Privately Constraining and Programming PRFs, the LWE Way

Chris Peikert ${ }^{(\boxtimes)}$ and Sina Shiehian
Computer Science and Engineering, University of Michigan, Ann Arbor, USA
cpeikert@umich.edu

Abstract

Constrained pseudorandom functions allow for delegating "constrained" secret keys that let one compute the function at certain authorized inputs-as specified by a constraining predicate-while keeping the function value at unauthorized inputs pseudorandom. In the constraint-hiding variant, the constrained key hides the predicate. On top of this, programmable variants allow the delegator to explicitly set the output values yielded by the delegated key for a particular set of unauthorized inputs.

Recent years have seen rapid progress on applications and constructions of these objects for progressively richer constraint classes, resulting most recently in constraint-hiding constrained PRFs for arbitrary polynomial-time constraints from Learning With Errors (LWE) [Brakerski, Tsabary, Vaikuntanathan, and Wee, TCC'17], and privately programmable PRFs from indistinguishability obfuscation (iO) [Boneh, Lewi, and Wu, PKC'17].

In this work we give a unified approach for constructing both of the above kinds of PRFs from LWE with subexponential $\exp \left(n^{\varepsilon}\right)$ approximation factors. Our constructions follow straightforwardly from a new notion we call a shift-hiding shiftable function, which allows for deriving a key for the sum of the original function and any desired hidden shift function. In particular, we obtain the first privately programmable PRFs from non-i $i O$ assumptions.

1 Introduction

Since the introduction of pseudorandom functions (PRFs) more than thirty years ago by Goldreich et al. [19], many variants of this fundamental primitive have been proposed. For example, constrained PRFs (also known as delegatable or functional PRFs) [9,11,22] allow issuing "constrained" keys which can be used to evaluate the PRF on an "authorized" subset of the domain, while preserving the pseudorandomness of the PRF values on the remaining unauthorized inputs.

Assuming the existence of one-way functions, constrained PRFs were first constructed for the class of prefix-fixing constraints, i.e., the constrained

[^0]key allows evaluating the PRF on inputs which start with a specified bit string [9,11,22]. Subsequently, by building on a sequence of works $[2,3,7]$ that gave PRFs from the Learning With Errors (LWE) problem [28], Brakerski and Vaikuntanathan [14] constructed constrained PRFs where the set of authorized inputs can be specified by an arbitrary polynomial-time predicate, although for a weaker security notion that allows the attacker to obtain only a single constrained key and function value.

In the original notion of constrained PRF, the constrained key may reveal the constraint itself. Boneh et al. [8] proposed a stronger variant in which the constraint is hidden, calling them privately constrained PRFs-also known as constraint-hiding constrained PRFs (CHC-PRFs)—and gave several compelling applications, like searchable symmetric encryption, watermarking PRFs, and function secret sharing [10]. They also constructed CHC-PRFs for arbitrary polynomial-time constraining functions under the strong assumption that indistinguishability obfuscation $(i O)$ exists [4,17]. Soon after, CHC-PRFs for various constraint classes were constructed from more standard LWE assumptions:

- Boneh et al. [6] constructed them for the class of point-function constraints (i.e., all but one input is authorized).
- Thorough a different approach, Canetti and Chen [15] constructed them for constraints in NC^{1}, i.e., polynomial-size formulas.
- Most recently, Brakerski et al. [13] improved on the construction from [6] to support arbitrary polynomial-size constraints.

All these constructions have a somewhat weaker security guarantee compared to the $i O$-based construction of [8], namely, the adversary gets just one constrained key (but an unbounded number of function values), whereas in [8] it can get unboundedly many constrained keys. Indeed, this restriction reflects a fundamental barrier: CHC-PRFs that are secure for even two constrained keys (for arbitrary constraining functions) imply $i O$ [15].

Boneh et al. [8] also defined and constructed what they call privately programmable PRFs (PP-PRFs), which are CHC-PRFs for the class of point functions along with an additional programmability property: when deriving a constrained key, one can specify the outputs the key yields at the unauthorized points. They showed how to use PP-PRFs to build watermarking PRFs, a notion defined in [16]. While the PP-PRF and resulting watermarking PRF from [8] were based on indistinguishability obfuscation, Kim and Wu [23] later constructed watermarking PRFs from LWE, but via a different route that does not require PP-PRFs. To date, it has remained an open question whether PPPRFs exist based on more standard (non- $i O$) assumptions.

1.1 Our Results

Our main contribution is a unified approach for constructing both constrainthiding constrained PRFs for arbitrary polynomial-time constraints, and privately programmable PRFs, from LWE with subexponential $\exp \left(n^{\varepsilon}\right)$ approximation
factors (i.e., inverse error rates), for any constant $\varepsilon>0$. Both objects follow straightforwardly from a single LWE-based construction that we call a shifthiding shiftable function (SHSF). Essentially, an SHSF allows for deriving a "shifted" key for a desired shift function, which remains hidden. The shifted key allows one to evaluate the sum of the original function and the shift function. We construct CHC-PRFs and PP-PRFs very simply by using an appropriate shift function, which is zero at authorized inputs, and either pseudorandom or programmed at unauthorized inputs.

CHC-PRFs. In comparison with [13], while we achieve the same ultimate result of CHC-PRFs for arbitrary constraints (with essentially the same efficiency metrics), our construction is more modular and arguably a good deal simpler. ${ }^{1}$ Specifically, our SHSF construction uses just a few well-worn techniques from the literature on LWE-based fully homomorphic and attribute-based cryptography $[5,18,20,21]$, and we get a CHC-PRF by invoking our SHSF with an arbitrary PRF as the shift function. By contrast, the construction from [13] melds the FHE/ABE techniques with a specific LWE-based PRF [2], and involves a handful of ad-hoc techniques to deal with various technical complications that arise.

PP-PRFs. Our approach also yields the first privately programmable PRFs from LWE, or indeed, any non- $i O$ assumption. In fact, our PP-PRF allows for programming any polynomial number of inputs. Previously, the only potential approach for constructing PP-PRFs without $i O$ [23] was from CHC-PRFs having certain extra properties (which constructions prior to our work did not possess), and was limited to programming only a logarithmic number of inputs.

1.2 Techniques

As mentioned above, the main ingredient in our constructions is what we call a shift-hiding shiftable function (SHSF). We briefly describe its properties. We have a keyed function Eval : $\mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$, where \mathcal{Y} is some finite additive group, and an algorithm $\operatorname{Shift}(\cdot, \cdot)$ to derive shifted keys. Given a secret key $m s k \in \mathcal{K}$ and a function $H: \mathcal{X} \rightarrow \mathcal{Y}$, we can derive a shifted key $s k_{H} \leftarrow \operatorname{Shift}(m s k, H)$. This key has the following two main properties:

- $s k_{H}$ hides the shifting function H, and
- given $s k_{H}$ we can compute an approximation of Eval $(m s k, \cdot)+H(\cdot)$ at any input, i.e., there exists a "shifted evaluation" algorithm SEval such that for every $x \in \mathcal{X}$,

$$
\begin{equation*}
\operatorname{SEval}\left(s k_{H}, x\right) \approx \operatorname{Eval}(m s k, x)+H(x) \tag{1}
\end{equation*}
$$

We emphasize that the SHSF itself does not have any pseudorandomness property; this will come from "rounding" the function in our PRF constructions, described next.

[^1]CHC-PRFs and PP-PRFs. We first briefly outline how we use SHSFs to construct CHC-PRFs and PP-PRFs. To construct a CHC-PRF we instantiate the SHSF with range $\mathcal{Y}=\mathbb{Z}_{q}^{m}$ for an appropriately chosen q. The CHC-PRF key is just a SHSF master key $m s k$.

- To evaluate on an input $x \in \mathcal{X}$ using $m s k$ we output $\lfloor\operatorname{Eval}(m s k, x)\rceil_{p}$, where $\lfloor\cdot\rceil_{p}$ denotes (coordinate-wise) "rounding" from \mathbb{Z}_{q} to \mathbb{Z}_{p} for some appropriate $p \ll q$.
- To generate a constrained key for a constraint circuit $C: \mathcal{X} \rightarrow\{0,1\}$, we sample a key k for an ordinary PRF F, define the shift function $H_{C, k}(x):=$ $C(x) \cdot F_{k}(x)$, and output the shifted key

$$
s k_{C} \leftarrow \operatorname{Shift}\left(m s k, H_{C, k}\right) .
$$

Since Shift hides the circuit $H_{C, k}$, it follows that $s k_{C}$ hides C.

- To evaluate on an input x using the constrained key $s k_{C}$, we output $\left\lfloor\operatorname{SEval}\left(s k_{C}, x\right)\right\rceil_{p}$.
Observe that for authorized inputs x (where $C(x)=0$), we have $H_{C, k}(x)=$ 0 , so $\operatorname{SEval}\left(s k_{C}, x\right) \approx \operatorname{Eval}(m s k, x)$ and therefore their rounded counterparts are equal with high probability. (This relies on the additional property that Eval $(m s k, x)$ is not to close to a "rounding border.") For unauthorized points x (where $C(x)=1$), to see that the CHC-PRF output is pseudorandom given $s k_{C}$, notice that by Eq. (1), the output is (with high probability)

$$
\begin{equation*}
\lfloor\operatorname{Eval}(m s k, x)\rceil_{p}=\left\lfloor\operatorname{SEval}\left(s k_{C}, x\right)-H(x)\right\rceil_{p} \tag{2}
\end{equation*}
$$

Because F is a pseudorandom function, $H(x)=F_{k}(x)$ completely "randomizes" the right-hand side above.

Turning now to PP-PRFs, for simplicity consider the case where we want to program the constrained key at a single input x^{*} (generalizing to polynomially many inputs is straightforward). A first idea is to use the same algorithms as in the above CHC-PRF, except that to program a key to output y at input x^{*} we define the shift function

$$
H_{x^{*}, y}(x)= \begin{cases}y^{\prime}-\operatorname{Eval}\left(m s k, x^{*}\right) & \text { if } x=x^{*} \tag{3}\\ \mathbf{0} & \text { otherwise }\end{cases}
$$

where $y^{\prime} \in \mathbb{Z}_{q}^{m}$ is chosen uniformly conditioned on $\left\lfloor y^{\prime}\right\rceil_{p}=y$. As before, the programmed key is just the shifted key $s k_{x^{*}, y} \leftarrow \operatorname{Shift}\left(m s k, H_{x^{*}, y}\right)$. By Eq. (1), evaluating on the unauthorized input x^{*} using $s k_{x^{*}, y}$ indeed yields $\left\lfloor y^{\prime}\right\rceil_{p}=y$. However, it is unclear whether the true (non-programmed) value of the function at the unauthorized input $x=x^{*}$ is pseudorandom given $s k_{x^{*}, y}$: in particular, because y is chosen by the adversary, $y^{\prime} \in \mathbb{Z}_{q}^{m}$ may not be uniformly random.

To address this issue, we observe that the above construction satisfies a weaker pseudorandomness guarantee: if the adversary does not specify y but instead y is uniformly random, then by Eq. (2) the PP-PRF is pseudorandom
at x^{*}. This observation leads us to our actual PP-PRF construction: we instantiate two of the above "weak" PP-PRFs with keys $m s k_{1}$ and $m s k_{2}$. To generate a programmed key for input x^{*} and output y, we first generate random additive shares y_{1}, y_{2} such that $y=y_{1}+y_{2}$, and output the programmed key $s k_{x^{*}, y}:=\left(s k_{x^{*}, y_{1}}, s k_{x^{*}, y_{2}}\right)$ where $s k_{x^{*}, y_{i}} \leftarrow \operatorname{Shift}\left(m s k_{i}, H_{x^{*}, y_{i}}\right)$ for $i=1,2$. Each evaluation algorithm (ordinary and programmed) is then defined simply as the sum of the corresponding evaluation algorithm from the "weak" construction using the two component keys. Because both programmed keys are generated for random target outputs y_{i}, we can prove pseudorandomness of the real function value.

Constructing SHSFs. We now give an overview of our construction of shift-hiding shifted functions. For simplicity, suppose the range of the functions is $\mathcal{Y}=\mathbb{Z}_{q}$; extending this to \mathbb{Z}_{q}^{m} (as in our actual constructions) is straightforward. As in [6,23] our main tools are the "gadget-matrix homomorphisms" developed in the literature on fully homomorphic and attribute-based cryptography [5, 18, 20, 21].

At a high level, our SHSF works as follows. The master secret key is just an LWE secret \mathbf{s} whose first coordinate is 1 . A shifted key for a shift function $H: \mathcal{X} \rightarrow \mathbb{Z}_{q}$ consists of LWE vectors (using secret s) relative to some public matrices that have been "shifted" by multiples of the gadget matrix G [24]; more specifically, the multiples are the bits of FHE ciphertexts encrypting H, and the \mathbb{Z}_{q}-entries of the FHE secret key $s k$. To compute the shifted function on an input x, we do the following:

1. Using the gadget homomorphisms for boolean gates $[5,18]$ on the LWE vectors corresponding to the FHE encryption of H, we compute LWE vectors relative to some publicly computable matrices, shifted by multiples of \mathbf{G} corresponding to the bits of an FHE ciphertext encrypting $H(x)$.
2. Then, using the gadget homomorphisms for hidden linear functions [20] with the LWE vectors corresponding to the FHE secret key, we compute LWE vectors relative to some publicly computable matrix \mathbf{B}_{x}, but shifted by $(H(x)+e) \mathbf{G}$ where $H(x)+e \approx H(x) \in \mathbb{Z}_{q}$ is the "noisy plaintext" arising as the inner product of the FHE ciphertext and secret key. Taking just the first column, we therefore have an LWE sample relative to some vector $\mathbf{b}_{x}+(H(x)+e) \mathbf{u}_{1}$, where \mathbf{u}_{1} is the first standard basis (column) vector.
3. Finally, because the first coordinate of the LWE secret \mathbf{s} is 1 , the above LWE sample is simply $\left\langle\mathbf{s}, \mathbf{b}_{x}\right\rangle+H(x)+e \approx\left\langle\mathbf{s}, \mathbf{b}_{x}\right\rangle+H(x) \in \mathbb{Z}_{q}$.

With the above in mind, we then define the (unshifted) function itself on an input x to simply compute \mathbf{b}_{x} from the public parameters as above, and output $\left\langle\mathbf{s}, \mathbf{b}_{x}\right\rangle$. This yields Eq. (1).

2 Preliminaries

We denote row vectors by lower-case bold letters, e.g., a. We denote matrices by upper-case bold letters, e.g., A. The Kronecker product $\mathbf{A} \otimes \mathbf{B}$ of two matrices
(or vectors) \mathbf{A} and \mathbf{B} is obtained by replacing each entry $a_{i, j}$ of \mathbf{A} with the block $a_{i, j} \mathbf{B}$. The Kronecker product obeys the mixed-product property: $(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes$ $\mathbf{D})=(\mathbf{A C}) \otimes(\mathbf{B D})$ for any matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ with compatible dimensions.

2.1 Gadgets and Homomorphisms

Here we recall "gadgets" [24] over \mathbb{Z}_{q} and several of their homomorphic properties, some of which were implicit in [18], and which were developed and exploited further in [5,20,21].

For an integer modulus q, the gadget (or powers-of-two) vector over \mathbb{Z}_{q} is defined as

$$
\begin{equation*}
\mathbf{g}=\left(1,2,4, \ldots, 2^{\lceil\lg q\rceil-1}\right) \in \mathbb{Z}_{q}^{\lceil\lg q\rceil} \tag{4}
\end{equation*}
$$

For every $u \in \mathbb{Z}_{q}$, there is an (efficiently computable) binary vector $\mathbf{x} \in$ $\{0,1\}^{\lceil\mathrm{lg} q\rceil}$ such that $\langle\mathbf{g}, \mathbf{x}\rangle=\mathbf{g} \cdot \mathbf{x}^{t}=u(\bmod q)$. Phrased differently,

$$
\begin{equation*}
(\mathbf{x} \otimes \mathbf{g}) \cdot \mathbf{r}^{t}=\mathbf{u}(\bmod q) \tag{5}
\end{equation*}
$$

for a certain binary $\mathbf{r} \in\{0,1\}^{\lceil\lg q\rceil^{2}}$, namely, the one that selects all the products of the corresponding entries of \mathbf{x} and \mathbf{g}.

The gadget matrix is defined as

$$
\mathbf{G}_{n}=\mathbf{I}_{n} \otimes \mathbf{g} \in \mathbb{Z}_{q}^{n \times m}
$$

where $m=n\lceil\lg q\rceil$. We often drop the subscript n when it is clear from context. We use algorithms BoolEval and LinEval, which have the following properties.

- BoolEval (C, x, \mathbf{A}), given a boolean circuit $C:\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ of depth d, an $x \in\{0,1\}^{\ell}$, and some $\mathbf{A} \in \mathbb{Z}_{q}^{n \times(\ell+1) m}$, outputs an integral matrix $\mathbf{R}_{C, x} \in$ $\mathbb{Z}^{(\ell+1) m \times k m}$ with $m^{O(d)}$-bounded entries for which

$$
\begin{equation*}
(\mathbf{A}+(1, x) \otimes \mathbf{G}) \cdot \mathbf{R}_{C, x}=\mathbf{A}_{C}+C(x) \otimes \mathbf{G} \tag{6}
\end{equation*}
$$

where $\mathbf{A}_{C} \in \mathbb{Z}_{q}^{n \times m}$ depends only on \mathbf{A} and C (and not on $\left.x\right) .{ }^{2}$

- LinEval (\mathbf{x}, \mathbf{C}), given an $\mathbf{x} \in\{0,1\}^{\ell}$ and a matrix $\mathbf{C} \in \mathbb{Z}_{q}^{n \times \ell m}$, outputs an integral matrix $\mathbf{R}_{\mathbf{x}} \in \mathbb{Z}^{2 \ell m \times m}$ with $\operatorname{poly}(m, \ell)$-bounded entries such that, for all $\mathbf{A}, \mathbf{C} \in \mathbb{Z}_{q}^{n \times \ell m}$ and $\mathbf{k} \in \mathbb{Z}_{q}^{\ell}$,

$$
\begin{equation*}
[\mathbf{A}+\mathbf{x} \otimes \mathbf{G} \mid \mathbf{C}+\mathbf{k} \otimes \mathbf{G}] \cdot \mathbf{R}_{x}=\mathbf{B}+\langle\mathbf{x}, \mathbf{k}\rangle \cdot \mathbf{G} \tag{7}
\end{equation*}
$$

where $\mathbf{B} \in \mathbb{Z}_{q}^{n \times m}$ depends only on \mathbf{A} and \mathbf{C} (and not on \mathbf{x} or \mathbf{k}). ${ }^{3}$
More generally, for $\mathbf{x} \in\{0,1\}^{k \ell}$ by applying the above to the ℓ-bit chunks of \mathbf{x}, in Eq. (7) we replace $\langle\mathbf{x}, \mathbf{k}\rangle \cdot \mathbf{G}=\left(\mathbf{x} \cdot \mathbf{k}^{t}\right) \cdot \mathbf{G}$ with $\left(\mathbf{x} \cdot\left(\mathbf{I}_{k} \otimes \mathbf{k}^{t}\right)\right) \otimes \mathbf{G}$, and now $\mathbf{R}_{\mathbf{x}} \in \mathbb{Z}^{(k+1) \ell m \times k m}, \mathbf{A} \in \mathbb{Z}_{q}^{n \times k \ell m}$, and $\mathbf{B} \in \mathbb{Z}_{q}^{n \times k m}$.

[^2]
2.2 Fully Homomorphic Encryption

We use the GSW (leveled) fully homomorphic encryption scheme [18] (KG, Enc, Eval), whose relevant properties for our needs are summarized as follows (we use only a symmetric-key version, which is sufficient for our purposes):

- $\mathrm{KG}\left(1^{\lambda}, q\right)$, given a security parameter λ and a requested modulus q, outputs a secret key $\mathbf{k} \in \mathbb{Z}_{q}^{\tau}($ for some $\tau=\operatorname{poly}(\lambda, \log q))$.
- Enc(k, m), given a secret key \mathbf{k} and a message $m \in\{0,1\}$, outputs a ciphertext $c t$, which is a binary string.
- $\operatorname{Eval}\left(C, c t_{1}, \ldots, c t_{\ell}\right)$, given a boolean circuit $C:\{0,1\}^{\ell} \rightarrow\{0,1\}$ and ciphertexts $c t_{1}, c t_{2}, \ldots, c t_{\ell}$, outputs a ciphertext $c t \in\{0,1\}^{\tau\lceil\lg q\rceil}$.

Notice that in the above definition there is no explicit decryption algorithm. Instead we express the essential "noisy" linear relation between the result of homomorphic evaluation and the secret key: for any $\mathbf{k} \leftarrow \mathrm{KG}\left(1^{\lambda}, q\right)$, any boolean circuit $C:\{0,1\}^{\ell} \rightarrow\{0,1\}$ of depth at most d, any messages $m_{j} \in\{0,1\}$ and ciphertexts $c t_{j} \leftarrow \operatorname{Enc}\left(\mathbf{k}, m_{j}\right)$ for $j=1, \ldots, \ell$, we have

$$
\begin{equation*}
\operatorname{Eval}\left(C, c t_{1}, \ldots, c t_{\ell}\right) \cdot\left(\mathbf{I}_{\lceil\lg q\lceil } \otimes \mathbf{k}^{t}\right)=C\left(m_{1}, \ldots, m_{\ell}\right) \otimes \mathbf{g}+\mathbf{e}(\bmod q) \tag{8}
\end{equation*}
$$

for some integral error vector $\mathbf{e} \in[-B, B]^{\lceil\lg q\rceil}$, where $B=\lambda^{O(d)}$. In other words, multiplying (the τ-bit chunks of) the result of homomorphic evaluation with the secret key yields a "noisy" version of a robust encoding of the result (where the encoding is via the powers of two). While the robust encoding allows the noise to be removed, we will not need to do so explicitly.

More generally, if the circuit C has k-bit output, then Eval outputs a ciphertext in $\{0,1\}^{\tau k\lceil\lg q\rceil}$ and Eq. (8) holds with $\mathbf{I}_{\lceil\lg q\rceil}$ replaced by $\mathbf{I}_{k\lceil\lg q\rceil}$.

2.3 Learning with Errors

For a positive integer dimension n and modulus q, and an error distribution χ over \mathbb{Z}, the LWE distribution and decision problem are defined as follows. For an $\mathbf{s} \in \mathbb{Z}^{n}$, the LWE distribution $A_{\mathbf{s}, \chi}$ is sampled by choosing a uniformly random $\mathbf{a} \leftarrow \mathbb{Z}_{q}^{n}$ and an error term $e \leftarrow \chi$, and outputting $(\mathbf{a}, b=\langle\mathbf{s}, \mathbf{a}\rangle+e) \in \mathbb{Z}_{q}^{n+1}$.

Definition 1. The decision-LWE ${ }_{n, q, \chi}$ problem is to distinguish, with nonnegligible advantage, between any desired (but polynomially bounded) number of independent samples drawn from $A_{\mathbf{s}, \chi}$ for a single $\mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$, and the same number of uniformly random and independent samples over \mathbb{Z}_{q}^{n+1}.

In this work we use a form of LWE where the first coordinate of the secret vector \mathbf{s} is 1 , i.e. $\mathbf{s}=(1, \overline{\mathbf{s}})$ where $\overline{\mathbf{s}} \leftarrow \mathbb{Z}_{q}^{n-1}$. It is easy to see that this is equivalent to LWE with an $(n-1)$-dimensional secret: the transformation mapping $(\mathbf{a}, b) \in$ $\mathbb{Z}_{q}^{n-1} \times \mathbb{Z}_{q}$ to $((r, \mathbf{a}), b+r)$ for a uniformly random $r \in \mathbb{Z}_{q}$ (chosen freshly for each sample) maps samples from $A_{\overline{\mathbf{s}}, \chi}$ to samples from $A_{\mathbf{s}, \chi}$, and maps uniform samples to uniform samples.

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution (over \mathbb{Z}) with parameter $r=2 \sqrt{n}$. A sample drawn from this distribution has magnitude bounded by, say, $r \sqrt{n}=\Theta(n)$ except with probability at most 2^{-n}. For this parameterization, it is known that LWE is at least as hard as quantumly approximating certain "short vector" problems on n-dimensional lattices, in the worst case, to within $\tilde{O}(q \sqrt{n})$ factors [27,28]. Classical reductions are also known for different parameterizations [12, 26].

2.4 One Dimensional Rounded Short Integer Solution

As in $[6,14,23]$ we make use of a special "one-dimensional, rounded" variant of the short integer solution problem (SIS). For the parameters we will use, this problem is actually no easier to solve than LWE is, but it is convenient to define it separately.

Definition 2 (1D-R-SIS [6,14]). Let $p \in \mathbb{N}$ and let $p_{1}<p_{2}<\cdots<p_{k}$ be pairwise coprime and coprime with p. Let $q=p \cdot \prod_{i=1}^{k} p_{i}$. Then for positive numbers $m \in \mathbb{N}$ and B, the $1 D-R$-SIS $S_{m, p, q, B}$ problem is as follows: given a uniformly random vector $\mathbf{v} \leftarrow \mathbb{Z}_{q}^{m}$, find $\mathbf{z} \in \mathbb{Z}^{m}$ such that $\|\mathbf{z}\| \leq B$ and

$$
\begin{equation*}
\langle\mathbf{v}, \mathbf{z}\rangle \in \frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B, B] . \tag{9}
\end{equation*}
$$

For sufficiently large $p_{1} \geq B \cdot \operatorname{poly}(k, \log q)$, solving 1D-R-SIS is at least as hard as approximating certain "short vector" problems on k-dimensional lattices, in the worst case, to within certain $B \cdot \operatorname{poly}(k)$ factors $[1,6,14,25]$.

3 Shift-Hiding Shiftable Functions

Here we present our construction of what we call shift-hiding shiftable functions (SHSFs), which we use in our subsequent constructions of CHC-PRFs and PPPRFs. Because there are several parameters and we need some specific algebraic properties, we do not give an abstract definition of SHSF, but instead just give a construction (Sect.3.2) and show the requisite properties (Sect.3.3).

3.1 Notation

Let GSW $=(\mathrm{KG}$, Enc, Eval) denote the GSW fully homomorphic encryption scheme (Sect. 2.2), where the secret key is in \mathbb{Z}_{q}^{τ} for some $\tau=\tau(\lambda)$. Recall that homomorphic evaluation of a function with k output bits produces a $\tau k\lceil\lg q\rceil$-bit ciphertext.

Our construction represents shift functions $H:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}^{m}$ by (boundedsize) boolean circuits. Specifically, we let $H^{\prime}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ for $k=m\lceil\lg q\rceil$ be a boolean circuit where $H^{\prime}(x)$ is the binary decomposition of $H(x)$, so that, following Eq. (5),

$$
\begin{equation*}
\left(H^{\prime}(x) \otimes \mathbf{g}\right) \cdot\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t}\right)=H(x) \in \mathbb{Z}_{q}^{m} . \tag{10}
\end{equation*}
$$

Let $U\left(H^{\prime}, x\right)=H^{\prime}(x)$ denote a universal circuit for boolean circuits $H^{\prime}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ of size σ, and let $U_{x}(\cdot)=U(\cdot, x)$. Its homomorphic analogue is as follows: letting \bar{z} be the total length of fresh GSW ciphertexts encrypting a circuit of size σ, for any $x \in\{0,1\}^{\ell}$ define

$$
\begin{align*}
& \bar{U}_{x}:\{0,1\}^{\bar{z}} \rightarrow\{0,1\}^{\tau k\lceil\lg q\rceil} \tag{11}\\
& \bar{U}_{x}(c t)=\operatorname{GSW} \cdot \operatorname{Eval}\left(U_{x}, c t\right) \tag{12}
\end{align*}
$$

Observe that \bar{U}_{x} can be implemented as a boolean circuit of size (and hence depth) $\operatorname{poly}(\lambda, \sigma)$.

3.2 Construction

Here we give the tuple of algorithms (Setup, KeyGen, Eval, Shift, SEval, \mathcal{S}) that make up our SHSF. For security parameter λ and constraint circuit size σ the algorithms are parameterized by some $n=\operatorname{poly}(\lambda, \sigma)$ and $q=2^{\text {poly }(\lambda, \sigma)}$, with $m=n\lceil\lg q\rceil=\operatorname{poly}(\lambda, \sigma)$; we instantiate these more precisely in Sect. 3.4 below.

Construction 1. Let $\mathcal{X}=\{0,1\}^{\ell}$ and $\mathcal{Y}=\mathbb{Z}_{q}^{m}$. Define:

- Setup $\left(1^{\lambda}, 1^{\sigma}\right)$: Sample uniformly random and independent matrices $\mathbf{A} \in$ $\mathbb{Z}_{q}^{n \times(\bar{z}+1) m}$ and $\mathbf{C} \in \mathbb{Z}_{q}^{n \times \tau m}$, and output $p p=(\mathbf{A}, \mathbf{C})$.
(The n-by-m chunks of \mathbf{A} will correspond to the \bar{z} bits of a GSW encryption of the shift function; similarly, the chunks of \mathbf{C} will correspond to the GSW secret key in \mathbb{Z}_{q}^{τ}.)
- KeyGen $(p p)$: Sample $\mathbf{s}^{\prime} \leftarrow \mathbb{Z}_{q}^{n-1}$ and set $\mathbf{s}=\left(1, \mathbf{s}^{\prime}\right)$. Output the master secret key $m s k=\mathbf{s}$.
- $\operatorname{Eval}\left(p p, m s k, x \in\{0,1\}^{\ell}\right)$: compute

$$
\begin{equation*}
\mathbf{R}_{0}=\operatorname{BoolEval}\left(\bar{U}_{x}, 0^{\bar{z}}, \mathbf{A}\right) \in \mathbb{Z}^{(\bar{z}+1) m \times \tau k\lceil\lg q\rceil m} \tag{13}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathbf{A}_{x}=\left(\mathbf{A}+\left(1,0^{\bar{z}}\right) \otimes \mathbf{G}\right) \cdot \mathbf{R}_{0}-\bar{U}_{x}\left(0^{\bar{z}}\right) \otimes \mathbf{G} \in \mathbb{Z}_{q}^{n \times \tau k\lceil\lg q\rceil m} \tag{14}
\end{equation*}
$$

(Observe that by Eq. (6), $\mathbf{A}_{x}=\mathbf{A}_{C}$ for the circuit $C=\bar{U}_{x}$, and does not depend on the "dummy" ciphertext $0^{\bar{z}}$, which stands in for a GSW encryption of a shift function.)
Next, compute

$$
\begin{equation*}
\mathbf{R}_{0}^{\prime}=\operatorname{LinEval}\left(\bar{U}_{x}\left(0^{\bar{z}}\right), \mathbf{C}\right) \in \mathbb{Z}^{\tau(k\lceil\lg q\rceil+1) m \times k\lceil\lg q\rceil m} \tag{15}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathbf{B}_{x}=\left[\mathbf{A}_{x}+\bar{U}_{x}\left(0^{\bar{z}}\right) \otimes \mathbf{G} \mid \mathbf{C}\right] \cdot \mathbf{R}_{0}^{\prime} \in \mathbb{Z}_{q}^{n \times k\lceil\lg q\rceil m} \tag{16}
\end{equation*}
$$

(Observe that this corresponds to taking $\mathbf{k}=\mathbf{0}$ in Eq. (7), so \mathbf{B}_{x} does not depend on the "dummy" ciphertext $0^{\bar{z}}$; it depends only on \mathbf{A}_{x}, hence \mathbf{A} and x, and C.)
Finally, output

$$
\begin{equation*}
\mathbf{s} \cdot \mathbf{B}_{x} \cdot\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t} \otimes \mathbf{u}_{1}^{t}\right) \in \mathbb{Z}_{q}^{m} \tag{17}
\end{equation*}
$$

where $\mathbf{r} \in\{0,1\}^{\left\lceil[\mathrm{lg} q\rceil^{2}\right.}$ is as in Eq. (10) and $\mathbf{u}_{1} \in \mathbb{Z}^{m}$ is the first standard basis vector.

- Shift $(p p, m s k, H)$: for a shift function $H:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}^{m}$ whose binary decomposition $H^{\prime}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ can be implemented by a circuit of size σ, sample a GSW encryption key $\mathbf{k} \leftarrow \operatorname{GSW} . \operatorname{KG}\left(1^{\lambda}, q\right)$, then encrypt H^{\prime} bit-bybit under this key to obtain a ciphertext $c t \leftarrow \operatorname{GSW} . \operatorname{Enc}_{\mathbf{k}}\left(H^{\prime}\right)$. Next, let

$$
\begin{align*}
& \mathbf{a}=\mathbf{s}(\mathbf{A}+(1, c t) \otimes \mathbf{G})+\mathbf{e} \tag{18}\\
& \mathbf{c}=\mathbf{s}(\mathbf{C}+\mathbf{k} \otimes \mathbf{G})+\mathbf{e}^{\prime} \tag{19}
\end{align*}
$$

where \mathbf{e} and \mathbf{e}^{\prime} are error vectors whose entries are sampled independently from χ. Output

$$
\begin{equation*}
s k_{H}=(c t, \mathbf{a}, \mathbf{c}) \tag{20}
\end{equation*}
$$

(Recall that $\mathbf{A}^{\prime}=\mathbf{A}+(1, c t) \otimes \mathbf{G}$ and $\mathbf{C}^{\prime}=\mathbf{C}+\mathbf{k} \otimes \mathbf{G}$ support homomorphic operations on ct and \mathbf{k} via right-multiplication by short matrices, using the gadget homomorphisms. Shifted evaluation, defined next, performs such rightmultiplications on $\mathbf{a} \approx \mathbf{s A}^{\prime}, \mathbf{c} \approx \mathbf{s C}^{\prime}$.)
$-\operatorname{SEval}\left(p p, s k_{H}, x\right):$ On input $s k_{H}=(c t, \mathbf{a}, \mathbf{c})$ and $x \in\{0,1\}^{\ell}$, compute

$$
\begin{align*}
\mathbf{R}_{c t} & =\operatorname{BoolEval}\left(\bar{U}_{x}, c t, \mathbf{A}\right) \tag{21}\\
\mathbf{a}_{x} & =\mathbf{a} \cdot \mathbf{R}_{c t} . \tag{22}
\end{align*}
$$

(By Eq. (6), we have $\mathbf{a}_{x} \approx \mathbf{s}\left(\mathbf{A}_{x}+\bar{U}_{x}(c t) \otimes \mathbf{G}\right)$, where recall that $\bar{U}_{x}(c t)$ is a GSW encryption of $H^{\prime}(x)$, computed homomorphically.)
Next, compute

$$
\begin{align*}
\mathbf{R}_{c t}^{\prime} & =\operatorname{LinEval}\left(\bar{U}_{x}(c t), \mathbf{C}\right) \tag{23}\\
\mathbf{b}_{x} & =\left[\mathbf{a}_{x} \mid \mathbf{c}\right] \cdot \mathbf{R}_{c t}^{\prime} . \tag{24}
\end{align*}
$$

(By Eqs. (7) for LinEval and (8) for GSW decryption, we have $\mathbf{b}_{x} \approx \mathbf{s}\left(\mathbf{B}_{x}+\right.$ $\left.\mathbf{h}^{\prime} \otimes \mathbf{G}\right)$, where \mathbf{h}^{\prime} is a noisy version of the robust encoding $H^{\prime}(x) \otimes \mathbf{g}$.)
Finally, output

$$
\begin{equation*}
\mathbf{b}_{x} \cdot\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t} \otimes \mathbf{u}_{1}^{t}\right) \in \mathbb{Z}_{q}^{m}, \tag{25}
\end{equation*}
$$

where $\mathbf{r}, \mathbf{u}_{1}$ are as in Eval above.
(Here the $\mathbf{I}_{m} \otimes \mathbf{r}^{t}$ term reconstructs a noisy version of $H(x) \in \mathbb{Z}_{q}^{m}$ from \mathbf{h}^{\prime} as in Eq.(10), and the $\mathbf{u}_{1}^{t} \in \mathbb{Z}^{m}$ term selects the first column of \mathbf{G}, whose inner product with \mathbf{s} is 1.)

- $\mathcal{S}\left(1^{\lambda}, 1^{\sigma}\right)$: Sample a GSW secret key $\mathbf{k} \leftarrow \operatorname{GSW} . \operatorname{KG}\left(1^{\lambda}, q\right)$ and compute (by encrypting bit-by-bit) $c t \leftarrow G \operatorname{GSW} . \operatorname{Enc}_{\mathbf{k}}(C)$, where C is some arbitrary size- σ boolean circuit. Sample uniformly random and independent $\mathbf{A} \leftarrow$ $\mathbb{Z}_{q}^{n \times(\bar{z}+1) m}, \mathbf{a} \leftarrow \mathbb{Z}_{q}^{(\bar{z}+1) m}, \mathbf{C} \leftarrow \mathbb{Z}_{q}^{n \times \tau m}, \mathbf{c} \leftarrow \mathbb{Z}_{q}^{\tau m}$. Output $p p=(\mathbf{A}, \mathbf{C})$ and $s k=(c t, \mathbf{a}, \mathbf{c})$.

3.3 Properties

Here we prove the three main properties of our SHSF that we will use in subsequent sections.

Lemma 1 (Shift Hiding). Assuming the hardness of $L W E_{n-1, q, \chi}$ and CPA security of the $G S W$ encryption scheme, for any PPT \mathcal{A} and any $\sigma=\sigma(\lambda)=$ $\operatorname{poly}(\lambda)$,

$$
\begin{equation*}
\left\{\operatorname{RealKey}_{\mathcal{A}}\left(1^{\lambda}, 1^{\sigma}\right)\right\}_{\lambda \in \mathbb{N}} \stackrel{c}{\approx}\left\{\operatorname{IdealKey}_{\mathcal{A}}\left(1^{\lambda}, 1^{\sigma}\right)\right\}_{\lambda \in \mathbb{N}} \tag{26}
\end{equation*}
$$

where RealKey and IdealKey are the respective views of \mathcal{A} in the experiments defined in Fig. 1.

Proof. Let \mathcal{A} be any polynomial-time adversary. To show that Eq. (26) holds we define a sequence of hybrid experiments and show that they are indistinguishable.

Hybrid H_{0} : This is the experiment RealKey.
Hybrid H_{1} : This is the same as H_{0}, except that we modify how the \mathbf{A} and \mathbf{C} are constructed as follows: after we generate $c t$ and \mathbf{k} we choose uniformly random \mathbf{A}^{\prime} and \mathbf{C}^{\prime} and set

$$
\begin{align*}
& \mathbf{A}=\mathbf{A}^{\prime}-(1, c t) \otimes \mathbf{G} \tag{27}\\
& \mathbf{C}=\mathbf{C}^{\prime}-\mathbf{k} \otimes \mathbf{G} \tag{28}
\end{align*}
$$

Hybrid H_{2} : This is the same as H_{1}, except that we sample the \mathbf{a}_{i} and \mathbf{c}_{j} uniformly at random from \mathbb{Z}_{q}^{m}.
Hybrid H_{3} : This is the same as H_{2}, except that we again directly choose \mathbf{A}, \mathbf{C} uniformly at random (without choosing $\mathbf{A}^{\prime}, \mathbf{C}^{\prime}$).
Hybrid H_{4} : This is the same as H_{2}, except that ct encrypts the (arbitrary) size- σ circuit C (as in \mathcal{S}) instead of H^{\prime}, i.e., we set $c t \leftarrow$ GSW.Enc $_{\mathbf{k}^{\prime}}(C)$. Observe that this is exactly the experiment IdealKey.

Claim 1. H_{0} and H_{1} are identical.
Proof. This is because \mathbf{A}^{\prime} and \mathbf{C}^{\prime} are uniformly random and independent of $c t$ and \mathbf{k}.

```
procedure RealKey }\mp@subsup{\mathcal{A}}{(}{(1}\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{\rho}
    pp}\leftarrow\operatorname{Setup}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{\rho}
    msk}\leftarrow\operatorname{KeyGen(pp)
    sk\leftarrow\operatorname{Shift}(pp,msk,H)
    (pp,sk) ->\mathcal{A}
```

 \(H \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{\sigma}\right) \quad\) procedure IdealKey \(\mathcal{A}_{\mathcal{A}}\left(1^{\lambda}, 1^{\sigma}\right)\)
 procedure IdealKey $_{\mathcal{A}}\left(1^{\lambda}, 1^{\sigma}\right)$
$H \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{\sigma}\right)$
$(p p, s k) \leftarrow \mathcal{S}\left(1^{\lambda}, 1^{\sigma}\right)$
$(p p, s k) \rightarrow \mathcal{A}$
(b) The random key generation experi-
(a) The real shifted key generation ex-ment periment

Fig. 1. The real and random shifted key generation experiments.

Claim 2. Assuming the hardness of $\operatorname{LWE}_{n-1, q, \chi}$, we have $H_{1} \stackrel{c}{\approx} H_{2}$.
Proof. We use any adversary \mathcal{A} that attempts to distinguish H_{1} from H_{2} to build an adversary \mathcal{A}^{\prime} that solves LWE $_{n-1, q, \chi}$ with the same advantage. First, \mathcal{A}^{\prime} receives samples $\left(\mathbf{A}^{\prime}, \mathbf{a}\right) \in \mathbb{Z}_{q}^{n \times(\bar{z}+1) m} \times \mathbb{Z}_{q}^{(\bar{z}+1) m}$ and $\left(\mathbf{C}^{\prime}, \mathbf{c}\right) \in \mathbb{Z}_{q}^{n \times \tau m} \times \mathbb{Z}_{q}^{\tau m}$, then proceeds exactly as in H_{1} to interact with \mathcal{A}, and outputs what \mathcal{A} outputs. If the samples are LWE samples from $A_{\mathbf{s}, \chi}$ where $\mathbf{s}=\left(1, \mathbf{s}^{\prime}\right)$ for $\mathbf{s}^{\prime} \leftarrow \mathbb{Z}_{q}^{n-1}$, then

$$
\begin{aligned}
& \mathbf{a}=\mathbf{s} \cdot \mathbf{A}^{\prime}+\mathbf{e}=\mathbf{s}(\mathbf{A}+(1, c t) \otimes \mathbf{G})+\mathbf{e} \\
& \mathbf{c}=\mathbf{s} \cdot \mathbf{C}^{\prime}+\mathbf{e}^{\prime}=\mathbf{s}(\mathbf{C}+\mathbf{k} \otimes \mathbf{G})+\mathbf{e}^{\prime}
\end{aligned}
$$

for error vectors $\mathbf{e}, \mathbf{e}^{\prime}$ whose entries are drawn from χ, therefore \mathcal{A} 's view is identical to its view in H_{1}. If the samples are uniformly random, then \mathcal{A} 's view is identical to its view in H_{2}. This proves the claim.

Claim 3. H_{2} and H_{3} are identical.
Proof. This is because $\mathbf{A}^{\prime}, \mathbf{C}^{\prime}$ are uniformly random and independent of $c t$ and \mathbf{k}.
Claim 4. If GSW is CPA-secure then $H_{3} \stackrel{c}{\approx} H_{4}$.
Proof. This follows immediately from the fact that the GSW secret key $\mathbf{k} \leftarrow$ GSW.KG $\left(1^{\lambda}, q\right)$ is used only to encrypt H (yielding $c t$) or the arbitrary circuit C, respectively, in H_{3} and H_{4}.

This completes the proof of Lemma 1.
Lemma 2 (Border Avoiding). For any PPT $\mathcal{A}, i \in[m], \lambda \in \mathbb{N}$ and $\sigma=$ poly (λ), assuming the hardness of $1 D-R-S I S_{(\bar{z}+\tau+1) m, p, q, B}$ for some large enough $B=m^{\text {poly }(\lambda, \sigma)}=\lambda^{\text {poly }(\lambda)}$, we have

$$
\begin{equation*}
\underset{(p p, s k) \leftarrow \mathcal{S}\left(1^{\lambda}, 1^{\sigma}\right)}{x \leftarrow \mathcal{A}(p p, s k)} \underset{\operatorname{Pr}}{ }\left[\operatorname{Eval}(p p, s k, x)_{i} \in \frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B,+B]\right] \leq \operatorname{negl}(\lambda) \tag{29}
\end{equation*}
$$

Proof. We show how to use an adversary which finds an $x \in \mathcal{X}$ such that

$$
\begin{equation*}
\operatorname{SEval}(p p, s k, x)_{i} \in \frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B,+B] \tag{30}
\end{equation*}
$$

for some $i \in[m]$ to solve 1D-R-SIS.
Given a (uniformly random) 1D-R-SIS ${ }_{(\bar{z}+\tau+1) m, p, q, B}$ challenge $\mathbf{v}=(\mathbf{a}, \mathbf{c}) \in$ $\mathbb{Z}_{q}^{(\bar{z}+1) m} \times \mathbb{Z}_{q}^{\tau m}$, we put \mathbf{a}, \mathbf{c} in the $s k$ given to \mathcal{A}, and generate $p p$ in the same way as in the \mathcal{S} algorithm. Let x be a query output by \mathcal{A}, and consider the response

$$
\begin{align*}
\mathbf{y}_{x} & =\operatorname{SEval}(p p,(c t, \mathbf{a}, \mathbf{c}), x) \tag{31}\\
& =\mathbf{b}_{x} \cdot \mathbf{U} \tag{32}\\
& =[\mathbf{a} \mid \mathbf{c}] \underbrace{\left[\begin{array}{lll}
\mathbf{R}_{c t} & \\
& \mathbf{I}_{\tau m}
\end{array}\right] \cdot \mathbf{R}_{c t}^{\prime} \cdot \mathbf{U}}_{\mathbf{T}}, \tag{33}
\end{align*}
$$

 a binary matrix. Now if Eq. (30) holds for some $i \in[m]$, then $\left(\mathbf{y}_{x}\right)_{i} \in \frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+$ $[-B, B]$, which means that the i th column of \mathbf{T} is a valid $1 \mathrm{D}-\mathrm{R}-\mathrm{SIS}_{(\bar{z}+\tau+1) m, p, q, B}$ solution to the challenge $\mathbf{v}=(\mathbf{a}, \mathbf{c})$, as desired.

Lemma 3 (Approximate Shift Correctness). For any shift function $H:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}^{m}$ whose binary decomposition $H^{\prime}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{k}$ can be represented by a boolean circuit of size σ, and any $x \in\{0,1\}^{\ell}$, $p p \leftarrow \operatorname{Setup}\left(1^{\lambda}, 1^{\rho}\right)$, $m s k \leftarrow \operatorname{KeyGen}(p p)$ and $s k_{H} \leftarrow \operatorname{Shift}(p p, m s k, H)$, we have

$$
\begin{equation*}
\operatorname{SEval}\left(p p, s k_{H}, x\right) \approx \operatorname{Eval}(p p, m s k, x)+H(x) \tag{34}
\end{equation*}
$$

where the approximation hides some $\lambda^{\mathrm{poly}(\lambda)}$-bounded error vector.
Proof. Let $\mathbf{a}, \mathbf{a}_{x}, \mathbf{b}_{x}, \mathbf{c}, \mathbf{A}_{x}$ and \mathbf{B}_{x} be as defined in algorithms SEval, Eval and Shift. First, observe that by definition of $\mathbf{a} \approx \mathbf{s}(\mathbf{A}+(1, c t) \otimes \mathbf{G}), \mathbf{a}_{x}=\mathbf{a} \cdot \mathbf{R}_{c t}$, and Eq. (6), we have

$$
\begin{align*}
\mathbf{a}_{x} & \approx \mathbf{s}(\mathbf{A}+(1, c t) \otimes \mathbf{G}) \cdot \mathbf{R}_{c t} \tag{35}\\
& =\mathbf{s}\left(\mathbf{A}_{x}+\bar{U}_{x}(c t) \otimes \mathbf{G}\right) \tag{36}
\end{align*}
$$

where the approximation hides an error vector with entries bounded by $m^{\text {poly }(\lambda, \sigma)}=\lambda^{\text {poly }(\lambda)}$. Similarly, by definition of \mathbf{b}_{x}, the generalized Eq. (7), and the generalized Eq. (8) we have

$$
\begin{align*}
\mathbf{b}_{x} & =\left[\mathbf{a}_{x} \mid \mathbf{c}\right] \cdot \mathbf{R}_{c t}^{\prime} \tag{37}\\
& \approx \mathbf{s}\left[\mathbf{A}_{x}+\bar{U}_{x}(c t) \otimes \mathbf{G} \mid \mathbf{C}+\mathbf{k} \otimes \mathbf{G}\right] \cdot \mathbf{R}_{c t}^{\prime} \tag{38}\\
& =\mathbf{s}\left(\mathbf{B}_{x}+\left(\bar{U}_{x}(c t) \cdot\left(\mathbf{I}_{k\lceil\lg q\rceil} \otimes \mathbf{k}^{t}\right)\right) \otimes \mathbf{G}\right) \tag{39}\\
& =\mathbf{s}\left(\mathbf{B}_{x}+\left(H^{\prime}(x) \otimes \mathbf{g}+\mathbf{e}_{x}\right) \otimes \mathbf{G}\right) \tag{40}
\end{align*}
$$

where the approximation hides some $\lambda^{\text {poly }(\lambda)}$-bounded error, and \mathbf{e}_{x} is also $\lambda^{\text {poly }(\lambda)}$-bounded. Therefore, by Eq. (10), the mixed-product property, and because $\mathbf{G} \cdot \mathbf{u}_{1}^{t}=\mathbf{u}_{1}^{t} \in \mathbb{Z}_{q}^{n}$, and the first coordinate of \mathbf{s} is 1 , the output of $\operatorname{SEval}\left(p p, s k_{H}, x\right)$ is

$$
\begin{align*}
\mathbf{b}_{x} \cdot\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t} \otimes \mathbf{u}_{1}^{t}\right) \approx & \mathbf{s} \mathbf{B}_{x} \cdot\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t} \otimes \mathbf{u}_{1}^{t}\right)+\mathbf{s}\left(\left(H^{\prime}(x) \otimes \mathbf{g}+\mathbf{e}_{x}\right) \otimes \mathbf{G}\right) \\
& \cdot\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t} \otimes \mathbf{u}_{1}^{t}\right) \tag{41}\\
= & \operatorname{Eval}(p p, m s k, x)+\mathbf{s}\left(\left(H(x)+\mathbf{e}_{x}\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t}\right)\right) \otimes \mathbf{u}_{1}^{t}\right) \tag{42}\\
= & \operatorname{Eval}(p p, m s k, x)+H(x)+\mathbf{e}_{x}\left(\mathbf{I}_{m} \otimes \mathbf{r}^{t}\right) \tag{43}\\
\approx & \operatorname{Eval}(p p, m s k, x)+H(x) \tag{44}
\end{align*}
$$

where again the approximations hide $\lambda^{\text {poly(}} \lambda$) -bounded error vectors, as claimed.
The following is an immediate consequence of Lemma 3.

Corollary 1. Fix the same notation as in Lemma 3. If for all $i \in[m]$ we have

$$
\begin{equation*}
(\mathrm{SEval}(p p, s k, x)-H(x))_{i} \notin \frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B,+B], \tag{45}
\end{equation*}
$$

then

$$
\begin{equation*}
\lfloor\operatorname{SEval}(p p, s k, x)-H(x)\rceil_{p}=\lfloor\operatorname{Eval}(p p, m s k, x)\rceil_{p} \tag{46}
\end{equation*}
$$

3.4 Parameter Instantiation

We now instantiate the LWE parameters n, q and the 1D-R-SIS parameter k to correspond with subexponential $\exp \left(n^{\varepsilon}\right)$ and $\exp \left(k^{\varepsilon}\right)$ approximation factors for the underlying worst-case lattice problems, for an arbitrary desired constant $\varepsilon>0$. Let $B=\lambda^{\text {poly }(\lambda)}$ be the bound from Corollary 1. For 1D-R-SIS we need to choose k sufficiently large primes $p_{i}=B \cdot \operatorname{poly}(\lambda)=\lambda^{\text {poly }(\lambda)}$ to get an approximation factor of

$$
B \cdot \operatorname{poly}(\lambda)=\lambda^{\operatorname{poly}(\lambda)}
$$

for k-dimensional lattices. Therefore, we can choose a sufficiently large $k=$ $\operatorname{poly}(\lambda)$ to make this factor $\exp \left(k^{\varepsilon}\right)$. We then set

$$
q=p \prod_{i=1}^{k} p_{i}=p \cdot \lambda^{k \cdot \operatorname{poly}(\lambda)}=\lambda^{\operatorname{poly}(\lambda)},
$$

which corresponds to some $\lambda^{\text {poly (}}$ () approximation factor for n-dimensional lattices. Again, we can choose a sufficiently large $n=\operatorname{poly}(\lambda)$ to make this factor $\exp \left(n^{\varepsilon}\right)$.

4 Constraint-Hiding Constrained PRF

In this section we formally define constraint-hiding constrained PRFs (CHCPRFs) and give a construction based on our shiftable PRF from Sect. 3.

4.1 Definition

Here we give the definition of CHC-PRFs, specializing the simulation-based definition of [15] to the case of a single constrained-key query.

Definition 3. A constrained function is a tuple of efficient algorithms (Setup, KeyGen, Eval, Constrain, CEval) having the following interfaces (where the domain \mathcal{X} and range \mathcal{Y} may depend on the security parameter):

- Setup $\left(1^{\lambda}, 1^{\sigma}\right)$, given the security parameter λ and an upper bound σ on the size of the constraining circuit, outputs public parameters pp.
- KeyGen $(p p)$, given the public parameters pp, outputs a master secret key msk.
- $\operatorname{Eval}(p p, m s k, x)$, given the master secret key and an input $x \in \mathcal{X}$, outputs some $y \in \mathcal{Y}$.
- Constrain $(p p, m s k, C)$, given the master secret key and a circuit C of size at most σ, outputs a constrained key $s k_{C}$.
$-\operatorname{CEval}\left(p p, s k_{C}, x\right)$, given a constrained key $s k_{C}$ and an input $x \in \mathcal{X}$, outputs some $y \in \mathcal{Y}$.

Definition 4. A constrained function is a constraint-hiding constrained PRF (CHC-PRF) if there is a PPT simulator \mathcal{S} such that, for any PPT adversary \mathcal{A} (that without loss of generality never repeats a query) and any $\sigma=\sigma(\lambda)=$ $\operatorname{poly}(\lambda)$,

$$
\begin{equation*}
\left\{\operatorname{Real}_{\mathcal{A}}\left(1^{\lambda}, 1^{\sigma}\right)\right\}_{\lambda \in \mathbb{N}} \stackrel{c}{\approx}\left\{\text { Ideal }_{\mathcal{A}, \mathcal{S}}\left(1^{\lambda}, 1^{\sigma}\right)\right\}_{\lambda \in \mathbb{N}} \tag{47}
\end{equation*}
$$

where Real and Ideal are the respective views of \mathcal{A} in the experiments defined in Fig. 2.

The above simulation-based definition simultaneously captures privacy of the constraining function, pseudorandomness on unauthorized inputs, and correctness of constrained evaluation on authorized inputs. The first two properties (privacy and pseudorandomness) follow because in the ideal experiment, the simulator must generate a constrained key without knowing the constraining function, and the adversary gets oracle access to a function that is uniformly random on unauthorized inputs.

For correctness, we claim that the real experiment is computationally indistinguishable from a modified one where each query x is answered as $\operatorname{CEval}\left(p p, s k_{C}, x\right)$ if x is authorized (i.e., $\left.C(x)=0\right)$, and as $\operatorname{Eval}(p p, m s k, x)$ otherwise. In particular, this implies that $\operatorname{Eval}(p p, m s k, x)=\operatorname{CEval}\left(p p, s k_{C}, x\right)$ with all but negligible probability for all the adversary's authorized queries x. Indistinguishability of the real and modified experiments follows by a routine hybrid argument, with the ideal experiment as the intermediate one. In particular, the reduction that links the ideal and modified real experiments itself answers authorized queries x using CEval, and handles unauthorized queries by passing them to its oracle.

```
procedure Real }\mp@subsup{\mathcal{A}}{(1/\lambda}{\lambda},\mp@subsup{1}{}{\sigma}
    C}\leftarrow\mathcal{A}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{\sigma}
    pp}\leftarrow\operatorname{Setup(1}\mp@subsup{1}{}{\lambda}
    msk}\leftarrow\operatorname{KeyGen(pp)
    sk}\mp@subsup{C}{C}{}\leftarrow\mathrm{ Constrain (pp,msk,C)
    (pp,s\mp@subsup{k}{C}{})->\mathcal{A}
    repeat
        x\leftarrow\mathcal{A}
        Eval (pp,msk, x)->\mathcal{A}
    until }\mathcal{A}\mathrm{ halts
```

(a) The real experiment

```
procedure Ideal (\mathcal{A,S}
```

 \(C \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{\sigma}\right)\)
 \((p p, s k) \leftarrow \mathcal{S}\left(1^{\lambda}, 1^{\sigma}\right)\)
 \((p p, s k) \rightarrow \mathcal{A}\)
 repeat
 \(x \leftarrow \mathcal{A}\)
 if \(C(x)=0\) then
 \(\operatorname{CEval}(p p, s k, x) \rightarrow \mathcal{A}\)
 else
 \(y \leftarrow \mathcal{Y} ; y \rightarrow \mathcal{A}\)
 until \(\mathcal{A}\) halts
 (b) The ideal experiment

Fig. 2. The real and ideal experiments.

4.2 Construction

We now describe our construction of a CHC-PRF for domain $\mathcal{X}=\{0,1\}^{\ell}$ and range $\mathcal{Y}=\mathbb{Z}_{p}^{m}$, which handles constraining circuits of size σ. It uses the following components:

- A pseudorandom function PRF $=($ PRF.KG, PRF.Eval $)$ having domain $\{0,1\}^{\ell}$ and range \mathbb{Z}_{q}^{m}, with key space $\{0,1\}^{\kappa}$.
- The shift hiding shiftable function SHSF $=$ (Setup, KeyGen, Eval, Shift, SEval, Sim) from Sect.3, which has parameters q, B that appear in the analysis below.

For a boolean circuit C of size at most σ and some $k \in\{0,1\}^{\kappa}$ define the function $H_{C, k}:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}^{m}$ as

$$
H_{C, k}(x)=C(x) \cdot \operatorname{PRF} . E v a l(k, x)= \begin{cases}\operatorname{PRF} . \operatorname{Eval}(k, x) & \text { if } U(C, x)=1 \tag{48}\\ 0 & \text { otherwise }\end{cases}
$$

Notice that the size of (the binary decomposition of) $H_{C, k}$ is upper bounded by

$$
\begin{equation*}
\sigma^{\prime}=\sigma+s+\operatorname{poly}(n, \log q) \tag{49}
\end{equation*}
$$

where s is the circuit size of (the binary decomposition of) PRF.Eval (k, \cdot).
Construction 2. Our CHC-PRF with domain $\mathcal{X}=\{0,1\}^{\ell}$ and range $\mathcal{Y}=\mathbb{Z}_{p}^{m}$ is defined as follows:
$-\operatorname{Setup}\left(1^{\lambda}, 1^{\sigma}\right)$: output $p p \leftarrow \operatorname{SHSF} . \operatorname{Setup}\left(1^{\lambda}, 1^{\sigma^{\prime}}\right)$ where σ^{\prime} is defined as in Eq. (49).

- KeyGen $(p p)$: output $m s k \leftarrow$ SHSF.KeyGen $(p p)$.
$-\operatorname{Eval}\left(p p, m s k, x \in\{0,1\}^{\ell}\right):$ compute $\mathbf{y}_{x}=\operatorname{SHSF} . \operatorname{Eval}(p p, m s k, x)$ and output $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$.
- Constrain $(p p, m s k, C)$: on input a circuit C of size at most σ, sample a PRF key $k \leftarrow \operatorname{PRF} . K G\left(1^{\lambda}\right)$ and output $s k_{C} \leftarrow \operatorname{SHSF} . \operatorname{Shift}\left(p p, m s k, H_{C, k}\right)$.
- $\operatorname{CEval}\left(p p, s k_{C}, x\right)$: on input a constrained key $s k_{C}$ and $x \in\{0,1\}^{\ell}$, output $\left\lfloor\operatorname{SHSF} . \operatorname{SEval}\left(p p, s k_{C}, x\right)\right\rceil_{p}$.

4.3 Security Proof

Theorem 1. Construction 2 is a constraint-hiding constrained PRF assuming the hardness of $\mathrm{LWE}_{n-1, q, \chi}$ and $1 D-R-S I S_{\left(z \sigma^{\prime}+\tau+1\right) m, p, q, B}$ (where z, τ are respectively the lengths of fresh GSW ciphertexts and secret keys as used in SHSF), the CPA security of the GSW encryption scheme, and that PRF is a pseudorandom function.

Proof. Our simulator $\mathcal{S}\left(1^{\lambda}, 1^{\sigma}\right)$ for Construction 2 simply outputs SHSF. $\mathcal{S}\left(1^{\lambda}, 1^{\sigma^{\prime}}\right)$. Now let \mathcal{A} be any polynomial-time adversary. To show that \mathcal{S} satisfies Definition 4 we define a sequence of hybrid experiments and show that they are indistinguishable. Before defining the experiments in detail, we first define a particular "bad" event in all but one of them.

Definition 5. In each of the following hybrid experiments except H_{0}, each query x is answered as $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$ for some \mathbf{y}_{x} that is computed in a certain way. Define Borderline to be the event that at least one such \mathbf{y}_{x} has some coordinate in $\frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B, B]$.

Hybrid H_{0} : This is the ideal experiment Ideal $_{\mathcal{A}, \mathcal{S}}$.
Hybrid H_{1} : This is the same as H_{0}, except that on every unauthorized query x (i.e., where $C(x)=1$), instead of returning a uniformly random value from \mathbb{Z}_{p}^{m}, we choose $\mathbf{y}_{x} \leftarrow \mathbb{Z}_{q}^{m}$ and output $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$.
Hybrid H_{2} : This is the same as H_{1}, except that we abort the experiment if Borderline happens.
Hybrid H_{3} : This is the same as H_{2}, except that we initially choose a PRF key $k \leftarrow$ PRF.KG $\left(1^{\lambda}\right)$ and change how unauthorized queries x (i.e., where $C(x)=1$) are handled, answering all queries according to a slightly modified CEval. Specifically, for any query x we answer $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$ where

$$
\begin{equation*}
\mathbf{y}_{x}=\operatorname{SHSF} . \operatorname{SEval}(p p, s k, x)-C(x) \cdot \operatorname{PRF} . E v a l(k, x) \tag{50}
\end{equation*}
$$

Hybrid H_{4} : This is the same as H_{3}, except that $(p p, s k)$ are generated as in the real experiment. More formally we instantiate $p p \leftarrow \operatorname{SHSF}$.Setup $\left(1^{\lambda}, 1^{\sigma^{\prime}}\right)$, $m s k \leftarrow \operatorname{SHSF} . \operatorname{KeyGen}(p p)$ and compute $s k \leftarrow \operatorname{SHSF} . \operatorname{Shift}\left(p p, m s k, H_{C, k}\right)$.
Hybrid H_{5} : This is the same as H_{4}, except that we answer all evaluation queries as in the Eval algorithm, i.e., we output $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$ where

$$
\begin{equation*}
\mathbf{y}_{x}=\operatorname{SHSF} . \operatorname{Eval}(p p, m s k, x) \tag{51}
\end{equation*}
$$

Hybrid H_{6} : This is the same as H_{5}, except that we no longer abort when Borderline happens. Observe that this is exactly the real experiment Real ${ }_{\mathcal{A}}$.

We now prove that adjacent pairs of hybrid experiments are indistinguishable.
Claim 5. Experiments H_{0} and H_{1} are identical.
Proof. This follows directly from the fact that p divides q.
Claim 6. Assuming that 1D-R-SIS $\left(z \sigma^{\prime}+\tau+1\right) m, p, q, B$ is hard, we have $H_{1} \stackrel{c}{\approx} H_{2}$. In particular, in H_{1} the event Borderline happens with negligible probability.

Proof. Let \mathcal{A} be an adversary attempting to distinguish H_{1} and H_{2}. We want to show that in H_{1} event Borderline happens with negligible probability. Let x be a query made by \mathcal{A}. If $C(x)=1$ then \mathbf{y}_{x} is uniformly random in \mathbb{Z}_{q}^{m}, so for any $i \in[m]$ we have

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\mathbf{y}_{x}\right)_{i} \in \frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B, B]\right] \leq 2 \cdot B \cdot p / q=\operatorname{negl}(\lambda) \tag{52}
\end{equation*}
$$

If $C(x)=0$, the claim follows immediately by the border-avoiding property of SHSF (Lemma 2).

Claim 7. If PRF is a pseudorandom function then $H_{2} \stackrel{c}{\approx} H_{3}$.

Proof. We use any adversary \mathcal{A} that attempts to distinguish H_{2} from H_{3} to build an adversary \mathcal{A}^{\prime} having the same advantage against the pseudorandomness of PRF. Here \mathcal{A}^{\prime} is given access to an oracle \mathcal{O} which is either PRF.Eval (k, \cdot) for $k \leftarrow \operatorname{PRF} . \operatorname{KG}\left(1^{\lambda}\right)$, or a uniformly random function $f:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}^{m}$. We define \mathcal{A}^{\prime} to proceed as in H_{2} to simulate the view of \mathcal{A}, except that on each query x it sets

$$
\begin{equation*}
\mathbf{y}_{x}=\operatorname{SHSF} . \operatorname{SEval}(p p, s k, x)-C(x) \cdot \mathcal{O}(x) \tag{53}
\end{equation*}
$$

and answers $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$. Finally, \mathcal{A}^{\prime} outputs whatever \mathcal{A} outputs. Clearly, if \mathcal{O} is PRF.Eval (k, \cdot) then the view of \mathcal{A} is identical to H_{3}, whereas if the oracle is $f(\cdot)$ then the view of \mathcal{A} is identical to its view in H_{2}. This proves the claim.

Claim 8. Assuming the hardness of $\mathrm{LWE}_{n-1, q, \chi}$ and CPA-security of GSW, $H_{3} \stackrel{c}{\approx} H_{4}$.

Proof. This follows immediately from the shift hiding property of SHSF, i.e., Lemma 1.

Claim 9. H_{4} and H_{5} are identical.
Proof. This follows by Corollary 1 and noticing that both experiments abort if Borderline happens.

Claim 10. Under the hypotheses of Theorem 1, we have $H_{5} \stackrel{\mathcal{c}}{\approx} H_{6}$.
Proof. This follows by combining all the previous claims and recalling that we have proved that Borderline happens with negligible probability in H_{1}.

This completes the proof of Theorem 1.

5 Privately Programmable PRF

In this section we formally define privately programmable PRFs (PP-PRFs) and give a construction based on our shiftable PRF from Sect. 3.

5.1 Definitions

We start by giving a variety of definitions related to "programmable functions" and privately programmable PRFs. In particular, we give a simulation-based definition that is adapted from [8].

Definition 6. A programmable function is a tuple (Setup, KeyGen, Eval, Program, PEval) of efficient algorithms having the following interfaces (where the domain \mathcal{X} and range \mathcal{Y} may depend on the security parameter):

- Setup $\left(1^{\lambda}, 1^{k}\right)$, given the security parameter λ and a number k of programmable inputs, outputs public parameters pp.
- KeyGen $(p p)$, given the public parameters pp, outputs a master secret key msk.
- $\operatorname{Eval}(p p, m s k, x)$, given the master secret key and an input $x \in \mathcal{X}$, outputs some $y \in \mathcal{Y}$.
- Program $\left(p p, m s k, \mathcal{P}=\left\{\left(x_{i}, y_{i}\right)\right\}\right)$, given the master secret key msk and k pairs $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}$ for distinct x_{i}, outputs a programmed key $s k_{\mathcal{P}}$.
- PEval $\left(p p, s k_{\mathcal{P}}, x\right)$, given a programmed key $s k_{\mathcal{P}}$ and an input $x \in \mathcal{X}$, outputs some $y \in \mathcal{Y}$.

We now give several definitions that capture various functionality and security properties for programmable functions. We start with the following correctness property for programmed inputs.
Definition 7. A programmable function is statistically programmable if for all $\lambda, k=\operatorname{poly}(\lambda) \in \mathbb{N}$, all sets of k pairs $\mathcal{P}=\left\{\left(x_{i}, y_{i}\right)\right\} \subseteq \mathcal{X} \times \mathcal{Y}$ (with distinct $\left.x_{i}\right)$, and all $i \in[k]$ we have

$$
\begin{equation*}
\underset{\substack{p p \leftarrow \operatorname{Setup}\left(1^{\lambda}, 1^{\text {k }}\right) \\ m s k \leftarrow \operatorname{KeyGen}(p p) \\ s k_{\mathcal{P}} \leftarrow \operatorname{Program}(p p, m s k, \mathcal{P})}}{\operatorname{Pr}\left(\operatorname{PEval}\left(p p, s k_{\mathcal{P}}, x_{i}\right) \neq y_{i}\right]=\operatorname{negl}(\lambda) .} \tag{54}
\end{equation*}
$$

We now define a notion of weak simulation security, in which the adversary names the inputs at which the function is programmed, but the outputs are chosen at random (and not revealed to the adversary). As before, we always assume without loss of generality that the adversary never queries the same input x more than once in the various experiments we define.

Definition 8. A programmable function is weakly simulation secure if there is a PPT simulator \mathcal{S} such that for any PPT adversary \mathcal{A} and any polynomial $k=k(\lambda)$,

$$
\begin{equation*}
\left\{\operatorname{RealWeakPPRF}_{\mathcal{A}}\left(1^{\lambda}, 1^{k}\right)\right\}_{\lambda \in \mathbb{N}} \stackrel{c}{\approx}\left\{\operatorname{IdealWeakPPRF}_{\mathcal{A}, \mathcal{S}}\left(1^{\lambda}, 1^{k}\right)\right\}_{\lambda \in \mathbb{N}} \tag{55}
\end{equation*}
$$

where RealWeakPPRF and IdealWeakPPRF are the respective views of \mathcal{A} in the procedures defined in Fig. 3.

```
procedure RealWeakPPRF
```

procedure RealWeakPPRF
{\mp@subsup{x}{i}{}\mp@subsup{}}{i\in[k]}{}\leftarrow\mathcal{A}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k})
{\mp@subsup{x}{i}{}\mp@subsup{}}{i\in[k]}{}\leftarrow\mathcal{A}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k})
{\mp@subsup{y}{i}{}\mp@subsup{}}{i\in[k]}{*}\leftarrow\mathcal{Y}
{\mp@subsup{y}{i}{}\mp@subsup{}}{i\in[k]}{*}\leftarrow\mathcal{Y}
pp\leftarrow\operatorname{Setup}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k})
pp\leftarrow\operatorname{Setup}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k})
msk}\leftarrow\operatorname{KeyGen(pp)
msk}\leftarrow\operatorname{KeyGen(pp)
sk}
sk}
Program(pp,msk, {(xi, yi)})
Program(pp,msk, {(xi, yi)})
(pp,sk)->\mathcal{A}
(pp,sk)->\mathcal{A}
repeat
repeat
x\leftarrow\mathcal{A}
x\leftarrow\mathcal{A}
Eval(pp,msk,x)->\mathcal{A}
Eval(pp,msk,x)->\mathcal{A}
until }\mathcal{A}\mathrm{ halts

```
    until }\mathcal{A}\mathrm{ halts
```

(a) The real experiment
procedure
IdealWeakPPRF $\mathcal{A}_{\mathcal{A}, \mathcal{S}}\left(1^{\lambda}, 1^{k}\right)$
$\left\{x_{i}\right\}_{i \in[k]} \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{k}\right)$
$(p p, s k) \leftarrow \mathcal{S}\left(1^{\lambda}, 1^{k}\right)$
$(p p, s k) \rightarrow \mathcal{A}$
repeat
$x \leftarrow \mathcal{A}$ if $x \notin\left\{x_{i}\right\}$ then $\operatorname{PEval}(p p, s k, x) \rightarrow \mathcal{A}$
else
$y \leftarrow \mathcal{Y} ; y \rightarrow \mathcal{A}$
until \mathcal{A} halts
(b) The ideal experiment

Fig. 3. The (weak) real and ideal experiments.

Similarly to Definition 4, the above definition simultaneously captures privacy of the programmed inputs given the programmed key, pseudorandomness on those inputs, and correctness of PEval on non-programmed inputs.

Definition 9. A programmable function is a weak privately programmable PRF if it is statistically programmable (Definition 7) and weakly simulation secure (Definition 8).

We now define a notion of (non-weak) simulation security for programmable functions. This differs from the weak notion in that the adversary specifies the programmed inputs and corresponding outputs, and the simulator in the ideal game is also given these input-output pairs. The simulator needs this information because otherwise the adversary could trivially distinguish the real and ideal experiments by checking whether $\operatorname{PEval}\left(p p, s k_{\mathcal{P}}, x_{i}\right)=y_{i}$ for one of the programmed input-output pairs $\left(x_{i}, y_{i}\right)$. Simulation security itself therefore does not guarantee any privacy of the programmed inputs; below we give a separate simulation-based definition which does.

Definition 10. A programmable function is simulation secure if there is a PPT simulator \mathcal{S} such that for any PPT adversary \mathcal{A} and any polynomial $k=k(\lambda)$,

$$
\begin{equation*}
\left\{\operatorname{RealPPRF}_{\mathcal{A}}\left(1^{\lambda}, 1^{k}\right)\right\}_{\lambda \in \mathbb{N}} \stackrel{c}{\approx}\left\{\operatorname{IdeaIPPRF}_{\mathcal{A}, \mathcal{S}}\left(1^{\lambda}, 1^{k}\right)\right\}_{\lambda \in \mathbb{N}} \tag{56}
\end{equation*}
$$

where Real and Ideal are the respective views of \mathcal{A} in the procedures defined in Fig. 4.

We mention that a straightforward hybrid argument similar to one from [6] shows that simulation security implies that (KeyGen, Eval) is a pseudorandom function.

Finally, we define a notion of privacy for the programmed inputs. This says that a key programmed on adversarially chosen inputs and random corresponding outputs (that are not revealed to the adversary) does not reveal anything about the programmed inputs.

```
procedure RealPPRF
```

procedure RealPPRF
P}={(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})}\leftarrow\mathcal{A}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k}
P}={(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})}\leftarrow\mathcal{A}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k}
pp}\leftarrow\operatorname{Setup}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k}
pp}\leftarrow\operatorname{Setup}(\mp@subsup{1}{}{\lambda},\mp@subsup{1}{}{k}
msk}\leftarrow\operatorname{KeyGen (pp)
msk}\leftarrow\operatorname{KeyGen (pp)
sk}\mp@subsup{\mathcal{P}}{}{\leftarrow}\leftarrow\operatorname{Program}(pp,msk,\mathcal{P}
sk}\mp@subsup{\mathcal{P}}{}{\leftarrow}\leftarrow\operatorname{Program}(pp,msk,\mathcal{P}
(pp,s\mp@subsup{k}{\mathcal{P}}{})->\mathcal{A}
(pp,s\mp@subsup{k}{\mathcal{P}}{})->\mathcal{A}
repeat
repeat
x\leftarrow\mathcal{A}
x\leftarrow\mathcal{A}
Eval(pp,msk,x)->\mathcal{A}
Eval(pp,msk,x)->\mathcal{A}
until }\mathcal{A}\mathrm{ halts

```
    until }\mathcal{A}\mathrm{ halts
```

(a) The real experiment
procedure IdealPPRF $\mathcal{A}, \mathcal{S}\left(1^{\lambda}, 1^{k}\right)$
$\mathcal{P}=\left\{\left(x_{i}, y_{i}\right)\right\} \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{k}\right)$
$\left(p p, s k_{\mathcal{P}}\right) \leftarrow \mathcal{S}\left(1^{\lambda}, \mathcal{P}\right)$
$\left(p p, s k_{\mathcal{P}}\right) \rightarrow \mathcal{A}$
repeat
$x \leftarrow \mathcal{A}$
if $x \notin\left\{x_{i}\right\}$ then
$\operatorname{PEval}\left(p p, s k_{\mathcal{P}}, x\right) \rightarrow \mathcal{A}$
else

$$
y \leftarrow \mathcal{Y} ; y \rightarrow \mathcal{A}
$$

until \mathcal{A} halt
(b) The ideal experiment

Fig. 4. The real and ideal experiments

```
procedure
RealPPRFPrivacy \(\mathcal{A}_{\mathcal{A}}\left(1^{\lambda}, 1^{k}\right)\)
    \(\left\{x_{i}\right\}_{i \in[k]} \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{k}\right) \quad\) procedure
    \(\left\{y_{i}\right\}_{i \in[k]} \leftarrow \mathcal{Y}\)
    \(p p \leftarrow \operatorname{Setup}\left(1^{\lambda}, 1^{k}\right)\)
    \(m s k \leftarrow \operatorname{KeyGen}(p p)\)
    \(s k \quad \leftarrow\)
\(\operatorname{Program}\left(p p, m s k,\left\{\left(x_{i}, y_{i}\right)\right\}\right)\)
    \((p p, s k) \rightarrow \mathcal{A}\)
    IdealPPRFPrivacy \(_{\mathcal{A}, \mathcal{S}}\left(1^{\lambda}, 1^{k}\right)\)
    \(\left\{x_{i}\right\}_{i \in[k]} \leftarrow \mathcal{A}\left(1^{\lambda}, 1^{k}\right)\)
    \((p p, s k) \leftarrow \mathcal{S}\left(1^{\lambda}, 1^{k}\right)\)
    \((p p, s k) \rightarrow \mathcal{A}\)
```

(a) The real experiment

Fig. 5. The real and ideal privacy experiments

Definition 11. A programmable function is privately programmable if there is a PPT simulator \mathcal{S} such that for any PPT adversary \mathcal{A} and any polynomial $k=k(\lambda)$,

$$
\begin{equation*}
\left\{\text { RealPPRFPrivacy }_{\mathcal{A}}\left(1^{\lambda}, 1^{k}\right)\right\}_{\lambda \in \mathbb{N}} \stackrel{c}{\approx}\left\{\text { IdealPPRFPrivacy }_{\mathcal{A}}\left(1^{\lambda}, 1^{k}\right)\right\}_{\lambda \in \mathbb{N}} \tag{57}
\end{equation*}
$$

where RealPPRFPrivacy and IdealPPRFPrivacy are the respective views of \mathcal{A} in the procedures defined in Fig. 5.

We now give our main security definition for PP-PRFs.
Definition 12. A programmable function is a privately programmable PRF if it is statistically programmable, simulation secure, and privately programmable.

5.2 From Weak PP-PRFs to PP-PRFs

In this section we describe a general construction of a privately programmable PRF from any weak privately programmable PRF. Let $\Pi^{\prime}=$ (Setup, KeyGen, Eval, Program, PEval) be a programmable function with domain \mathcal{X} and range \mathcal{Y}, where we assume that \mathcal{Y} is a finite additive group. The basic idea behind the construction is simple: define the function as the sum of two parallel copies of Π^{\prime}, and program it by programming the copies according to additive secret-sharings of the desired outputs. Each component is therefore programmed to uniformly random outputs, as required by weak simulation security.

Construction 3. We construct a programmable function Π as follows:

- Π.Setup $\left(1^{\lambda}, 1^{k}\right)$: generate $p p_{i} \leftarrow \Pi^{\prime} . \operatorname{Setup}\left(1^{\lambda}, 1^{k}\right)$ for $i=1,2$ and output $p p=\left(p p_{1}, p p_{2}\right)$.
$-\Pi . \operatorname{KeyGen}(p p)$: on input $p p=\left(p p_{1}, p p_{2}\right)$ generate $m s k_{i} \leftarrow \Pi^{\prime} . \operatorname{KeyGen}\left(p p_{i}\right)$ for $i=1,2$, and output $m s k=\left(m s k_{1}, m s k_{2}\right)$.
$-\Pi \cdot \operatorname{Eval}(p p, m s k, x):$ on input $p p=\left(p p_{1}, p p_{2}\right), m s k=\left(m s k_{1}, m s k_{2}\right)$, and $x \in$ \mathcal{X} output

$$
\Pi^{\prime} . \operatorname{Eval}\left(p p_{1}, m s k_{1}, x\right)+\Pi^{\prime} . \operatorname{Eval}\left(p p_{2}, m s k_{2}, x\right)
$$

- Π. Program $(p p, m s k, \mathcal{P}):$ on input $p p=\left(p p_{1}, p p_{2}\right), m s k=\left(m s k_{1}, m s k_{2}\right), k$ pairs $\left(x_{i}, y_{i}\right) \subset \mathcal{X} \times \mathcal{Y}$, first sample uniformly random $r_{i} \leftarrow \mathcal{Y}$ for $i \in[k]$, then output $s k_{\mathcal{P}}=\left(s k_{1}, s k_{2}\right)$ where

$$
\begin{align*}
& s k_{1} \leftarrow \Pi^{\prime} . \operatorname{Program}\left(p p_{1}, m s k_{1}, \mathcal{P}_{1}=\left\{\left(x_{i}, r_{i}\right)\right\}\right) \tag{58}\\
& s k_{2} \leftarrow \Pi^{\prime} . \operatorname{Program}\left(p p_{2}, m s k_{2}, \mathcal{P}_{2}=\left\{\left(x_{i}, y_{i}-r_{i}\right)\right\}\right) . \tag{59}
\end{align*}
$$

- $\Pi \cdot \operatorname{PEval}\left(p p, s k_{\mathcal{P}}, x\right):$ on input $p p=\left(p p_{1}, p p_{2}\right), s k_{\mathcal{P}}=\left(s k_{1}, s k_{2}\right)$, and $x \in \mathcal{X}$ output

$$
\Pi^{\prime} . \operatorname{PEval}\left(p p_{1}, s k_{1}, x\right)+\Pi^{\prime} . \operatorname{PEval}\left(p p_{2}, s k_{2}, x\right)
$$

Theorem 2. If Π^{\prime} is a weak privately programmable PRF then Construction 3 is a privately programmable PRF.

Proof. This follows directly from Theorems 3 and 4, which respectively prove the simulation security and private programmability of Construction 3, and from the statistical programmability of Π^{\prime}, which obviously implies the statistical programmability of Construction 3.

Theorem 3. If Π^{\prime} is a weak privately programmable PRF then Π is simulation secure.

Due to space constraints, the (straightforward) proof of Theorem 3 is deferred to the full version.

Theorem 4. If Π^{\prime} is weakly simulation secure then Π is privately programmable.

Proof. Let \mathcal{S}^{\prime} be the simulator algorithm for the weak simulation security of Π^{\prime}. Our simulator $\mathcal{S}\left(1^{\lambda}, 1^{k}\right)$ for the private programmability of Π simply generates $\left(p p_{i}, s k_{i}\right) \leftarrow \mathcal{S}^{\prime}\left(1^{\lambda}, 1^{k}\right)$ for $i=1,2$ and outputs $\left(p p=\left(p p_{1}, p p_{2}\right), s k=\left(s k_{1}, s k_{2}\right)\right)$. To show that \mathcal{S} satisfies Definition 12 we define the following hybrids and show that they are indistinguishable.

Hybrid H_{0} : This is the experiment RealPPRFPrivacy $\mathcal{A}_{\mathcal{A}}$ from Fig. 5.
Hybrid H_{1} : This experiment is the same as the previous one, except that we generate $\left(p p_{1}, s k_{1}\right) \leftarrow \mathcal{S}^{\prime}\left(1^{\lambda}, 1^{k}\right)$.
Hybrid H_{2} : This experiment is the same as the previous one, except that we generate $\left(p p_{2}, s k_{2}\right) \leftarrow \mathcal{S}^{\prime}\left(1^{\lambda}, 1^{k}\right)$. Observe that this experiment is identical to the experiment IdeaIPPRFPrivacy \mathcal{A}, \mathcal{S} from Fig. 5 .

Claim 11. We have $H_{0} \stackrel{c}{\approx} H_{1}$.
Proof. Let \mathcal{A} be an adversary attempting to distinguish H_{0} and H_{1}. We build an adversary \mathcal{A}^{\prime} against the weak simulation security of Π^{\prime}, which runs \mathcal{A} internally. When \mathcal{A} outputs $\left\{x_{i}\right\}, \mathcal{A}^{\prime}$ also outputs $\left\{x_{i}\right\}$, receiving $\left(p p_{1}, s k_{1}\right)$ in response. Then \mathcal{A}^{\prime} generates $p p_{2} \leftarrow \Pi^{\prime} \cdot \operatorname{Setup}\left(1^{\lambda}, 1^{k}\right)$ and $m s k_{2} \leftarrow \Pi^{\prime} . \operatorname{KeyGen}\left(p p_{2}\right)$, and chooses uniformly random $r_{i} \leftarrow \mathcal{Y}$ for $i \in[k]$. It then generates
$s k_{2} \leftarrow \Pi^{\prime}$. Program $\left(p p_{2}, m s k_{2},\left\{\left(x_{i}, r_{i}\right)\right\}\right)$. Finally it gives $\left(p p=\left(p p_{1}, p p_{2}\right), s k=\right.$ $\left.\left(s k_{1}, s k_{2}\right)\right)$ to \mathcal{A}. It is straightforward to see that if \mathcal{A}^{\prime} is in RealWeakPPRF (respectively, IdealWeakPPRF) then the view of \mathcal{A} is identical to its view H_{0} (resp., H_{1}). So by weak simulation security of Π^{\prime}, we have $H_{0} \stackrel{c}{\approx} H_{1}$.

Claim 12. We have $H_{1} \stackrel{c}{\approx} H_{2}$.
Proof. This is entirely symmetrical to the proof of Claim 11, so we omit it.
This completes the proof of Theorem 4.

5.3 Construction of Weak Privately Programmable PRFs

In this section we construct a weak privately programmable PRF from our shiftable function of Sect. 3. We first define the auxiliary function that the construction will use. For $\left\{\left(x_{i}, \mathbf{y}_{i}\right)\right\}_{i \in[k]} \subset\{0,1\}^{\ell} \times \mathbb{Z}_{q}^{m}$ where the x_{i} are distinct, define the function $H_{\left\{\left(x_{i}, \mathbf{w}_{i}\right)\right\}_{i \in[k]}}:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}^{m}$ as

$$
H_{\left\{\left(x_{i}, \mathbf{w}_{i}\right)\right\}_{i \in[k]}}(x) \begin{cases}\mathbf{w}_{i} & \text { if } x=x_{i} \text { for some } i \tag{60}\\ \mathbf{0} & \text { otherwise }\end{cases}
$$

Notice that the circuit size of $H_{\left\{\left(x_{i}, \mathbf{w}_{i}\right)\right\}_{i \in[k]}}$ is upper bounded by some $\sigma^{\prime}=$ $\operatorname{poly}(n, k, \log q)$.

Construction 4. Our weak privately programmable PRF with input space $\mathcal{X}=\{0,1\}^{\ell}$ and output space $\mathcal{Y}=\mathbb{Z}_{p}^{m}$ uses the SHSF from Sect. 3 with parameters q, B chosen as in Sect.3.4, and is defined as follows:
$-\operatorname{Setup}\left(1^{\lambda}, 1^{k}\right)$: Output $p p \leftarrow \operatorname{SHSF}$.Setup $\left(1^{\lambda}, 1^{\sigma^{\prime}}\right)$.

- KeyGen $(p p)$: Output $m s k \leftarrow \operatorname{SHSF}$.KeyGen $(p p)$.
- $\operatorname{Eval}\left(p p, m s k, x \in\{0,1\}^{\ell}\right)$: Compute $\mathbf{y}_{x}=\operatorname{SHSF} . \operatorname{Eval}(p p, m s k, x)$ and output $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$.
- Program $(p p, m s k, \mathcal{P})$: Given k pairs $\left(x_{i}, \mathbf{y}_{i}\right) \in\{0,1\}^{\ell} \times \mathbb{Z}_{p}^{m}$ where the x_{i} are distinct, for each $i \in[k]$ compute \mathbf{w}_{i} as follows: choose $\mathbf{y}_{i}^{\prime} \leftarrow \mathbb{Z}_{q}^{m}$ uniformly at random conditioned on $\left\lfloor\mathbf{y}_{i}^{\prime}\right\rceil_{p}=\mathbf{y}_{i}$, and set

$$
\begin{equation*}
\mathbf{w}_{i}=\mathbf{y}_{i}^{\prime}-\operatorname{SHSF} . \operatorname{Eval}\left(p p, m s k, x_{i}\right) \tag{61}
\end{equation*}
$$

Output $s k_{\mathcal{P}} \leftarrow \operatorname{SHSF}$.Shift $\left(p p, m s k, H_{\left\{\left(x_{i}, \mathbf{w}_{i}\right)\right\}}\right)$.
$-\operatorname{PEval}\left(p p, s k_{\mathcal{P}}, x\right)$: output $\left.\operatorname{SHSF} . \operatorname{SEval}\left(p p, s k_{\mathcal{P}}, x\right)\right\rceil_{p}$.

5.4 Security Proof

Theorem 5. Construction 4 is a weak privately programmable PRF (Definition 9) assuming the hardness of $\mathrm{LWE}_{n-1, q, \chi}$ and $1 D-R-S I S_{\left(z \sigma^{\prime}+\tau+1\right) m, p, q, B}$ (where z, τ are respectively the lengths of fresh GSW ciphertexts and secret keys as used in SHSF) and the CPA security of the GSW encryption scheme.

Proof. The proof follows immediately by Theorems 6 and 7 below.
Theorem 6. Assuming the hardness of $\operatorname{LWE}_{n-1, q, \chi}$ and $1 D-R-$ SIS $S_{\left(z \sigma^{\prime}+\tau+1\right) m, p, q, B}$ and the CPA security of the GSW encryption scheme, Construction 4 is weakly simulation secure.

Proof. Our simulator $\mathcal{S}\left(1^{\lambda}, 1^{k}\right)$ for Construction 4 simply outputs $(p p, s k) \leftarrow$ SHSF. $\mathcal{S}\left(1^{\lambda}, 1^{\sigma^{\prime}}\right)$. Let \mathcal{A} be any polynomial-time adversary. To show that \mathcal{S} satisfies Definition 10 we define a sequence of hybrid experiments and show that they are indistinguishable.

Hybrid H_{0} : This is the simulated experiment IdealWeakPPRF \mathcal{A}, \mathcal{S} (Fig. 3).
Hybrid H_{1} : This is the same as the previous experiment, except that on query $x \in\left\{x_{i}\right\}$, instead of returning a uniformly random value from \mathbb{Z}_{p}^{m}, we choose $\mathbf{y}_{x} \leftarrow \mathbb{Z}_{q}^{m}$ and output $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$.
Hybrid H_{2} : This is the same as the previous experiment, except that we abort if the event Borderline happens, where Borderline is as in Definition 5.
Hybrid H_{3} : This is the same as the previous experiment, except that we initially choose uniformly random $\mathbf{w}_{i}^{\prime} \leftarrow \mathbb{Z}_{q}^{m}$ for $i \in[k]$ and change how queries for $x \in\left\{x_{i}\right\}$ are answered (the "else" clause in IdealWeakPPRF $\mathcal{A}, \mathcal{S}^{\text {}}$): for $x=x_{j}$, we answer as $\left\lfloor\mathbf{y}_{x}\right\rceil_{p}$, where

$$
\begin{equation*}
\mathbf{y}_{x}=\operatorname{SHSF} . \operatorname{SEval}(p p, s k, x)-\mathbf{w}_{j}^{\prime} . \tag{62}
\end{equation*}
$$

Hybrid H_{4} : This is the same as the previous experiment, except that we generate $p p$ and $s k$ as follows: we generate $p p \leftarrow \operatorname{Setup}\left(1^{\lambda}, 1^{k}\right)$, $m s k \leftarrow \operatorname{KeyGen}(p p)$ and $s k \leftarrow \operatorname{SHSF} . \operatorname{Shift}\left(p p, m s k, H_{\left\{\left(x_{i}, \mathbf{w}_{i}^{\prime}\right)\right\}}\right)$.
Hybrid H_{5} : This is the same as the previous experiment, except that we answer all queries as in the Eval algorithm, i.e., we output

$$
\begin{equation*}
\lfloor\operatorname{SHSF} . \operatorname{Eval}(p p, m s k, x)\rceil_{p} . \tag{63}
\end{equation*}
$$

Hybrid H_{6} : This is the same as the previous experiment, except that here we generate $s k$ as in the real game. Specifically, for each $i \in[k]$ we choose a uniformly random vector $\mathbf{y}_{i} \leftarrow \mathbb{Z}_{p}^{m}$ and uniformly random $\mathbf{y}_{i}^{\prime} \leftarrow \mathbb{Z}_{q}^{m}$ conditioned on $\left\lfloor\mathbf{y}_{i}^{\prime}\right\rceil_{p}=\mathbf{y}_{i}$, and then set

$$
\begin{equation*}
\mathbf{w}_{i}=\mathbf{y}_{i}^{\prime}-\operatorname{SHSF} . \operatorname{Eval}(p p, m s k, x) \tag{64}
\end{equation*}
$$

We then set $s k \leftarrow \operatorname{SHSF}$.Shift $\left(p p, m s k, H_{\left\{\left(x_{i}, \mathbf{w}_{i}\right)\right\}}\right)$.
Hybrid H_{7} : This is the same as the previous experiment, except that we no longer abort when Borderline happens. Observe that this is the real experiment IdealRealPPRF $\mathcal{A}_{\mathcal{A}}$ (Fig. 3).

The proofs of indistinguishability (either computational or statistical) for adjacent hybrids are straightforward, and are deferred to the full version for lack of space.

Theorem 7. Construction 4 is statistically programmable.

Proof. Fix any $\mathcal{P}=\left\{\left(x_{i}, \mathbf{y}_{i}\right)\right\}_{i \in[k]} \subset \mathcal{X} \times \mathcal{Y}$. We need to show that for any $i \in[k]$,

$$
\begin{equation*}
\underset{\substack{p p \leftarrow \operatorname{Setup}\left(1^{\lambda}, 1^{k}\right) \\ m s k \leftarrow \operatorname{KeyGen}(p p) \\ s k_{\mathcal{P}} \leftarrow \operatorname{Program}(p p, m s k, \mathcal{P})}}{\operatorname{Pr}}\left[\left|\operatorname{SHSF} . \operatorname{SEval}\left(p p, s k_{\mathcal{P}}, x_{i}\right)\right|_{p} \neq \mathbf{y}_{i}\right]=\operatorname{negl}(\lambda) . \tag{65}
\end{equation*}
$$

By Lemma 3 we have

$$
\begin{aligned}
\operatorname{SHSF} . \operatorname{SEval}\left(p p, s k_{\mathcal{P}}, x_{i}\right) & \approx \operatorname{SHSF} . \operatorname{Eval}\left(p p, m s k, x_{i}\right)+H_{\left\{\left(x_{i}, \mathbf{w}_{i}\right)\right\}}\left(x_{i}\right) \\
& =\operatorname{SHSF} . E v a l\left(p p, m s k, x_{i}\right)+\mathbf{w}_{i} \\
& =\mathbf{y}_{i}^{\prime},
\end{aligned}
$$

where the approximation hides some B-bounded error and the last equality holds because $\mathbf{w}_{i}=\mathbf{y}_{i}^{\prime}-\operatorname{SHSF} . \operatorname{Eval}\left(p p, m s k, x_{i}\right)$. Because \mathbf{y}_{i}^{\prime} is chosen uniformly at random such that $\left\lfloor\mathbf{y}_{i}^{\prime}\right\rceil_{p}=\mathbf{y}_{i}$, the probability that some coordinate of $\operatorname{SHSF} . \operatorname{SEval}\left(p p, s k_{\mathcal{P}}, x_{i}\right)$ is in $\frac{q}{p}\left(\mathbb{Z}+\frac{1}{2}\right)+[-B, B]$ is at most $2 m B p / q=\operatorname{negl}(\lambda)$, which establishes Eq. (65).

References

1. Ajtai, M.: Generating hard instances of lattice problems. Quaderni di Matematica 13, 1-32 (2004). Preliminary version in STOC 1996
2. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353-370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-443712_20
3. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719-737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-290114_42
4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1-6:48 (2012). Preliminary version in CRYPTO 2001
5. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533-556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
6. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 415-445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15
7. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410-428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23
8. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494-524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17
9. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280-300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-420450_15
10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337-367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501-519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC, pp. 575-584 (2013)
13. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private Constrained PRFs (and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264-302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
14. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1-30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
15. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC ${ }^{1}$ from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 446-476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16
16. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC, pp. 1115-1127 (2016)
17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40-49 (2013)
18. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75-92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792-807 (1986). Preliminary version in FOCS 1984
20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503-523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-480007_25
21. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC, pp. 469-477 (2015)
22. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: CCS, pp. 669-684 (2013)
23. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503-536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_17
24. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700-718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-290114_41
25. Regev, D.M.O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267-302 (2007). Preliminary version in FOCS 2004
26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333-342 (2009)
27. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE for any ring and modulus. In: STOC, pp. 461-473 (2017)
28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1-40 (2009). Preliminary version in STOC 2005

[^0]: C. Peikert-This material is based upon work supported by the National Science Foundation under CAREER Award CCF-1054495 and CNS-1606362. The views expressed are those of the authors and do not necessarily reflect the off or position of the National Science Foundation or the Sloan Foundation.

[^1]: ${ }^{1}$ Our construction was actually developed independently of [13], though not concurrently; we were unaware of its earlier non-public versions.

[^2]: ${ }^{2}$ This property is obtained by composing homomorphic addition and multiplication of G-multiples; the extra 1 attached to x is needed to support NOT gates.
 ${ }^{3}$ We stress that LinEval does not need to know \mathbf{k}, which we view as representing a secret linear function that is hidden by \mathbf{C}.

