from the Department of Agriculture and Veterinary of each Prefecture. Additional data have been provided by the Department of Agricultural Economics of Aristotle University of Thessaloniki, and from the National Agricultural Research Foundation (NAGREF—National Agricultural Research Foundation, n.d.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalezios, N.R., Mitrakopoulos, K., Manos, B. (2018). Multi-scaling Agroclimatic Classification for Decision Support Towards Sustainable Production. In: Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D. (eds) Multicriteria Analysis in Agriculture. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-76929-5_1

Download citation

Publish with us

Policies and ethics