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Abstract. Constrained pseudorandom functions allow for delegating
“constrained” secret keys that let one compute the function at certain
authorized inputs—as specified by a constraining predicate—while keep-
ing the function value at unauthorized inputs pseudorandom. In the
constraint-hiding variant, the constrained key hides the predicate. On
top of this, programmable variants allow the delegator to explicitly set
the output values yielded by the delegated key for a particular set of
unauthorized inputs.

Recent years have seen rapid progress on applications and construc-
tions of these objects for progressively richer constraint classes, result-
ing most recently in constraint-hiding constrained PRFs for arbitrary
polynomial-time constraints from Learning With Errors (LWE) [Braker-
ski, Tsabary, Vaikuntanathan, and Wee, TCC’17], and privately pro-
grammable PRFs from indistinguishability obfuscation (iO) [Boneh,
Lewi, and Wu, PKC’17].

In this work we give a unified approach for constructing both of the
above kinds of PRFs from LWE with subexponential exp(nε) approxi-
mation factors. Our constructions follow straightforwardly from a new
notion we call a shift-hiding shiftable function, which allows for deriving
a key for the sum of the original function and any desired hidden shift
function. In particular, we obtain the first privately programmable PRFs
from non-iO assumptions.

1 Introduction

Since the introduction of pseudorandom functions (PRFs) more than thirty years
ago by Goldreich et al. [19], many variants of this fundamental primitive have
been proposed. For example, constrained PRFs (also known as delegatable or
functional PRFs) [9,11,22] allow issuing “constrained” keys which can be used
to evaluate the PRF on an “authorized” subset of the domain, while preserving
the pseudorandomness of the PRF values on the remaining unauthorized inputs.

Assuming the existence of one-way functions, constrained PRFs were first
constructed for the class of prefix-fixing constraints, i.e., the constrained
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key allows evaluating the PRF on inputs which start with a specified bit
string [9,11,22]. Subsequently, by building on a sequence of works [2,3,7] that
gave PRFs from the Learning With Errors (LWE) problem [28], Brakerski and
Vaikuntanathan [14] constructed constrained PRFs where the set of authorized
inputs can be specified by an arbitrary polynomial-time predicate, although for
a weaker security notion that allows the attacker to obtain only a single con-
strained key and function value.

In the original notion of constrained PRF, the constrained key may reveal
the constraint itself. Boneh et al. [8] proposed a stronger variant in which the
constraint is hidden, calling them privately constrained PRFs—also known as
constraint-hiding constrained PRFs (CHC-PRFs)—and gave several compelling
applications, like searchable symmetric encryption, watermarking PRFs, and
function secret sharing [10]. They also constructed CHC-PRFs for arbitrary
polynomial-time constraining functions under the strong assumption that indis-
tinguishability obfuscation (iO) exists [4,17]. Soon after, CHC-PRFs for various
constraint classes were constructed from more standard LWE assumptions:

– Boneh et al. [6] constructed them for the class of point-function constraints
(i.e., all but one input is authorized).

– Thorough a different approach, Canetti and Chen [15] constructed them for
constraints in NC1, i.e., polynomial-size formulas.

– Most recently, Brakerski et al. [13] improved on the construction from [6] to
support arbitrary polynomial-size constraints.

All these constructions have a somewhat weaker security guarantee compared
to the iO-based construction of [8], namely, the adversary gets just one con-
strained key (but an unbounded number of function values), whereas in [8] it
can get unboundedly many constrained keys. Indeed, this restriction reflects a
fundamental barrier: CHC-PRFs that are secure for even two constrained keys
(for arbitrary constraining functions) imply iO [15].

Boneh et al. [8] also defined and constructed what they call privately pro-
grammable PRFs (PP-PRFs), which are CHC-PRFs for the class of point func-
tions along with an additional programmability property: when deriving a con-
strained key, one can specify the outputs the key yields at the unauthorized
points. They showed how to use PP-PRFs to build watermarking PRFs, a
notion defined in [16]. While the PP-PRF and resulting watermarking PRF
from [8] were based on indistinguishability obfuscation, Kim and Wu [23] later
constructed watermarking PRFs from LWE, but via a different route that does
not require PP-PRFs. To date, it has remained an open question whether PP-
PRFs exist based on more standard (non-iO) assumptions.

1.1 Our Results

Our main contribution is a unified approach for constructing both constraint-
hiding constrained PRFs for arbitrary polynomial-time constraints, and privately
programmable PRFs, from LWE with subexponential exp(nε) approximation
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factors (i.e., inverse error rates), for any constant ε > 0. Both objects follow
straightforwardly from a single LWE-based construction that we call a shift-
hiding shiftable function (SHSF). Essentially, an SHSF allows for deriving a
“shifted” key for a desired shift function, which remains hidden. The shifted key
allows one to evaluate the sum of the original function and the shift function.
We construct CHC-PRFs and PP-PRFs very simply by using an appropriate
shift function, which is zero at authorized inputs, and either pseudorandom or
programmed at unauthorized inputs.

CHC-PRFs. In comparison with [13], while we achieve the same ultimate result
of CHC-PRFs for arbitrary constraints (with essentially the same efficiency met-
rics), our construction is more modular and arguably a good deal simpler.1

Specifically, our SHSF construction uses just a few well-worn techniques from
the literature on LWE-based fully homomorphic and attribute-based cryptogra-
phy [5,18,20,21], and we get a CHC-PRF by invoking our SHSF with an arbi-
trary PRF as the shift function. By contrast, the construction from [13] melds
the FHE/ABE techniques with a specific LWE-based PRF [2], and involves a
handful of ad-hoc techniques to deal with various technical complications that
arise.

PP-PRFs. Our approach also yields the first privately programmable PRFs
from LWE, or indeed, any non-iO assumption. In fact, our PP-PRF allows for
programming any polynomial number of inputs. Previously, the only potential
approach for constructing PP-PRFs without iO [23] was from CHC-PRFs having
certain extra properties (which constructions prior to our work did not possess),
and was limited to programming only a logarithmic number of inputs.

1.2 Techniques

As mentioned above, the main ingredient in our constructions is what we call
a shift-hiding shiftable function (SHSF). We briefly describe its properties. We
have a keyed function Eval : K × X → Y, where Y is some finite additive group,
and an algorithm Shift(·, ·) to derive shifted keys. Given a secret key msk ∈ K
and a function H : X → Y, we can derive a shifted key skH ← Shift(msk,H).
This key has the following two main properties:

– skH hides the shifting function H, and
– given skH we can compute an approximation of Eval(msk, ·) + H(·) at any

input, i.e., there exists a “shifted evaluation” algorithm SEval such that for
every x ∈ X ,

SEval(skH , x) ≈ Eval(msk, x) + H(x). (1)

We emphasize that the SHSF itself does not have any pseudorandomness prop-
erty; this will come from “rounding” the function in our PRF constructions,
described next.
1 Our construction was actually developed independently of [13], though not concur-

rently; we were unaware of its earlier non-public versions.
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CHC-PRFs and PP-PRFs. We first briefly outline how we use SHSFs to con-
struct CHC-PRFs and PP-PRFs. To construct a CHC-PRF we instantiate the
SHSF with range Y = Z

m
q for an appropriately chosen q. The CHC-PRF key is

just a SHSF master key msk.

– To evaluate on an input x ∈ X using msk we output �Eval(msk, x)�p, where
�·�p denotes (coordinate-wise) “rounding” from Zq to Zp for some appropriate
p � q.

– To generate a constrained key for a constraint circuit C : X → {0, 1}, we
sample a key k for an ordinary PRF F , define the shift function HC,k(x) :=
C(x) · Fk(x), and output the shifted key

skC ← Shift(msk,HC,k).

Since Shift hides the circuit HC,k, it follows that skC hides C.
– To evaluate on an input x using the constrained key skC , we output

�SEval(skC , x)�p.

Observe that for authorized inputs x (where C(x) = 0), we have HC,k(x) =
0, so SEval(skC , x) ≈ Eval(msk, x) and therefore their rounded counterparts
are equal with high probability. (This relies on the additional property that
Eval(msk, x) is not to close to a “rounding border.”) For unauthorized points x
(where C(x) = 1), to see that the CHC-PRF output is pseudorandom given skC ,
notice that by Eq. (1), the output is (with high probability)

�Eval(msk, x)�p = �SEval(skC , x) − H(x)�p. (2)

Because F is a pseudorandom function, H(x) = Fk(x) completely “randomizes”
the right-hand side above.

Turning now to PP-PRFs, for simplicity consider the case where we want to
program the constrained key at a single input x∗ (generalizing to polynomially
many inputs is straightforward). A first idea is to use the same algorithms as in
the above CHC-PRF, except that to program a key to output y at input x∗ we
define the shift function

Hx∗,y(x) =

{
y′ − Eval(msk, x∗) if x = x∗,
0 otherwise,

(3)

where y′ ∈ Z
m
q is chosen uniformly conditioned on �y′�p = y. As before, the

programmed key is just the shifted key skx∗,y ← Shift(msk,Hx∗,y). By Eq. (1),
evaluating on the unauthorized input x∗ using skx∗,y indeed yields �y′�p = y.
However, it is unclear whether the true (non-programmed) value of the function
at the unauthorized input x = x∗ is pseudorandom given skx∗,y: in particular,
because y is chosen by the adversary, y′ ∈ Z

m
q may not be uniformly random.

To address this issue, we observe that the above construction satisfies a
weaker pseudorandomness guarantee: if the adversary does not specify y but
instead y is uniformly random, then by Eq. (2) the PP-PRF is pseudorandom
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at x∗. This observation leads us to our actual PP-PRF construction: we instan-
tiate two of the above “weak” PP-PRFs with keys msk1 and msk2. To gen-
erate a programmed key for input x∗ and output y, we first generate random
additive shares y1, y2 such that y = y1 + y2, and output the programmed key
skx∗,y := (skx∗,y1 , skx∗,y2) where skx∗,yi

← Shift(mski,Hx∗,yi
) for i = 1, 2. Each

evaluation algorithm (ordinary and programmed) is then defined simply as the
sum of the corresponding evaluation algorithm from the “weak” construction
using the two component keys. Because both programmed keys are generated
for random target outputs yi, we can prove pseudorandomness of the real func-
tion value.

Constructing SHSFs. We now give an overview of our construction of shift-hiding
shifted functions. For simplicity, suppose the range of the functions is Y = Zq;
extending this to Z

m
q (as in our actual constructions) is straightforward. As in

[6,23] our main tools are the “gadget-matrix homomorphisms” developed in the
literature on fully homomorphic and attribute-based cryptography [5,18,20,21].

At a high level, our SHSF works as follows. The master secret key is just
an LWE secret s whose first coordinate is 1. A shifted key for a shift func-
tion H : X → Zq consists of LWE vectors (using secret s) relative to some public
matrices that have been “shifted” by multiples of the gadget matrix G [24];
more specifically, the multiples are the bits of FHE ciphertexts encrypting H,
and the Zq-entries of the FHE secret key sk. To compute the shifted function
on an input x, we do the following:

1. Using the gadget homomorphisms for boolean gates [5,18] on the LWE vec-
tors corresponding to the FHE encryption of H, we compute LWE vectors
relative to some publicly computable matrices, shifted by multiples of G cor-
responding to the bits of an FHE ciphertext encrypting H(x).

2. Then, using the gadget homomorphisms for hidden linear functions [20] with
the LWE vectors corresponding to the FHE secret key, we compute LWE
vectors relative to some publicly computable matrix Bx, but shifted by
(H(x) + e)G where H(x) + e ≈ H(x) ∈ Zq is the “noisy plaintext” aris-
ing as the inner product of the FHE ciphertext and secret key. Taking just
the first column, we therefore have an LWE sample relative to some vector
bx + (H(x) + e)u1, where u1 is the first standard basis (column) vector.

3. Finally, because the first coordinate of the LWE secret s is 1, the above LWE
sample is simply 〈s,bx〉 + H(x) + e ≈ 〈s,bx〉 + H(x) ∈ Zq.

With the above in mind, we then define the (unshifted) function itself on an
input x to simply compute bx from the public parameters as above, and output
〈s,bx〉. This yields Eq. (1).

2 Preliminaries

We denote row vectors by lower-case bold letters, e.g., a. We denote matrices by
upper-case bold letters, e.g., A. The Kronecker product A ⊗ B of two matrices
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(or vectors) A and B is obtained by replacing each entry ai,j of A with the block
ai,jB. The Kronecker product obeys the mixed-product property: (A ⊗ B)(C ⊗
D) = (AC) ⊗ (BD) for any matrices A,B,C,D with compatible dimensions.

2.1 Gadgets and Homomorphisms

Here we recall “gadgets” [24] over Zq and several of their homomorphic proper-
ties, some of which were implicit in [18], and which were developed and exploited
further in [5,20,21].

For an integer modulus q, the gadget (or powers-of-two) vector over Zq is
defined as

g = (1, 2, 4, . . . , 2�lg q�−1) ∈ Z
�lg q�
q . (4)

For every u ∈ Zq, there is an (efficiently computable) binary vector x ∈
{0, 1}�lg q� such that 〈g,x〉 = g · xt = u(mod q). Phrased differently,

(x ⊗ g) · rt = u(mod q) (5)

for a certain binary r ∈ {0, 1}�lg q�2 , namely, the one that selects all the products
of the corresponding entries of x and g.

The gadget matrix is defined as

Gn = In ⊗ g ∈ Z
n×m
q ,

where m = n�lg q�. We often drop the subscript n when it is clear from context.
We use algorithms BoolEval and LinEval, which have the following properties.

– BoolEval(C, x,A), given a boolean circuit C : {0, 1}� → {0, 1}k of depth d,
an x ∈ {0, 1}�, and some A ∈ Z

n×(�+1)m
q , outputs an integral matrix RC,x ∈

Z
(�+1)m×km with mO(d)-bounded entries for which

(A + (1, x) ⊗ G) · RC,x = AC + C(x) ⊗ G, (6)

where AC ∈ Z
n×m
q depends only on A and C (and not on x).2

– LinEval(x,C), given an x ∈ {0, 1}� and a matrix C ∈ Z
n×�m
q , outputs an

integral matrix Rx ∈ Z
2�m×m with poly(m, �)-bounded entries such that, for

all A,C ∈ Z
n×�m
q and k ∈ Z

�
q,

[A + x ⊗ G | C + k ⊗ G] · Rx = B + 〈x,k〉 · G, (7)

where B ∈ Z
n×m
q depends only on A and C (and not on x or k).3

More generally, for x ∈ {0, 1}k� by applying the above to the �-bit chunks
of x, in Eq. (7) we replace 〈x,k〉 · G = (x · kt) · G with (x · (Ik ⊗ kt)) ⊗ G,
and now Rx ∈ Z

(k+1)�m×km, A ∈ Z
n×k�m
q , and B ∈ Z

n×km
q .

2 This property is obtained by composing homomorphic addition and multiplication
of G-multiples; the extra 1 attached to x is needed to support NOT gates.

3 We stress that LinEval does not need to know k, which we view as representing a
secret linear function that is hidden by C.
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2.2 Fully Homomorphic Encryption

We use the GSW (leveled) fully homomorphic encryption scheme [18]
(KG,Enc,Eval), whose relevant properties for our needs are summarized as fol-
lows (we use only a symmetric-key version, which is sufficient for our purposes):

– KG(1λ, q), given a security parameter λ and a requested modulus q, outputs
a secret key k ∈ Z

τ
q (for some τ = poly(λ, log q)).

– Enc(k,m), given a secret key k and a message m ∈ {0, 1}, outputs a ciphertext
ct, which is a binary string.

– Eval(C, ct1, . . . , ct�), given a boolean circuit C : {0, 1}� → {0, 1} and cipher-
texts ct1, ct2, . . . , ct�, outputs a ciphertext ct ∈ {0, 1}τ�lg q�.

Notice that in the above definition there is no explicit decryption algorithm.
Instead we express the essential “noisy” linear relation between the result of
homomorphic evaluation and the secret key: for any k ← KG(1λ, q), any boolean
circuit C : {0, 1}� → {0, 1} of depth at most d, any messages mj ∈ {0, 1} and
ciphertexts ctj ← Enc(k,mj) for j = 1, . . . , �, we have

Eval(C, ct1, . . . , ct�) · (I�lgq� ⊗ kt) = C(m1, . . . , m�) ⊗ g + e(mod q) (8)

for some integral error vector e ∈ [−B,B]�lg q�, where B = λO(d). In other words,
multiplying (the τ -bit chunks of) the result of homomorphic evaluation with the
secret key yields a “noisy” version of a robust encoding of the result (where the
encoding is via the powers of two). While the robust encoding allows the noise
to be removed, we will not need to do so explicitly.

More generally, if the circuit C has k-bit output, then Eval outputs a cipher-
text in {0, 1}τk�lg q� and Eq. (8) holds with I�lg q� replaced by Ik�lg q�.

2.3 Learning with Errors

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Z

n, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Z

n
q and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Z

n+1
q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) number of
independent samples drawn from As,χ for a single s ← Z

n
q , and the same number

of uniformly random and independent samples over Z
n+1
q .

In this work we use a form of LWE where the first coordinate of the secret
vector s is 1, i.e. s = (1, s̄) where s̄ ← Z

n−1
q . It is easy to see that this is equivalent

to LWE with an (n−1)-dimensional secret: the transformation mapping (a, b) ∈
Z

n−1
q × Zq to ((r,a), b + r) for a uniformly random r ∈ Zq (chosen freshly for

each sample) maps samples from As̄,χ to samples from As,χ, and maps uniform
samples to uniform samples.
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A standard instantiation of LWE is to let χ be a discrete Gaussian distribu-
tion (over Z) with parameter r = 2

√
n. A sample drawn from this distribution

has magnitude bounded by, say, r
√

n = Θ(n) except with probability at most
2−n. For this parameterization, it is known that LWE is at least as hard as quan-
tumly approximating certain “short vector” problems on n-dimensional lattices,
in the worst case, to within Õ(q

√
n) factors [27,28]. Classical reductions are also

known for different parameterizations [12,26].

2.4 One Dimensional Rounded Short Integer Solution

As in [6,14,23] we make use of a special “one-dimensional, rounded” variant of
the short integer solution problem (SIS). For the parameters we will use, this
problem is actually no easier to solve than LWE is, but it is convenient to define
it separately.

Definition 2 (1D-R-SIS [6,14]). Let p ∈ N and let p1 < p2 < · · · < pk be
pairwise coprime and coprime with p. Let q = p · ∏k

i=1 pi. Then for positive
numbers m ∈ N and B, the 1D-R-SISm,p,q,B problem is as follows: given a
uniformly random vector v ← Z

m
q , find z ∈ Z

m such that ‖z‖ ≤ B and

〈v, z〉 ∈ q

p
(Z + 1

2 ) + [−B,B]. (9)

For sufficiently large p1 ≥ B · poly(k, log q), solving 1D-R-SIS is at least as
hard as approximating certain “short vector” problems on k-dimensional lattices,
in the worst case, to within certain B · poly(k) factors [1,6,14,25].

3 Shift-Hiding Shiftable Functions

Here we present our construction of what we call shift-hiding shiftable functions
(SHSFs), which we use in our subsequent constructions of CHC-PRFs and PP-
PRFs. Because there are several parameters and we need some specific algebraic
properties, we do not give an abstract definition of SHSF, but instead just give
a construction (Sect. 3.2) and show the requisite properties (Sect. 3.3).

3.1 Notation

Let GSW = (KG,Enc,Eval) denote the GSW fully homomorphic encryption
scheme (Sect. 2.2), where the secret key is in Z

τ
q for some τ = τ(λ). Recall that

homomorphic evaluation of a function with k output bits produces a τk�lg q�-bit
ciphertext.

Our construction represents shift functions H : {0, 1}� → Z
m
q by (bounded-

size) boolean circuits. Specifically, we let H ′ : {0, 1}� → {0, 1}k for k = m�lg q�
be a boolean circuit where H ′(x) is the binary decomposition of H(x), so that,
following Eq. (5),

(H ′(x) ⊗ g) · (Im ⊗ rt) = H(x) ∈ Z
m
q . (10)
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Let U(H ′, x) = H ′(x) denote a universal circuit for boolean cir-
cuits H ′ : {0, 1}� → {0, 1}k of size σ, and let Ux(·) = U(·, x). Its homomorphic
analogue is as follows: letting z be the total length of fresh GSW ciphertexts
encrypting a circuit of size σ, for any x ∈ {0, 1}� define

Ux : {0, 1}z → {0, 1}τk�lg q� (11)

Ux(ct) = GSW.Eval(Ux, ct). (12)

Observe that Ux can be implemented as a boolean circuit of size (and hence
depth) poly(λ, σ).

3.2 Construction

Here we give the tuple of algorithms (Setup,KeyGen,Eval,Shift,SEval,S) that
make up our SHSF. For security parameter λ and constraint circuit size σ the
algorithms are parameterized by some n = poly(λ, σ) and q = 2poly(λ,σ), with
m = n�lg q� = poly(λ, σ); we instantiate these more precisely in Sect. 3.4 below.

Construction 1. Let X = {0, 1}� and Y = Z
m
q . Define:

– Setup(1λ, 1σ): Sample uniformly random and independent matrices A ∈
Z

n×(z+1)m
q and C ∈ Z

n×τm
q , and output pp = (A,C).

(The n-by-m chunks of A will correspond to the z bits of a GSW encryption
of the shift function; similarly, the chunks of C will correspond to the GSW
secret key in Z

τ
q .)

– KeyGen(pp): Sample s′ ← Z
n−1
q and set s = (1, s′). Output the master secret

key msk = s.
– Eval(pp,msk, x ∈ {0, 1}�): compute

R0 = BoolEval(Ux, 0z,A) ∈ Z
(z+1)m×τk�lg q�m (13)

and let

Ax = (A + (1, 0z) ⊗ G) · R0 − Ux(0z) ⊗ G ∈ Z
n×τk�lg q�m
q . (14)

(Observe that by Eq. (6), Ax = AC for the circuit C = Ux, and does not
depend on the “dummy” ciphertext 0z, which stands in for a GSW encryption
of a shift function.)
Next, compute

R′
0 = LinEval(Ux(0z),C) ∈ Z

τ(k�lg q�+1)m×k�lg q�m (15)

and let
Bx = [Ax + Ux(0z) ⊗ G | C] · R′

0 ∈ Z
n×k�lg q�m
q . (16)
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(Observe that this corresponds to taking k = 0 in Eq. (7), so Bx does not
depend on the “dummy” ciphertext 0z; it depends only on Ax, hence A and x,
and C.)
Finally, output

s · Bx · (Im ⊗ rt ⊗ ut
1) ∈ Z

m
q , (17)

where r ∈ {0, 1}�lg q�2 is as in Eq. (10) and u1 ∈ Z
m is the first standard basis

vector.
– Shift(pp,msk,H): for a shift function H : {0, 1}� → Z

m
q whose binary decom-

position H ′ : {0, 1}� → {0, 1}k can be implemented by a circuit of size σ,
sample a GSW encryption key k ← GSW.KG(1λ, q), then encrypt H ′ bit-by-
bit under this key to obtain a ciphertext ct ← GSW.Enck(H ′). Next, let

a = s(A + (1, ct) ⊗ G) + e (18)
c = s(C + k ⊗ G) + e′ (19)

where e and e′ are error vectors whose entries are sampled independently
from χ. Output

skH = (ct,a, c). (20)
(Recall that A′ = A+ (1, ct) ⊗G and C′ = C+k⊗G support homomorphic
operations on ct and k via right-multiplication by short matrices, using the
gadget homomorphisms. Shifted evaluation, defined next, performs such right-
multiplications on a ≈ sA′, c ≈ sC′.)

– SEval(pp, skH , x): On input skH = (ct,a, c) and x ∈ {0, 1}�, compute

Rct = BoolEval(Ux, ct,A) (21)
ax = a · Rct. (22)

(By Eq. (6), we have ax ≈ s(Ax + Ux(ct) ⊗ G), where recall that Ux(ct) is a
GSW encryption of H ′(x), computed homomorphically.)
Next, compute

R′
ct = LinEval(Ux(ct),C) (23)
bx = [ax | c] · R′

ct. (24)

(By Eqs. (7) for LinEval and (8) for GSW decryption, we have bx ≈ s(Bx +
h′ ⊗ G), where h′ is a noisy version of the robust encoding H ′(x) ⊗ g.)
Finally, output

bx · (Im ⊗ rt ⊗ ut
1) ∈ Z

m
q , (25)

where r,u1 are as in Eval above.
(Here the Im ⊗ rt term reconstructs a noisy version of H(x) ∈ Z

m
q from h′

as in Eq. (10), and the ut
1 ∈ Z

m term selects the first column of G, whose
inner product with s is 1.)

– S(1λ, 1σ): Sample a GSW secret key k ← GSW.KG(1λ, q) and compute
(by encrypting bit-by-bit) ct ← GSW.Enck(C), where C is some arbitrary
size-σ boolean circuit. Sample uniformly random and independent A ←
Z

n×(z+1)m
q ,a ← Z

(z+1)m
q , C ← Z

n×τm
q , c ← Z

τm
q . Output pp = (A,C) and

sk = (ct,a, c).
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3.3 Properties

Here we prove the three main properties of our SHSF that we will use in subse-
quent sections.

Lemma 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ and CPA
security of the GSW encryption scheme, for any PPT A and any σ = σ(λ) =
poly(λ),

{RealKeyA(1λ, 1σ)}λ∈N

c≈ {IdealKeyA(1λ, 1σ)}λ∈N
, (26)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Fig. 1.

Proof. Let A be any polynomial-time adversary. To show that Eq. (26) holds we
define a sequence of hybrid experiments and show that they are indistinguishable.

Hybrid H0: This is the experiment RealKey.
Hybrid H1: This is the same as H0, except that we modify how the A and C

are constructed as follows: after we generate ct and k we choose uniformly
random A′ and C′ and set

A = A′ − (1, ct) ⊗ G (27)
C = C′ − k ⊗ G. (28)

Hybrid H2: This is the same as H1, except that we sample the ai and cj

uniformly at random from Z
m
q .

Hybrid H3: This is the same as H2, except that we again directly choose A,C
uniformly at random (without choosing A′,C′).

Hybrid H4: This is the same as H2, except that ct encrypts the (arbitrary)
size-σ circuit C (as in S) instead of H ′, i.e., we set ct ← GSW.Enck′(C).
Observe that this is exactly the experiment IdealKey.

Claim 1. H0 and H1 are identical.

Proof. This is because A′ and C′ are uniformly random and independent of ct
and k.

procedure RealKeyA(1λ, 1ρ)
H ← A(1λ, 1σ)
pp ← Setup(1λ, 1ρ)
msk ← KeyGen(pp)
sk ← Shift(pp,msk,H)
(pp, sk) → A

(a) The real shifted key generation ex-
periment

procedure IdealKeyA(1λ, 1σ)
H ← A(1λ, 1σ)
(pp, sk) ← S(1λ, 1σ)
(pp, sk) → A

(b) The random key generation experi-
ment

Fig. 1. The real and random shifted key generation experiments.
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Claim 2. Assuming the hardness of LWEn−1,q,χ, we have H1
c≈ H2.

Proof. We use any adversary A that attempts to distinguish H1 from H2 to
build an adversary A′ that solves LWEn−1,q,χ with the same advantage. First,
A′ receives samples (A′,a) ∈ Z

n×(z+1)m
q ×Z

(z+1)m
q and (C′, c) ∈ Z

n×τm
q ×Z

τm
q ,

then proceeds exactly as in H1 to interact with A, and outputs what A outputs.
If the samples are LWE samples from As,χ where s = (1, s′) for s′ ← Z

n−1
q , then

a = s · A′ + e = s(A + (1, ct) ⊗ G) + e

c = s · C′ + e′ = s(C + k ⊗ G) + e′

for error vectors e, e′ whose entries are drawn from χ, therefore A’s view is
identical to its view in H1. If the samples are uniformly random, then A’s view
is identical to its view in H2. This proves the claim.

Claim 3. H2 and H3 are identical.

Proof. This is because A′,C′ are uniformly random and independent of ct and k.

Claim 4. If GSW is CPA-secure then H3
c≈ H4.

Proof. This follows immediately from the fact that the GSW secret key k ←
GSW.KG(1λ, q) is used only to encrypt H (yielding ct) or the arbitrary circuit C,
respectively, in H3 and H4.

This completes the proof of Lemma 1.

Lemma 2 (Border Avoiding). For any PPT A, i ∈ [m], λ ∈ N and σ =
poly(λ), assuming the hardness of 1D-R-SIS(z+τ+1)m,p,q,B for some large enough
B = mpoly(λ,σ) = λpoly(λ), we have

Pr
(pp,sk)←S(1λ,1σ)

x←A(pp,sk)

[
Eval(pp, sk, x)i ∈ q

p (Z + 1
2 ) + [−B,+B]

]
≤ negl(λ). (29)

Proof. We show how to use an adversary which finds an x ∈ X such that

SEval(pp, sk, x)i ∈ q
p (Z + 1

2 ) + [−B,+B] (30)

for some i ∈ [m] to solve 1D-R-SIS.
Given a (uniformly random) 1D-R-SIS(z+τ+1)m,p,q,B challenge v = (a, c) ∈

Z
(z+1)m
q × Z

τm
q , we put a, c in the sk given to A, and generate pp in the same

way as in the S algorithm. Let x be a query output by A, and consider the
response

yx = SEval(pp, (ct,a, c), x) (31)
= bx · U (32)

= [a | c]
[
Rct

Iτm

]
· R′

ct · U︸ ︷︷ ︸
T

, (33)



Privately Constraining and Programming PRFs, the LWE Way 687

where Rct,R′
ct are mpoly(λ,σ)-bounded matrices as computed by SEval, and U is

a binary matrix. Now if Eq. (30) holds for some i ∈ [m], then (yx)i ∈ q
p (Z+ 1

2 )+
[−B,B], which means that the ith column of T is a valid 1D-R-SIS(z+τ+1)m,p,q,B

solution to the challenge v = (a, c), as desired.

Lemma 3 (Approximate Shift Correctness). For any shift function
H : {0, 1}� → Z

m
q whose binary decomposition H ′ : {0, 1}� → {0, 1}k can be rep-

resented by a boolean circuit of size σ, and any x ∈ {0, 1}�, pp ← Setup(1λ, 1ρ),
msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) + H(x) (34)

where the approximation hides some λpoly(λ)-bounded error vector.

Proof. Let a,ax,bx, c,Ax and Bx be as defined in algorithms SEval, Eval and
Shift. First, observe that by definition of a ≈ s(A + (1, ct) ⊗ G), ax = a · Rct,
and Eq. (6), we have

ax ≈ s(A + (1, ct) ⊗ G) · Rct (35)

= s(Ax + Ux(ct) ⊗ G), (36)

where the approximation hides an error vector with entries bounded by
mpoly(λ,σ) = λpoly(λ). Similarly, by definition of bx, the generalized Eq. (7), and
the generalized Eq. (8) we have

bx = [ax | c] · R′
ct (37)

≈ s[Ax + Ux(ct) ⊗ G | C + k ⊗ G] · R′
ct (38)

= s(Bx + (Ux(ct) · (Ik�lg q� ⊗ kt)) ⊗ G) (39)
= s(Bx + (H ′(x) ⊗ g + ex) ⊗ G) (40)

where the approximation hides some λpoly(λ)-bounded error, and ex is also
λpoly(λ)-bounded. Therefore, by Eq. (10), the mixed-product property, and
because G · ut

1 = ut
1 ∈ Z

n
q , and the first coordinate of s is 1, the output of

SEval(pp, skH , x) is

bx · (Im ⊗ rt ⊗ ut
1) ≈ sBx · (Im ⊗ rt ⊗ ut

1) + s((H ′(x) ⊗ g + ex) ⊗ G)

· (Im ⊗ rt ⊗ ut
1) (41)

= Eval(pp,msk, x) + s((H(x) + ex(Im ⊗ rt)) ⊗ ut
1) (42)

= Eval(pp,msk, x) + H(x) + ex(Im ⊗ rt) (43)
≈ Eval(pp,msk, x) + H(x), (44)

where again the approximations hide λpoly(λ)-bounded error vectors, as claimed.

The following is an immediate consequence of Lemma 3.
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Corollary 1. Fix the same notation as in Lemma 3. If for all i ∈ [m] we have

(SEval(pp, sk, x) − H(x))i /∈ q
p (Z + 1

2 ) + [−B,+B], (45)

then
�SEval(pp, sk, x) − H(x)�p = �Eval(pp,msk, x)�p. (46)

3.4 Parameter Instantiation

We now instantiate the LWE parameters n, q and the 1D-R-SIS parameter k
to correspond with subexponential exp(nε) and exp(kε) approximation factors
for the underlying worst-case lattice problems, for an arbitrary desired constant
ε > 0. Let B = λpoly(λ) be the bound from Corollary 1. For 1D-R-SIS we need to
choose k sufficiently large primes pi = B · poly(λ) = λpoly(λ) to get an approxi-
mation factor of

B · poly(λ) = λpoly(λ)

for k-dimensional lattices. Therefore, we can choose a sufficiently large k =
poly(λ) to make this factor exp(kε). We then set

q = p

k∏
i=1

pi = p · λk·poly(λ) = λpoly(λ),

which corresponds to some λpoly(λ) approximation factor for n-dimensional lat-
tices. Again, we can choose a sufficiently large n = poly(λ) to make this factor
exp(nε).

4 Constraint-Hiding Constrained PRF

In this section we formally define constraint-hiding constrained PRFs (CHC-
PRFs) and give a construction based on our shiftable PRF from Sect. 3.

4.1 Definition

Here we give the definition of CHC-PRFs, specializing the simulation-based def-
inition of [15] to the case of a single constrained-key query.

Definition 3. A constrained function is a tuple of efficient algorithms
(Setup,KeyGen,Eval,Constrain,CEval) having the following interfaces (where the
domain X and range Y may depend on the security parameter):

– Setup(1λ, 1σ), given the security parameter λ and an upper bound σ on the
size of the constraining circuit, outputs public parameters pp.

– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs

some y ∈ Y.
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– Constrain(pp,msk,C), given the master secret key and a circuit C of size at
most σ, outputs a constrained key skC .

– CEval(pp, skC , x), given a constrained key skC and an input x ∈ X , outputs
some y ∈ Y.

Definition 4. A constrained function is a constraint-hiding constrained PRF
(CHC-PRF) if there is a PPT simulator S such that, for any PPT adversary
A (that without loss of generality never repeats a query) and any σ = σ(λ) =
poly(λ),

{RealA(1λ, 1σ)}λ∈N

c≈ {IdealA,S(1λ, 1σ)}λ∈N
, (47)

where Real and Ideal are the respective views of A in the experiments defined in
Fig. 2.

The above simulation-based definition simultaneously captures privacy of the
constraining function, pseudorandomness on unauthorized inputs, and correct-
ness of constrained evaluation on authorized inputs. The first two properties
(privacy and pseudorandomness) follow because in the ideal experiment, the
simulator must generate a constrained key without knowing the constraining
function, and the adversary gets oracle access to a function that is uniformly
random on unauthorized inputs.

For correctness, we claim that the real experiment is computationally
indistinguishable from a modified one where each query x is answered as
CEval(pp, skC , x) if x is authorized (i.e., C(x) = 0), and as Eval(pp,msk, x)
otherwise. In particular, this implies that Eval(pp,msk, x) = CEval(pp, skC , x)
with all but negligible probability for all the adversary’s authorized queries x.
Indistinguishability of the real and modified experiments follows by a routine
hybrid argument, with the ideal experiment as the intermediate one. In par-
ticular, the reduction that links the ideal and modified real experiments itself
answers authorized queries x using CEval, and handles unauthorized queries by
passing them to its oracle.

procedure RealA(1λ, 1σ)
C ← A(1λ, 1σ)
pp ← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
(pp, skC) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure IdealA,S(1λ, 1σ)
C ← A(1λ, 1σ)
(pp, sk) ← S(1λ, 1σ)
(pp, sk) → A
repeat

x ← A
if C(x) = 0 then

CEval(pp, sk, x) → A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 2. The real and ideal experiments.
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4.2 Construction

We now describe our construction of a CHC-PRF for domain X = {0, 1}� and
range Y = Z

m
p , which handles constraining circuits of size σ. It uses the following

components:

– A pseudorandom function PRF = (PRF.KG,PRF.Eval) having domain {0, 1}�

and range Z
m
q , with key space {0, 1}κ.

– The shift hiding shiftable function SHSF = (Setup,KeyGen,Eval,Shift,SEval,
Sim) from Sect. 3, which has parameters q,B that appear in the analysis
below.

For a boolean circuit C of size at most σ and some k ∈ {0, 1}κ define the
function HC,k : {0, 1}� → Z

m
q as

HC,k(x) = C(x) · PRF.Eval(k, x) =

{
PRF.Eval(k, x) if U(C, x) = 1
0 otherwise.

(48)

Notice that the size of (the binary decomposition of) HC,k is upper bounded by

σ′ = σ + s + poly(n, log q), (49)

where s is the circuit size of (the binary decomposition of) PRF.Eval(k, ·).
Construction 2. Our CHC-PRF with domain X = {0, 1}� and range Y = Z

m
p

is defined as follows:

– Setup(1λ, 1σ): output pp ← SHSF.Setup(1λ, 1σ′
) where σ′ is defined as in

Eq. (49).
– KeyGen(pp): output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}�): compute yx = SHSF.Eval(pp,msk, x) and output

�yx�p.
– Constrain(pp,msk,C): on input a circuit C of size at most σ, sample a PRF

key k ← PRF.KG(1λ) and output skC ← SHSF.Shift(pp,msk,HC,k).
– CEval(pp, skC , x): on input a constrained key skC and x ∈ {0, 1}�, output

�SHSF.SEval(pp, skC , x)�p.

4.3 Security Proof

Theorem 1. Construction 2 is a constraint-hiding constrained PRF assuming
the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B (where z, τ are respec-
tively the lengths of fresh GSW ciphertexts and secret keys as used in SHSF), the
CPA security of the GSW encryption scheme, and that PRF is a pseudorandom
function.

Proof. Our simulator S(1λ, 1σ) for Construction 2 simply outputs
SHSF.S(1λ, 1σ′

). Now let A be any polynomial-time adversary. To show that
S satisfies Definition 4 we define a sequence of hybrid experiments and show
that they are indistinguishable. Before defining the experiments in detail, we
first define a particular “bad” event in all but one of them.
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Definition 5. In each of the following hybrid experiments except H0, each
query x is answered as �yx�p for some yx that is computed in a certain way.
Define Borderline to be the event that at least one such yx has some coordinate
in q

p (Z + 1
2 ) + [−B,B].

Hybrid H0: This is the ideal experiment IdealA,S .
Hybrid H1: This is the same as H0, except that on every unauthorized query x

(i.e., where C(x) = 1), instead of returning a uniformly random value from
Z

m
p , we choose yx ← Z

m
q and output �yx�p.

Hybrid H2: This is the same as H1, except that we abort the experiment if
Borderline happens.

Hybrid H3: This is the same as H2, except that we initially choose a PRF
key k ← PRF.KG(1λ) and change how unauthorized queries x (i.e., where
C(x) = 1) are handled, answering all queries according to a slightly modified
CEval. Specifically, for any query x we answer �yx�p where

yx = SHSF.SEval(pp, sk, x) − C(x) · PRF.Eval(k, x). (50)

Hybrid H4: This is the same as H3, except that (pp, sk) are generated as in
the real experiment. More formally we instantiate pp ← SHSF.Setup(1λ, 1σ′

),
msk ← SHSF.KeyGen(pp) and compute sk ← SHSF.Shift(pp,msk,HC,k).

Hybrid H5: This is the same as H4, except that we answer all evaluation queries
as in the Eval algorithm, i.e., we output �yx�p where

yx = SHSF.Eval(pp,msk, x). (51)

Hybrid H6: This is the same as H5, except that we no longer abort when
Borderline happens. Observe that this is exactly the real experiment RealA.

We now prove that adjacent pairs of hybrid experiments are indistinguishable.

Claim 5. Experiments H0 and H1 are identical.

Proof. This follows directly from the fact that p divides q.

Claim 6. Assuming that 1D-R-SIS(zσ′+τ+1)m,p,q,B is hard, we have H1
c≈ H2. In

particular, in H1 the event Borderline happens with negligible probability.

Proof. Let A be an adversary attempting to distinguish H1 and H2. We want
to show that in H1 event Borderline happens with negligible probability. Let x
be a query made by A. If C(x) = 1 then yx is uniformly random in Z

m
q , so for

any i ∈ [m] we have

Pr[(yx)i ∈ q
p (Z + 1

2 ) + [−B,B]] ≤ 2 · B · p/q = negl(λ). (52)

If C(x) = 0, the claim follows immediately by the border-avoiding property of
SHSF (Lemma 2).

Claim 7. If PRF is a pseudorandom function then H2
c≈ H3.
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Proof. We use any adversary A that attempts to distinguish H2 from H3 to build
an adversary A′ having the same advantage against the pseudorandomness of
PRF. Here A′ is given access to an oracle O which is either PRF.Eval(k, ·) for
k ← PRF.KG(1λ), or a uniformly random function f : {0, 1}� → Z

m
q . We define

A′ to proceed as in H2 to simulate the view of A, except that on each query x
it sets

yx = SHSF.SEval(pp, sk, x) − C(x) · O(x) (53)

and answers �yx�p. Finally, A′ outputs whatever A outputs. Clearly, if O is
PRF.Eval(k, ·) then the view of A is identical to H3, whereas if the oracle is f(·)
then the view of A is identical to its view in H2. This proves the claim.

Claim 8. Assuming the hardness of LWEn−1,q,χ and CPA-security of GSW,
H3

c≈ H4.

Proof. This follows immediately from the shift hiding property of SHSF, i.e.,
Lemma 1.

Claim 9. H4 and H5 are identical.

Proof. This follows by Corollary 1 and noticing that both experiments abort if
Borderline happens.

Claim 10. Under the hypotheses of Theorem 1, we have H5
c≈ H6.

Proof. This follows by combining all the previous claims and recalling that we
have proved that Borderline happens with negligible probability in H1.

This completes the proof of Theorem 1.

5 Privately Programmable PRF

In this section we formally define privately programmable PRFs (PP-PRFs) and
give a construction based on our shiftable PRF from Sect. 3.

5.1 Definitions

We start by giving a variety of definitions related to “programmable functions”
and privately programmable PRFs. In particular, we give a simulation-based
definition that is adapted from [8].

Definition 6. A programmable function is a tuple (Setup,KeyGen,Eval,
Program,PEval) of efficient algorithms having the following interfaces (where
the domain X and range Y may depend on the security parameter):

– Setup(1λ, 1k), given the security parameter λ and a number k of programmable
inputs, outputs public parameters pp.

– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
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– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs
some y ∈ Y.

– Program(pp,msk,P = {(xi, yi)}), given the master secret key msk and k pairs
(xi, yi) ∈ X × Y for distinct xi, outputs a programmed key skP .

– PEval(pp, skP , x), given a programmed key skP and an input x ∈ X , outputs
some y ∈ Y.

We now give several definitions that capture various functionality and secu-
rity properties for programmable functions. We start with the following correct-
ness property for programmed inputs.

Definition 7. A programmable function is statistically programmable if for all
λ, k = poly(λ) ∈ N, all sets of k pairs P = {(xi, yi)} ⊆ X ×Y (with distinct xi),
and all i ∈ [k] we have

Pr
pp←Setup(1λ,1k)
msk←KeyGen(pp)

skP←Program(pp,msk,P)

[PEval(pp, skP , xi) �= yi] = negl(λ). (54)

We now define a notion of weak simulation security, in which the adversary
names the inputs at which the function is programmed, but the outputs are
chosen at random (and not revealed to the adversary). As before, we always
assume without loss of generality that the adversary never queries the same
input x more than once in the various experiments we define.

Definition 8. A programmable function is weakly simulation secure if there is
a PPT simulator S such that for any PPT adversary A and any polynomial
k = k(λ),

{RealWeakPPRFA(1λ, 1k)}λ∈N

c≈ {IdealWeakPPRFA,S(1λ, 1k)}λ∈N
, (55)

where RealWeakPPRF and IdealWeakPPRF are the respective views of A in the
procedures defined in Fig. 3.

procedure RealWeakPPRFA(1λ, 1k)
{xi}i∈[k] ← A(1λ, 1k)
{yi}i∈[k] ← Y
pp ← Setup(1λ, 1k)
msk ← KeyGen(pp)
sk ←

Program(pp,msk, {(xi, yi)})
(pp, sk) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure
IdealWeakPPRFA,S(1λ, 1k)

{xi}i∈[k] ← A(1λ, 1k)
(pp, sk) ← S(1λ, 1k)
(pp, sk) → A
repeat

x ← A
if x /∈ {xi} then

PEval(pp, sk, x) → A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 3. The (weak) real and ideal experiments.
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Similarly to Definition 4, the above definition simultaneously captures privacy
of the programmed inputs given the programmed key, pseudorandomness on
those inputs, and correctness of PEval on non-programmed inputs.

Definition 9. A programmable function is a weak privately programmable PRF
if it is statistically programmable (Definition 7) and weakly simulation secure
(Definition 8).

We now define a notion of (non-weak) simulation security for programmable
functions. This differs from the weak notion in that the adversary specifies the
programmed inputs and corresponding outputs, and the simulator in the ideal
game is also given these input-output pairs. The simulator needs this informa-
tion because otherwise the adversary could trivially distinguish the real and
ideal experiments by checking whether PEval(pp, skP , xi) = yi for one of the
programmed input-output pairs (xi, yi). Simulation security itself therefore does
not guarantee any privacy of the programmed inputs; below we give a separate
simulation-based definition which does.

Definition 10. A programmable function is simulation secure if there is a PPT
simulator S such that for any PPT adversary A and any polynomial k = k(λ),

{RealPPRFA(1λ, 1k)}λ∈N

c≈ {IdealPPRFA,S(1λ, 1k)}λ∈N
, (56)

where Real and Ideal are the respective views of A in the procedures defined in
Fig. 4.

We mention that a straightforward hybrid argument similar to one from [6]
shows that simulation security implies that (KeyGen,Eval) is a pseudorandom
function.

Finally, we define a notion of privacy for the programmed inputs. This says
that a key programmed on adversarially chosen inputs and random correspond-
ing outputs (that are not revealed to the adversary) does not reveal anything
about the programmed inputs.

procedure RealPPRFA(1λ, 1k)
P = {(xi, yi)} ← A(1λ, 1k)
pp ← Setup(1λ, 1k)
msk ← KeyGen(pp)
skP ← Program(pp,msk,P)
(pp, skP) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure IdealPPRFA,S(1λ, 1k)
P = {(xi, yi)} ← A(1λ, 1k)
(pp, skP) ← S(1λ,P)
(pp, skP) → A
repeat

x ← A
if x /∈ {xi} then

PEval(pp, skP , x) → A
else

y ← Y; y → A
until A halt

(b) The ideal experiment

Fig. 4. The real and ideal experiments
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procedure
RealPPRFPrivacyA(1λ, 1k)

{xi}i∈[k] ← A(1λ, 1k)
{yi}i∈[k] ← Y
pp ← Setup(1λ, 1k)
msk ← KeyGen(pp)
sk ←

Program(pp,msk, {(xi, yi)})
(pp, sk) → A
(a) The real experiment

procedure
IdealPPRFPrivacyA,S(1λ, 1k)

{xi}i∈[k] ← A(1λ, 1k)
(pp, sk) ← S(1λ, 1k)
(pp, sk) → A
(b) The ideal experiment

Fig. 5. The real and ideal privacy experiments

Definition 11. A programmable function is privately programmable if there is
a PPT simulator S such that for any PPT adversary A and any polynomial
k = k(λ),

{RealPPRFPrivacyA(1λ, 1k)}λ∈N

c≈ {IdealPPRFPrivacyA(1λ, 1k)}λ∈N
, (57)

where RealPPRFPrivacy and IdealPPRFPrivacy are the respective views of A in
the procedures defined in Fig. 5.

We now give our main security definition for PP-PRFs.

Definition 12. A programmable function is a privately programmable PRF if
it is statistically programmable, simulation secure, and privately programmable.

5.2 From Weak PP-PRFs to PP-PRFs

In this section we describe a general construction of a privately pro-
grammable PRF from any weak privately programmable PRF. Let Π ′ =
(Setup,KeyGen,Eval,Program,PEval) be a programmable function with domain
X and range Y, where we assume that Y is a finite additive group. The basic idea
behind the construction is simple: define the function as the sum of two parallel
copies of Π ′, and program it by programming the copies according to additive
secret-sharings of the desired outputs. Each component is therefore programmed
to uniformly random outputs, as required by weak simulation security.

Construction 3. We construct a programmable function Π as follows:

– Π.Setup(1λ, 1k): generate ppi ← Π ′.Setup(1λ, 1k) for i = 1, 2 and output
pp = (pp1, pp2).

– Π.KeyGen(pp): on input pp = (pp1, pp2) generate mski ← Π ′.KeyGen(ppi) for
i = 1, 2, and output msk = (msk1,msk2).

– Π.Eval(pp,msk, x): on input pp = (pp1, pp2), msk = (msk1,msk2), and x ∈
X output

Π ′.Eval(pp1,msk1, x) + Π ′.Eval(pp2,msk2, x).
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– Π.Program(pp,msk,P): on input pp = (pp1, pp2), msk = (msk1,msk2), k
pairs (xi, yi) ⊂ X ×Y, first sample uniformly random ri ← Y for i ∈ [k], then
output skP = (sk1, sk2) where

sk1 ← Π ′.Program(pp1,msk1,P1 = {(xi, ri)}) (58)
sk2 ← Π ′.Program(pp2,msk2,P2 = {(xi, yi − ri)}). (59)

– Π.PEval(pp, skP , x): on input pp = (pp1, pp2), skP = (sk1, sk2), and x ∈ X
output

Π ′.PEval(pp1, sk1, x) + Π ′.PEval(pp2, sk2, x).

Theorem 2. If Π ′ is a weak privately programmable PRF then Construction 3
is a privately programmable PRF.

Proof. This follows directly from Theorems 3 and 4, which respectively prove the
simulation security and private programmability of Construction 3, and from
the statistical programmability of Π ′, which obviously implies the statistical
programmability of Construction 3.

Theorem 3. If Π ′ is a weak privately programmable PRF then Π is simulation
secure.

Due to space constraints, the (straightforward) proof of Theorem3 is deferred
to the full version.

Theorem 4. If Π ′ is weakly simulation secure then Π is privately pro-
grammable.

Proof. Let S ′ be the simulator algorithm for the weak simulation security of Π ′.
Our simulator S(1λ, 1k) for the private programmability of Π simply generates
(ppi, ski) ← S ′(1λ, 1k) for i = 1, 2 and outputs (pp = (pp1, pp2), sk = (sk1, sk2)).
To show that S satisfies Definition 12 we define the following hybrids and show
that they are indistinguishable.

Hybrid H0: This is the experiment RealPPRFPrivacyA from Fig. 5.
Hybrid H1: This experiment is the same as the previous one, except that we

generate (pp1, sk1) ← S ′(1λ, 1k).
Hybrid H2: This experiment is the same as the previous one, except that we

generate (pp2, sk2) ← S ′(1λ, 1k). Observe that this experiment is identical to
the experiment IdealPPRFPrivacyA,S from Fig. 5.

Claim 11. We have H0
c≈ H1.

Proof. Let A be an adversary attempting to distinguish H0 and H1. We build an
adversary A′ against the weak simulation security of Π ′, which runs A internally.
When A outputs {xi}, A′ also outputs {xi}, receiving (pp1, sk1) in response.
Then A′ generates pp2 ← Π ′.Setup(1λ, 1k) and msk2 ← Π ′.KeyGen(pp2),
and chooses uniformly random ri ← Y for i ∈ [k]. It then generates
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sk2 ← Π ′.Program(pp2,msk2, {(xi, ri)}). Finally it gives (pp = (pp1, pp2), sk =
(sk1, sk2)) to A. It is straightforward to see that if A′ is in RealWeakPPRF
(respectively, IdealWeakPPRF) then the view of A is identical to its view H0

(resp., H1). So by weak simulation security of Π ′, we have H0
c≈ H1.

Claim 12. We have H1
c≈ H2.

Proof. This is entirely symmetrical to the proof of Claim 11, so we omit it.

This completes the proof of Theorem 4.

5.3 Construction of Weak Privately Programmable PRFs

In this section we construct a weak privately programmable PRF from our
shiftable function of Sect. 3. We first define the auxiliary function that the con-
struction will use. For {(xi,yi)}i∈[k] ⊂ {0, 1}� × Z

m
q where the xi are distinct,

define the function H{(xi,wi)}i∈[k]
: {0, 1}� → Z

m
q as

H{(xi,wi)}i∈[k]
(x)

{
wi if x = xi for some i,

0 otherwise.
(60)

Notice that the circuit size of H{(xi,wi)}i∈[k]
is upper bounded by some σ′ =

poly(n, k, log q).

Construction 4. Our weak privately programmable PRF with input space
X = {0, 1}� and output space Y = Z

m
p uses the SHSF from Sect. 3 with param-

eters q,B chosen as in Sect. 3.4, and is defined as follows:

– Setup(1λ, 1k): Output pp ← SHSF.Setup(1λ, 1σ′
).

– KeyGen(pp): Output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}�): Compute yx = SHSF.Eval(pp,msk, x) and output

�yx�p.
– Program(pp,msk,P): Given k pairs (xi,yi) ∈ {0, 1}� × Z

m
p where the xi are

distinct, for each i ∈ [k] compute wi as follows: choose y′
i ← Z

m
q uniformly

at random conditioned on �y′
i�p = yi, and set

wi = y′
i − SHSF.Eval(pp,msk, xi). (61)

Output skP ← SHSF.Shift(pp,msk,H{(xi,wi)}).
– PEval(pp, skP , x): output �SHSF.SEval(pp, skP , x)�p.

5.4 Security Proof

Theorem 5. Construction 4 is a weak privately programmable PRF (Defi-
nition 9) assuming the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B

(where z, τ are respectively the lengths of fresh GSW ciphertexts and secret keys
as used in SHSF) and the CPA security of the GSW encryption scheme.
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Proof. The proof follows immediately by Theorems 6 and 7 below.

Theorem 6. Assuming the hardness of LWEn−1,q,χ and 1D-R-
SIS(zσ′+τ+1)m,p,q,B and the CPA security of the GSW encryption scheme, Con-
struction 4 is weakly simulation secure.

Proof. Our simulator S(1λ, 1k) for Construction 4 simply outputs (pp, sk) ←
SHSF.S(1λ, 1σ′

). Let A be any polynomial-time adversary. To show that S satis-
fies Definition 10 we define a sequence of hybrid experiments and show that they
are indistinguishable.

Hybrid H0: This is the simulated experiment IdealWeakPPRFA,S (Fig. 3).
Hybrid H1: This is the same as the previous experiment, except that on

query x ∈ {xi}, instead of returning a uniformly random value from Z
m
p ,

we choose yx ← Z
m
q and output �yx�p.

Hybrid H2: This is the same as the previous experiment, except that we abort
if the event Borderline happens, where Borderline is as in Definition 5.

Hybrid H3: This is the same as the previous experiment, except that we ini-
tially choose uniformly random w′

i ← Z
m
q for i ∈ [k] and change how queries

for x ∈ {xi} are answered (the “else” clause in IdealWeakPPRFA,S): for
x = xj , we answer as �yx�p, where

yx = SHSF.SEval(pp, sk, x) − w′
j . (62)

Hybrid H4: This is the same as the previous experiment, except that we gener-
ate pp and sk as follows: we generate pp ← Setup(1λ, 1k), msk ← KeyGen(pp)
and sk ← SHSF.Shift(pp,msk,H{(xi,w′

i)}).
Hybrid H5: This is the same as the previous experiment, except that we answer

all queries as in the Eval algorithm, i.e., we output

�SHSF.Eval(pp,msk, x)�p. (63)

Hybrid H6: This is the same as the previous experiment, except that here we
generate sk as in the real game. Specifically, for each i ∈ [k] we choose a uni-
formly random vector yi ← Z

m
p and uniformly random y′

i ← Z
m
q conditioned

on �y′
i�p = yi, and then set

wi = y′
i − SHSF.Eval(pp,msk, x). (64)

We then set sk ← SHSF.Shift(pp,msk,H{(xi,wi)}).
Hybrid H7: This is the same as the previous experiment, except that we no

longer abort when Borderline happens. Observe that this is the real experiment
IdealRealPPRFA (Fig. 3).

The proofs of indistinguishability (either computational or statistical) for
adjacent hybrids are straightforward, and are deferred to the full version for lack
of space.

Theorem 7. Construction 4 is statistically programmable.
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Proof. Fix any P = {(xi,yi)}i∈[k] ⊂ X ×Y. We need to show that for any i ∈ [k],

Pr
pp←Setup(1λ,1k)
msk←KeyGen(pp)

skP←Program(pp,msk,P)

[⌊
SHSF.SEval(pp, skP , xi)

⌉
p

�= yi

]
= negl(λ). (65)

By Lemma 3 we have

SHSF.SEval(pp, skP , xi) ≈ SHSF.Eval(pp,msk, xi) + H{(xi,wi)}(xi)
= SHSF.Eval(pp,msk, xi) + wi

= y′
i,

where the approximation hides some B-bounded error and the last equality
holds because wi = y′

i − SHSF.Eval(pp,msk, xi). Because y′
i is chosen uni-

formly at random such that �y′
i�p = yi, the probability that some coordinate of

SHSF.SEval(pp, skP , xi) is in q
p (Z + 1

2 ) + [−B,B] is at most 2mBp/q = negl(λ),
which establishes Eq. (65).
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