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Abstract. Hash Proof Systems or Smooth Projective Hash Functions
(SPHFs) are a form of implicit arguments introduced by Cramer and
Shoup at Eurocrypt’02. They have found many applications since then,
in particular for authenticated key exchange or honest-verifier zero-
knowledge proofs. While they are relatively well understood in group
settings, they seem painful to construct directly in the lattice setting.

Only one construction of an SPHF over lattices has been proposed in
the standard model, by Katz and Vaikuntanathan at Asiacrypt’09. But
this construction has an important drawback: it only works for an ad-
hoc language of ciphertexts. Concretely, the corresponding decryption
procedure needs to be tweaked, now requiring q many trapdoor inver-
sion attempts, where q is the modulus of the underlying Learning With
Errors (LWE) problem.

Using harmonic analysis, we explain the source of this limitation, and
propose a way around it. We show how to construct SPHFs for standard
languages of LWE ciphertexts, and explicit our construction over a tag-
IND-CCA2 encryption scheme à la Micciancio-Peikert (Eurocrypt’12).
We then improve our construction and our analysis in the case where the
tag is known in advance or fixed (in the latter case, the scheme is only
IND-CPA) with a super-polynomial modulus, to get a stronger type of
SPHF, which was never achieved before for any language over lattices.

Finally, we conclude with applications of these SPHFs: password-
based authenticated key exchange, honest-verifier zero-knowledge proofs,
and a relaxed version of witness encryption.
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1 Introduction

Harmonic analysis is a powerful tool in geometry of numbers, especially in com-
bination with Gaussian measure, which has lead to important progress on trans-
ference theory [3]. Those tools also played a crucial role for the foundation of
lattice-based cryptography, being at the heart of proofs of worst-case hardness
for lattice problems, such as the Short Integer Solution problem (SIS) and the
Learning with Errors (LWE) problem [14,28,29]. Later, security proofs relied
on a few convenient lemmas in a black-box manner, and for most applications
this was sufficient: lattice-based cryptography quickly caught up with pairing-
based cryptography, for example with the constructions of (Hierarchical) Identity
Based Encryption’s [9,14,27] and beyond [8,15,16].

There nevertheless remains one primitive for which lattice-based cryptogra-
phy is still far behind: Hash Proof Systems or Smooth Projective Hash Func-
tions (SPHFs) [11]. Beyond the original Chosen-Ciphertext secure encryption
scheme of Cramer and Shoup [10], SPHFs give rise to generalized classes of
Authenticated Key Exchange (Password-based, Language-based, . . . ) [2,4,13,
23]. They also have been used in Oblivious Transfer [18,21], One-Time Relatively-
Sound Non-Interactive Zero-Knowledge Arguments [20], and Zero-Knowledge
Arguments [5].

An SPHF can be seen as an implicit (designated-verifier) zero-knowledge
proof for a language. The most useful languages for SPHFs are the languages of
ciphertexts of a given plaintext M .

To our knowledge, there is only one construction of SPHF for a lattice-
based encryption scheme in the standard model, given by Katz and Vaikun-
tanathan [22]. There is also a subsequent work by Zhang and Yu who propose
an interesting new lattice-based SPHF in [30]. But the language of the SPHF
relies on simulation-sound non-interactive zero-knowledge proofs which we do
not know how to construct just under lattice-based assumptions without ran-
dom oracle.

Unfortunately, the only standard-model lattice-based SPHF construction
in [22] has a main drawback: the language of the SPHF is not simply defined as
the set of valid standard LWE ciphertexts. Naturally, the set of valid ciphertexts
of 0 should correspond to the set of ciphertexts close to the lattice defined by
the public key. Instead, their language includes all the ciphertexts c such that at
least one integer multiple is close to the public lattice. This makes the decryption
procedure very costly (about q trapdoor inversions), and forbids the use of super-
polynomial modulus q. This limitation is a serious obstacle to the construction
of a stronger type of SPHF introduced in [23], namely word-independent SPHF
for which the projection key (which can be seen as the public key of the SPHF)
does not depend on the ciphertext c (a.k.a., word in the SPHF terminology).1

This strongly contrasts with SPHFs in a group-based setting, which can
handle classical ElGamal or Cramer-Shoup encryption schemes—for example

1 Word-independent SPHFs are also called KV-SPHF in [5], in reference to [23].
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[11,13]—without any modification of the decryption procedure. This is a techni-
cal hassle to carry when building on top of such an SPHF.

We therefore view as an important question to determine whether this caveat
is inherent to lattice-based SPHFs, or if it can be overcome. We shall find an
answer by re-introducing some harmonic analysis.

Contributions. Our main contribution consists in constructing SPHFs for stan-
dard lattice-based encryption schemes. We provide general theorems to ease the
proofs of correctness and security (a.k.a., smoothness or universality) of SPHFs
over standard lattice-based encryption schemes. We detail two particular instan-
tiations: one over an IND-CCA2 encryption scheme à la Micciancio-Peikert [27],
and one over an IND-CPA restriction of the same scheme. While the second
instantiation is over a simpler language, it is a word-independent SPHF. To
our knowledge, this is the first word-independent SPHF over any lattice-based
language. We remark that while Zhang and Yu construct an interesting approx-
imate word-independent SPHF over a lattice-based language in [30], its correct-
ness is only approximate contrary to our SPHF; and its language also relies on
simulation-sound non-interactive zero-knowledge proofs, which we do not know
how to construct just from lattice assumptions in the standard model.

As with many zero-knowledge-type primitives in the lattice setting [24,25]
and as with the SPHFs of [22] and of [30], there is a gap between the correctness
property and the smoothness property. Concretely, smoothness holds for cipher-
texts which do not decrypt to a given message, while correctness holds only for
honestly generated ciphertexts. However, contrary to [22], we use a standard
encryption scheme and do not need to tweak the decryption procedure nor the
language. We thus avoid the main caveat of the latter paper.

Applications. Having built these new SPHFs, we can now proceed with several
applications showing that the gap between smoothness (or universality) and
correctness is not an issue in most cases. We start by proposing an efficient
password-authenticated key exchange (PAKE) scheme in three flows. We do so
by plugging our first SPHF in the framework from [22]. Following the GK-PAKE
construction from [1] which is an improvement of the Groce-Katz framework
[17,19], we also obtain a PAKE in two flows over lattices in the standard model.
Finally, using our word-independent SPHF together with simulation-sound
non-interactive zero-knowledge proofs (SS-NIZK), by following [23], we obtain a
one-round PAKE.

Compared to the recent work of Zhang and Yu [30], which proposes the first
two-round lattice-based PAKE assuming in addition SS-NIZK, our two-round
PAKE does not require SS-NIZK. While there exist very efficient SS-NIZKs
in the random oracle model for the languages considered by Zhang and Yu,
constructing SS-NIZK in the standard model under a lattice-based assumption
remains an important open problem. Our two-round PAKE is thus the first
two-round PAKE solely based on lattice assumptions in the standard model. In
addition, our one-round PAKE assuming LWE and SS-NIZK is the first one-
round PAKE in this setting and closes an open problem of [30].
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In addition to PAKE, we also show how to construct honest-verifier zero-
knowledge proofs for any NP language from lattice-based SPHF. We conclude by
showing a relaxed version of witness encryption for some lattice-based languages.
Witness encryption is a very recent primitive introduced in [12] which enables a
user to encrypt a message to a given word of some NP language. The message
can be decrypted using a witness for the word.

Technical Overview. Let us now give a technical overview of our main contri-
bution, namely the constructions of new lattice-based SPHFs. We focus on the
language of dual-Regev ciphertexts c of 0: c = As + e ∈ Z

m
q , where A ∈ Z

m×n
q

is a public matrix, while s ∈ Z
n
q and e ∈ Z

m
q correspond to the randomness of

the ciphertext. The vector e is supposed to be small, i.e., c is close to the q-ary
lattice Λ generated by A.

Intuitively, an SPHF allows a prover knowing s and e to prove to a verifier
that c is indeed a ciphertext of 0. The naive and natural construction works as
follows.2 The verifier generates a small random vector hk = h ∈ Z

m
q called a

hashing key. It then “hashes” the ciphertext into a hash value H = R(〈h, c〉) ∈
{0, 1}, where R is a rounding function from Zq to {0, 1} to be chosen later. The
verifier also derives from hk = h, a projection key hp = p = Ath ∈ Z

n
q that

it sends to the prover. The prover can then compute the projected hash value
pH = R(〈p, s〉) from the projection key p and the randomness of the ciphertext
s and e. It can send this projected hash value to the verifier which will accept
the proof, if pH matches its hash value H.

We remark that if indeed c = As + e with e small enough (recall that h is
small as well):

〈h, c〉 = htAs + hte ≈ htAs = 〈p, s〉.
Hence, if R is carefully chosen, we can ensure that with high probability (e.g.,
at least 3/4), H = pH, and the verifier will accept the prover’s “proof.” This
property is called approximate correctness. An SPHF also needs to satisfy a
security property to be useful, called smoothness or universality, which ensures
that if c is far from the q-ary lattice Λ generated by A (in particular if it is
an encryption of 1), then given the projection key p (and A and c), the prover
cannot guess the hash value H with probability more than 1/2+negl(n). In [22],
Katz and Vaikuntanathan argued universality for ciphertexts c, for which every
multiple of c is far from the lattice Λ. To be useful in their PAKE application, the
decryption procedure of the encryption scheme therefore needs to be tweaked
to try to decrypt not only the ciphertext itself but also all its multiples. In
particular, their construction cannot work with super-polynomial moduli.

The question we wish to answer is whether universality holds without this
tweak. In other words, is the condition that jc is far from Λ for all j �= 0 truly

2 Actually, what we construct in this overview are bit-PHF and not SPHF, i.e., the
hash value defined later is just a bit and the security property is universality instead
of smoothness. Classical SPHFs can be derived from these bit-PHFs. See Fig. 2 and
Sect. 2.3.
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necessary or is it is an artifact of the proof? To approach this question, let us
discuss two case studies.

Two case studies. Let us first take a look at the special case where q is even, and
where c is a perfect encryption of 1: c = As + (0, . . . , 0, q/2)t for some s ∈ Z

n
q .

We observe that
〈h, c〉 = 〈p, s〉 + (hm mod 2) · q/2,

where hm is the last coordinate of h. In particular, the distribution of 〈h, c〉,
when h is drawn from a discrete Gaussian (over Z

m), conditioned on A, c and
Ath = p, is concentrated on merely 2 values out of q and is therefore far from
uniform.

Yet, assuming the discrete Gaussian has large enough parameter (more pre-
cisely, twice as large as the smoothing parameter of Z), we note that hm is close to
uniform modulo 2. In that case we observe that while 〈h, c〉 is not itself uniform,
the rounding R(〈h, c〉) is close to uniform when choosing the typical rounding
function R : x ∈ Zq �→ 	2x/q
 mod 2, regardless of the value of 〈p, s〉. So it
seems that the rounding function does not only help in ensuring approximate
correctness, but it can also improve universality of the scheme as well!

Unfortunately, we cannot always expect universality from this trick. Now
assume that q is divisible by 3, and set c = As + (0, . . . , 0, q/3)t. This time,

〈h, c〉 = 〈p, s〉 + (hm mod 3) · q/3

is (almost) uniformly distributed over three values, separated by q/3. In partic-
ular R(〈h, c〉) will take one value with probability (roughly) 1/3, and the other
value with probability (roughly) 2/3. Despite imperfect universality, this still
guarantees some entropy in Hash(h,A, c) knowing A, c, and p.

Harmonic analysis. The core of our work consists in using harmonic analysis
to better understand the caveat of [22], namely that universality is only proven
when all the multiples of the ciphertext are far from the lattice. For that, we
extend the rounding function R to a q-periodic signal R → R.

We proceed to a general analysis (Theorem 3.1), which shows that universal-
ity holds for ciphertexts c such that its multiples jc are far away from the lattice
Λ, for all non-zero integers j corresponding to non-zero real harmonics of the
rounding signal R.

This unravels the causes of the caveat in [22]: the weight of the j-th harmonic
of the naive rounding function R : x ∈ Zq �→ 	2x/q
 mod 2 (seen as a q-periodic
signal, as in Fig. 1a) is as large as Θ(1/j) for odd integers j.

First solution (Universality, Approximate Correctness, Sect. 3). Having identified
the source of the caveat, it becomes clear how to repair it: the rounding should
be randomized, with a weight signal for which only the first harmonic is non-zero
(in addition to the average), namely with a pure cosine weight:

Pr[R(x) = 1] :=
1
2

+
1
2

cos
(

2πx

q

)
.
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Fig. 1. Probability that the rounding functions R(x) of Sects. 3 and 4 output 1

This choice ensures universality as soon as just 1 · c = c is far from the lattice Λ
(Corollary 3.2 and Theorem 3.4).

This solution nevertheless only provides approximate correctness (correctness
holds with probability 3/4 + o(1), see Lemma 3.3), which is also problematic
for some applications. This can be solved using correctness amplification via
error-correcting codes, but at the price of preventing the resulting SPHF to be
word-independent.

Second solution (Imperfect Universality, Statistical Correctness, Sect. 4). In our
second instantiation, we therefore proceed to construct an almost-square round-
ing function (see Fig. 1d, � denotes the convolution operator), which offers sta-
tistical correctness3 and imperfect universality (namely the probability that a
prover knowing only hp = p can guess the hash value H is at most 1/3 + o(1),
as proved in Theorem 4.5). This instantiation requires a more subtle analysis,
taking account of destructive interferences.

We can then amplify universality to get statistical universality (i.e., the above
probability of guessing is at most 1/2 + negl(n) as in our first solution) while
keeping a statistical correctness. Contrary to the correctness amplification, this
transformation preserves the independence of the projection key from the cipher-
text. In particular, if the ciphertexts are from an IND-CPA scheme such as
dual-Regev, then we get the first word-independent SPHF over a lattice-based
language.

3 More precisely, the probability of error is poly(n, σ)/q, which is negl(n) for super-
polynomial approximation factors q/σ.
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We remark that our word-independent SPHF uses a super-polynomial modu-
lus q, to get statistical correctness. It seems hard to construct such an SPHF for
a polynomial modulus, as a word-independent SPHF for an IND-CPA encryp-
tion scheme directly yields a one-round key exchange (where each party sends a
ciphertext of 0 and a projection key, and where the resulting session key is the xor
of the two corresponding hash values) and we do not know of any lattice-based
one-round key exchange using a polynomial modulus.

Open Question. We see as the main open question to extend our techniques
to their full extent in the ring-setting. More precisely, our SPHF only produces
one-bit hashes, and is easily extended to the ring-setting still asking with 1-bit
hash values. This requires costly repetitions for applications, and one would hope
that a ring setting variant could directly produce Θ(n)-bit hash values.

Another important open question is to understand whether our techniques
can further be refined to construct lattice-based IND-CCA encryption schemes
without trapdoor, using ideas from the Cramer-Shoup encryption scheme [10,11]
for example.

Road Map. We start by some preliminaries on lattices and SPHFs in Sect. 2. In
particular, we define several variants of lattice-based (approximate) SPHFs (in
particular universal bit-PHFs) and formally show various transformations which
were only implicit in [22]. We also define the IND-CCA2 encryption scheme
“à la Micciancio-Peikert” we will be using. In Sect. 3, we then show step-by-step
how to construct an SPHF for IND-CCA2 ciphertexts à la Micciancio-Peikert
and how to avoid the caveat of the construction of [22]. In Sect. 4, we con-
struct a word-independent SPHF for ciphertexts under an IND-CPA scheme
à la Micciancio-Peikert, when the modulus is super-polynomial. In Sect. 5, we
conclude by exhibiting several applications.

Figure 2 summarizes our results and the paper road map. All the notions in
this figure are formally defined in Sect. 2.

2 Preliminaries

2.1 Notations

The security parameter is denoted n. The notation negl(n) denotes any function
f such that f(n) = n−ω(1). For a probabilistic algorithm alg(inputs), we may
explicit the randomness it uses with the notation alg(inputs ; coins), otherwise
the random coins are implicitly fresh.

Column vectors will be denoted by bold lower-case letters, e.g., x, and matri-
ces will be denoted by bold upper-case letters, e.g., A. If x is vector and A
is a matrix, xt and At will denote their transpose. We use [A|B] for the hor-
izontal concatenation of matrices, and [A ; B] = [At|Bt]t for the vertical con-
catenation. For x ∈ R

m, ‖x‖ will denote the canonical euclidean norm of x.
We will use B to denote the euclidean ball of radius 1, where, unless specifically
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Fig. 2. Summary of results

stated otherwise, the ball is m-dimensional. If x,y ∈ R
m, 〈x,y〉 will denote their

canonical inner product, and d(x,y) = ‖x − y‖ their distance. If E ⊂ R
m is

countable and discrete, we will denote d(x, E) = miny∈E d(x,y). For a function
f : E → C or f : E → R, f(E) will denote the sum

∑
x∈E f(x). For a, b ∈ R,

[a, b] = {x ∈ R | a ≤ x ≤ b} will denote the closed real interval with endpoints a
and b, 	a�, �a
, and 	a
 will respectively denote the largest integer smaller than
a, the smallest integer greater than a, and the closest integer to a (the largest
one if there are two). The xor of two bit strings a, b ∈ {0, 1}k is denoted by a⊕ b.
The cardinal of a finite set S is denoted |S|.

The modulus q ∈ Z will be taken as an odd prime, for simplicity.

2.2 Lattices and Gaussians

Lattices. An m-dimensional lattice Λ is a discrete subgroup of R
m. Equivalently,

Λ is a lattice if it can be written Λ = {Bs | s ∈ Z
n} where n ≤ m, for some B ∈

R
m×n, where the columns of B are linearly independent. In that case, B is called

a basis of Λ. Then, we define the determinant of Λ as det(Λ) =
√

det(BtB),
which does not depend on the choice of the basis B.

We define the dual lattice of Λ as

Λ∗ = {x ∈ Span
R
(Λ) | ∀y ∈ Λ, 〈x,y〉 ∈ Z}.

Recall the identity (Λ∗)∗ = Λ. Given A ∈ Z
m×n
q where m ≥ n, and modulus

q ≥ 2, we define the following q-ary lattices:

Λ(A) = {As | s ∈ Z
n
q } + qZ

m, Λ⊥(A) = {h ∈ Z
m | htA = 0t mod q}.
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Note that up to a scaling factor, Λ(A) and Λ⊥(A) are dual of each other: Λ(A) =
q · Λ⊥(A)∗. For a syndrome p ∈ Z

n
q , we define the coset of Λ⊥(A):

Λ⊥
p (A) = {h ∈ Z

m | htA = pt mod q}.

When there is no confusion about which matrix A is used, we will simply denote
these lattices Λ,Λ⊥, and Λ⊥

p respectively.

Gaussians. If s > 0 and c ∈ R
m, we define the Gaussian weight function on

R
m as

ρs,c : x �→ exp(−π‖x − c‖2/s2).

Similarly, if Λ is an m-dimensional lattice, we define the discrete Gaussian dis-
tribution over Λ, of parameter s and centered in c by:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.

When c = 0, we will simply write ρs and DΛ,s. We recall the tail-bound of
Banaszczyk for discrete Gaussians:

Lemma 2.1 ([3, Lemma 1.5], as stated in [28, Lemma 2.10]). For any
c > 1/

√
2π,m-dimensional lattice Λ and any vector v ∈ R

m:

ρs(Λ \ sc
√

mB) ≤ Cmρs(Λ), ρs((Λ + v) \ sc
√

mB) ≤ 2Cmρs(Λ).

where C = c
√

2πe · e−πc2 < 1.

An important quantity associated to a lattice is its smoothing parameter,
introduced by Micciancio and Regev [28]:

Definition 2.2 (Smoothing parameter [28]). For ε > 0, the smoothing
parameter of a lattice Λ, denoted ηε(Λ), is the smallest s > 0 such that
ρ1/s(Λ∗ \ {0}) ≤ ε.

The following lemma states that if the parameter of the discrete Gaussian is
above the smoothing parameter of the lattice, then the Gaussian weight of the
cosets of Λ are essentially the same:

Lemma 2.3 [29, Claim 3.8]. For any lattice Λ ⊂ R
m, c ∈ R

m, and s ≥ ηε(Λ):

(1 − ε)sm det(Λ∗) ≤ ρs(Λ + c) ≤ (1 + ε)sm det(Λ∗).

The smoothing parameter of the dual of a random q-ary lattice can be con-
trolled using the following:

Lemma 2.4 (Corollary of [27, Lemma 2.4]). Fix parameters n, q a prime,
and m ≥ Θ(n log q). Let ε ≥ 2−O(n) and s > 2ηε(Zm). Fix 0 < δ ≤ 1. Then, for
A uniformly random in Z

m×n
q , we have s ≥ η2ε/δ(Λ⊥(A)) except with probability

at most δ over the choice of A.

To instantiate the above, we recall the smoothing parameter of Z
m.

Lemma 2.5 (Corollary of [28, Lemma 3.3]). For all integer m ≥ 1, ε ∈
(0, 1/2), the smoothing parameter of Z

m satisfies ηε(Zm) ≤ C
√

log(m/ε) for
some universal constant C > 0.
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Harmonic analysis. Let us recall the exponential basis of periodic functions
and their vectorial analogues:

ex : y �→ exp(2iπxy), ex : y �→ exp(2iπ〈x,y〉).
The Fourier transform of f : R

m → C is defined by:

f̂(ξ) =
∫
Rm

f(x)e−2iπ〈x,ξ〉dx.

The Fourier transform of the Gaussian weight function ρs is ρ̂s = smρ1/s.
Recall the time-shift-phase-shift identity: if g(x) = f(x)ez (x) for some z ∈ R

m,
then ĝ(ξ) = f̂(ξ − z). Similarly, if g(x) = f(x + t) for some t ∈ R

m, then
ĝ(ξ) = f̂(ξ)et(ξ). For two functions f, g : R

m → C, we will denote by f � g their
convolution product:

f � g(x) =
∫
Rm

f(y)g(x − y)dy.

The Fourier transform turns convolutions into pointwise products, and
conversely:

f̂ � g(ξ) = f̂(ξ) · ĝ(ξ), f̂ · g(ξ) = f̂(ξ) � ĝ(ξ).

Finally, let us recall the Poisson summation formula:

Lemma 2.6 (Poisson summation formula). For any latticeΛ and f : Rm →C,
we have f(Λ) = det(Λ∗)f̂(Λ∗).

Learning with Errors

Definition 2.7 (Learning with Errors (LWE)). Let q ≥ 2, and χ be a
distribution over Z. The Learning with Errors problem LWEχ,q consists in, given
polynomially many samples, distinguishing the two following distributions:

– (a, 〈a, s〉 + e), where a is uniform in Z
n
q , e ← χ, and s ∈ Z

n
q is a fixed secret

chosen uniformly,
– (a, b), where a is uniform in Z

n
q , and b is uniform in Zq.

In [29], Regev showed that for χ = DZ,σ, for any σ ≥ 2
√

n, and q such
that q/σ = poly(n), LWEχ,q is at least as hard as solving worst-case SIVP for
polynomial approximation factors.

Trapdoor for LWE. Throughout this paper, we will use the trapdoors intro-
duced in [27] to build our public matrix A. Define gA (s,e) = As + e, let
Gt = In ⊗ gt, where gt = [1, 2, . . . , 2k] and k = �log q
 − 1, and let H ∈ Z

n×n
q

be invertible.

Lemma 2.8 [27, Theorems 5.1 and 5.4]. There exist two PPT algorithms
TrapGen and g−1

(·) with the following properties assuming q ≥ 2 and m ≥
Θ(n log q):
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– TrapGen(1n, 1m, q) outputs (T ,A0), where the distribution of the matrix A0

is at negligible statistical distance from uniform in Z
m×n
q , and such that

TA0 = 0, where s1(T ) ≤ O(
√

m) and where s1(T ) is the operator norm
of T , which is defined as maxx �=0 ‖Tx‖/‖x‖.4

– Let (T ,A0) ← TrapGen(1n, 1m, q). Let AH = A0 +[0 ; GH] for some invert-
ible matrix H called a tag. Then, we have TAH = GH. Furthermore, if
x ∈ Z

m
q can be written as AH s + e where ‖e‖ ≤ B′ := q/Θ(

√
m), then

g−1
AH

(T ,x,H) outputs (s,e).

More precisely, to sample (T ,A0) with TrapGen, we sample a uniform Ā ∈ Z
m̄×n
q

where m̄ = m − nk = Θ(n log q), and some R ← Dnk×m̄, where the dis-
tribution Dnk×m̄ assigns probability 1/2 to 0, and 1/4 to ±1. We output
T = [−R | Ink] along with A0 = [Ā ; RĀ]. Then, given a tag H, we have:
T (A0 + [0 ; GH])=GH.

Tag-IND-CCA2 LWE Encryption à la Micciancio-Peikert. For our appli-
cations, we will need a (labelled) encryption scheme that is IND-CCA2. This can
be built generically and efficiently from a tag-IND-CCA2 encryption scheme. The
formal definitions and the latter transformation are recalled in the full version [6].
Below, we describe a simplified variant of the scheme of [27, Sect. 6.3].

For this scheme, we assume q to be an odd prime. We set an encoding function
for messages Encode(μ ∈ {0, 1}) = μ · (0, . . . 0, �q/2
)t. Note that 2 ·Encode(μ) =
(0, . . . , 0, μ)t mod q.

Let R be a ring with a subset U ⊂ R× of invertible elements, of size 2n, and
with the unit differences property: if u1 �= u2 ∈ U , then u1 − u2 is invertible in
R. Let h be an injective ring homomorphism from R to Z

n×n
q (see [27, Sects. 6.1

and 6.3] for an explicit construction). Note that if u1 �= u2 ∈ U , then h(u1 − u2)
is invertible, and thus an appropriate tag H = h(u1 − u2) for the trapdoor.

Let (T ,A0) ← TrapGen(1n, 1m, q). The public encryption key is ek = A0,
and the secret decryption key is dk = T .

– Encrypt(ek = A0, u ∈ U , μ ∈ {0, 1}) encrypts the message μ under the public
key ek and for the tag u, as follows: Let Au = A0 + [0 ; Gh(u)]. Pick s ∈ Z

n
q ,

e ← Dm
Z,t where t = σ

√
m·ω(

√
log n). Restart if ‖e‖ > B, where B := 2t

√
m.5

Output the ciphertext:

c = Aus + e + Encode(μ) mod q.

4 The bound on s1(T ) holds except with probability at most 2−n in the original
construction, but for convenience we assume the algorithm restarts if it does not
hold.

5 This happens only with exponentially small probability 2−Θ(n) by Lemma 2.1.
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– Decrypt(dk = T , u ∈ U , c ∈ Z
m
q ) decrypts the ciphertext c for the tag u

using the decryption key dk as follows: Output6

{
μ if g−1

Au
(T , 2c, h(u)) = 2e + (0, . . . , 0, μ) where e ∈ Z

m and ‖e‖ ≤ B′,
⊥ otherwise.

Since �q/2
 is the inverse of 2 mod q, we have:

μ′ := Decrypt(T , u, c) �= ⊥ ⇐⇒ d(c − Encode(μ′), Λ(Au)) < B′.

Suppose that m ≥ Θ(n log q). Note that d(Encode(1), Λ(Au)) > B′ simultane-
ously for all u with overwhelming probability over the randomness of TrapGen
(using a union bound, as in [14, Lemma 5.3] for instance). Then, by Lemma 2.8,
the scheme is correct as long as B ≤ B′, or equivalently σm3/2 · ω(

√
log n) ≤ q.

Theorem 2.9. Assume m ≥ Θ(n log q). The above scheme is tag-IND-CCA2
assuming the hardness of the LWEχ,q problem for χ = DZ,σ.

The precise definition for tag-IND-CCA2 and the proof of the above theorem
are provided in the full version [6].

Remark 2.10. If a constant tag u is hardcoded in Encrypt and Decrypt, then
the resulting encryption scheme is just an IND-CPA scheme using trapdoors
from [27].

Lemma 2.11. Assume m ≥ Θ(n log q). With A0 sampled as above, except with
probability 2−n, it holds that for all u ∈ U , η2−n(Λ⊥(Au)) ≤ C

√
n for some

universal constant C.

Proof. Note that A0 is (about) uniform under the randomness of TrapGen, and
so is Au for a fixed u ∈ U . Apply Lemmas 2.4 and 2.5 with ε = 8−n/2 and
δ = 4−n to Au, ensuring that η2−n(Λ⊥(Au)) ≤ C

√
n except with probability δ.

Conclude by the union bound over the 2n elements u ∈ U . ��

2.3 Approximate Smooth Projective Hash Functions

We consider approximate smooth projective hash functions (approximate
SPHFs) defined in [22].

Languages. We consider a family of languages (Llpar,ltrap)lpar,ltrap indexed by
some parameter lpar and some trapdoor ltrap, together with a family of NP
languages (L̃lpar)lpar indexed by some parameter lpar, with witness relation R̃lpar,
such that:

L̃lpar = {x ∈ Xlpar | ∃w , R̃lpar(x ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar,

6 Note that the inversion algorithm g−1
(·) can succeed even if ‖e‖ > B′, depending on

the randomness of the trapdoor. It is crucial to reject decryption nevertheless when
‖e‖ > B′ to ensure CCA2 security. We also recall that B′ := q/Θ(

√
m).
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where (Xlpar)lpar is a family of sets. The trapdoor ltrap and the parameter lpar
are generated by a polynomial-time algorithm Setup.lpar which takes as input a
unary representation of the security parameter n. We suppose that membership
in Xlpar and R̃lpar can be checked in polynomial time given lpar and that mem-
bership in Llpar,ltrap can be checked in polynomial time given lpar and ltrap. The
parameters lpar and ltrap are often omitted when they are clear from context.

We are mostly interested in languages of ciphertexts.

Example 2.12 (Languages of Ciphertexts). Let (KeyGen,Encrypt,Decrypt) be a
labeled encryption scheme. We define the following languages (Setup.lpar =
KeyGen and (ltrap, lpar) = (dk, ek)):

L̃ = {(label, C,M) | ∃ρ, C = Encrypt(ek, label,M ; ρ)},

L = {(label, C,M) | Decrypt(dk, label, C) = M},

where the witness relation R̃ is implicitly defined as: R̃((label, C,M), ρ) = 1 if
and only if C = Encrypt(ek, label,M ; ρ).

Approximate SPHFs. Let us now define approximate SPHFs following [22].

Definition 2.13. Let (L̃lpar ⊆ Llpar,ltrap ⊆ Xlpar)lpar,ltrap be languages defined as
above. An approximate smooth projective hash function (SPHF) for these lan-
guages is defined by four probabilistic polynomial-time algorithms:

– HashKG(lpar) generates a hashing key hk for the language parameter lpar;
– ProjKG(hk, lpar, x ) derives a projection key hp from the hashing key hk, the

language parameter lpar, and the word x ;
– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν (for some positive integer

ν = Ω(n)) from the hashing key hk, for the word x ∈ Xlpar and the language
parameter lpar;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν from
the projection key hp, and the witness w , for the word x ∈ L̃lpar (i.e.,
R̃lpar(x ,w) = 1) and the language parameter lpar;

which satisfy the following properties:

– Approximate correctness. For any n ∈ N, if (ltrap, lpar) ← Setup.lpar(1n),
with overwhelming probability over the randomness of Setup.lpar, for any x ∈
L̃lpar,ltrap (and associated witness w), the value H output by Hash(hk, lpar, x )
is approximately determined by ProjKG(hk, lpar, x ) relative to the Hamming
metric. More precisely, writing HW(a, b) the Hamming distance between two
strings a, b ∈ {0, 1}ν , the SPHF is ε-correct, if:

Pr
hk

[HW(Hash(hk, lpar, x ),ProjHash(hp, lpar, x ,w)) > ε · ν] = negl(n),

where the probability is taken over the choice of hk ← HashKG(lpar) and the
random coins of Hash and ProjHash.7

7 Contrary to previously known SPHFs, some of our SPHFs have randomized algo-
rithms Hash and ProjHash.
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– Smoothness. For any n ∈ N, if (ltrap, lpar) ← Setup.lpar(1n), with over-
whelming probability over the randomness of Setup.lpar, for all x ∈ X \ Llpar

the following distributions have statistical distance negligible in n:{
(lpar, x , hp,H)

∣∣∣∣ hk ← HashKG(lpar), H ← Hash(hk, lpar, x ),
hp = ProjKG(hk, lpar, x )

}
,

{
(lpar, x , hp,H)

∣∣∣∣ hk ← HashKG(lpar), H ← {0, 1}ν
,

hp = ProjKG(hk, lpar, x )

}
.

Finally, an approximate SPHF is called an SPHF if it is 0-correct. In that
case, we also say that the SPHF is statistically correct.

Approximate Word-Independent SPHFs. For some applications, in par-
ticular the one-round PAKE from [23], a stronger notion of SPHF is required,
where the projection key hp does not depend on the word x and the smoothness
holds even if the word is chosen adaptively after seeing the projection key. We
call such SPHFs approximate word-independent SPHFs and we formally define
them in the full version [6].

Approximate Universal Bit-PHFs. Instead of directly building (approxi-
mate) (word-independent) SPHF, we actually build what we call (approximate)
(word-independent) universal bit-PHF.

Definition 2.14. An approximate universal bit projective hash function (bit-
PHF) is defined as in Definition 2.13 except that the hash values are bits (ν = 1),
and that approximate correctness and smoothness are replaced by the following
properties:

– Approximate correctness. The bit-PHF is ε-correct if for any n ∈ N, if
(ltrap, lpar) ← Setup.lpar(1n), with overwhelming probability over the random-
ness of Setup.lpar, for any x ∈ L̃lpar,ltrap:

Pr
hk

[Hash(hk, lpar, x ) = ProjHash(hp, lpar, x ,w)] ≥ 1 − ε,

where the probability is taken over the choice of hk ← HashKG(lpar) and the
random coins of Hash and ProjHash.

– Universality.8 The bit-PHF is ε-universal if, for any n ∈ N, if
(ltrap, lpar) ← Setup.lpar(1n), with overwhelming probability over the random-
ness of Setup.lpar, for any word x ∈ X \ Llpar, any projection key hp:∣∣∣∣2 · Pr

hk
[Hash(hk, lpar, x ) = 1 | hp = ProjKG(hk, lpar, x )] − 1

∣∣∣∣ ≤ ε,

where the probability is taken over the choice of hk ← HashKG(lpar) and the
random coins of Hash. The bit-PHF is said to be statistically universal if it is
negl(n)-universal. Otherwise, the bit-PHF is said to be imperfectly universal.

8 Our definition of universality is equivalent to the one of Cramer and Shoup in [11],
up to the use of language parameters.
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An approximate bit-PHF is called a bit-PHF if it is negl(n)-correct. In that
case, the bit-PHF is said to be statistically correct. Furthermore, an (approx-
imate) bit-PHF is called an (approximate) (word-independent) bit-PHF, if hp
does not depend on the word x .

From Bit-PHFs to SPHFs. In the full version [6], we show how to generically
convert an approximate ε-correct negl(n)-universal bit-PHF into an approximate
(ε + ε′)-correct SPHF (for any positive constant ε′) and then into an SPHF.
This is used in our first construction in Sect. 3. These transformations were
implicit in [22]. We should point out that even if the original bit-PHF was
word-independent, the resulting (approximate) SPHF would still not be word-
independent: its projection key depends on the word x . If there was way to avoid
this restriction, we actually would get the first one-round key exchange based
on LWE with polynomial modulus.

In the full version [6], we also show how to generically convert an ε-universal
word-independent bit-PHF into a word-independent SPHF, by amplifying the
smoothness or universality property (assuming 1 − ε ≥ 1/poly(n)). We should
point out that the original word-independent bit-PHF is supposed to be statis-
tically correct, contrary to the previous transformation where it could just be
approximately correct.

We recall that the above transformations were summarized in Fig. 2 together
with our results.

3 SPHF for IND-CCA2 Ciphertexts

As we have shown in Sect. 2.3, there exists a generic transformation from approx-
imate bit-PHF to a regular approximate SPHF or even classical SPHF. So, in
this section, we are going to focus on building such an approximate bit-PHF. For
the sake of simplicity, in this section we often call such an approximate bit-PHF
simply a bit-PHF.

3.1 Languages and Natural Bit-PHF

Languages. We want to construct an (approximate) bit-PHF for the lan-
guage of ciphertexts (Example 2.12) for our IND-CCA2 LWE encryption à la
Micciancio-Peikert described in Sect. 2.2. More generally our approach works
with typical trapdoored LWE encryption schemes [9,14].

We first remark that it is sufficient to construct a bit-PHF for the tag-IND-
CCA2 version, i.e., for the following languages:

L̃ = {(u, c, μ) | ∃s,e, c ← Encrypt(A0, u, μ; s,e)}
⊆ {(u, c, μ) | d(c − Encode(μ), Λ(Au)) ≤ B},

L = {(u, c, μ) | Decrypt(T , u, c) = μ}
= {(u, c, μ) | d(c − Encode(μ), Λ(Au)) ≤ B′},
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where u ∈ U , c ∈ Z
m
q , μ ∈ {0, 1}, (ltrap, lpar) = (T ,A0) ← TrapGen(1n, 1m, q) =

Setup.lpar(1n), and where Encrypt,Decrypt, B, and B′ are defined in Sect. 2.2.
Indeed, the signature parts, used to transform the tag-IND-CCA2 encryption
scheme into a labeled IND-CCA2 encryption scheme (see the full version [6]),
can be publicly checked by anyone, therefore one can generically adapt the bit-
PHF by overriding Hash to a fresh uniform random value when the signature is
invalid.

We can now fix the tag u ∈ U for the rest of this section, and will simply
denote A for Au and Λ for Λ(Au). Also, note that (u, c, 1) ∈ L̃ (resp. L )
is equivalent to (u, c − Encode(1), 0) ∈ L̃ (resp L ). Therefore we can focus
only on the languages of ciphertexts of 0 for a fixed tag u, and we restrict our
languages to

L̃ = {c ∈ Z
m
q | ∃s,e, c ← Encrypt(A0, 0, u; s,e)} ⊆ {c ∈ Z

m
q | d(c, Λ) ≤ B},

L = {c ∈ Z
m
q | Decrypt(T , c, u) = 0} = {c ∈ Z

m
q | d(c, Λ) ≤ B′},

for the rest of this section.

Natural Bit-PHF. A natural approach to define an approximate bit-PHF is
the following:

– HashKG(A) outputs hk = h ← Dm
Z,s;

– ProjKG(h,A) outputs hp = p = Ath;
– Hash(h,A, c) outputs H = R(〈h, c〉);
– ProjHash(p,A, c, (s,e)) outputs pH = R(〈p, s〉);

where R is a rounding function to be chosen later and s > 0 is a parameter to
be chosen later too.

3.2 Universality

Naive Approach. For now let us just assume R : Zq → Z2 to be the usual
rounding function R(x) = 	2x/q
 mod 2, as in [22]. We have:

〈h, c〉 = ht(As + e) = 〈p, s〉 + 〈h,e〉 ≈ 〈p, s〉,

which guarantees correctness whenever c ∈ L̃ . Indeed 〈h, c〉 is almost uniform
for large enough parameter s, therefore R(〈h, c〉) = R(〈p, s〉) will hold except
with probability ≈2|〈h,e〉|/q.

For universality, we need to prove that Hash(h,A, c) = 〈h, c〉 is uniform
given the knowledge of A,p and c, when c �∈ L . Unfortunately, this seems to
require a stronger assumption than c �∈ L , more precisely, that j · c �∈ L for all
j ∈ Z

∗
q : this is the key lemma [14, Lemma 5.3] (from [22, Lemma 2]).

The caveat is that it is necessary not only for c to be far from Λ, but also for
all its non-zero multiples modulo q: the language is extended to L ′ = {c | ∃j ∈
Z

∗
q , jc ∈ L }. Algorithmically, the price to pay is that the decryption function



660 F. Benhamouda et al.

must be changed, and that the usual LWE decryption now must be attempted
for each multiple jc of c to ensure universality for words outside L ′. This makes
the new decryption very inefficient since q is typically quite a large poly(n). This
change of language is also a technical hassle for constructing protocols above the
bit-PHF (or the resulting SPHF).

Note that the key lemma ensures uniformity of 〈h, c〉, while we only need the
uniformity of R(〈h, c〉). We show in the technical overview of the introduction
that this condition is truly necessary and is not an artifact of the proof, at least
for j = 3 by considering c = As+(0, . . . , 0, q/3)t (with q assumed to be divisible
by 3 for the sake of simplicity).

But what should happen in more general cases?

Harmonic Analysis. Let us fix p ∈ Z
n
q and c ∈ Z

m
q . For the rest of the section,

we restrict the rounding function R to have binary values {0, 1}, yet this function
may be probabilistic.

We want to study the conditional probability P = Pr[R(〈h, c〉) = 1 | htA =
pt], where the probability is taken over the randomness of R and the distribution
of h (conditioned on htA = pt); we want P to be not too far from 1/2 when
c �∈ L . For x ∈ Z, denote by r(x) the probability that R(x mod q) = 1. Because
r : Z → [0, 1] is q-periodic, it can be interpolated over the reals by a function of
the form:

r =
∑
j∈Zq

r̂j · ej/q,

where the complex values r̂j ∈ C are the Fourier coefficients of r : Z → [0, 1]. Note
that as we are only interested in the restriction of r on Z (which is q-periodic),
we only need q harmonics to fully describe r. Also note that r(x) ∈ [0, 1] for all
x ∈ Zq, so that |r̂j | ≤ 1 for all j.

We rewrite:

P =
∑

h∈Λ⊥
p

ρs(h)
ρs(Λ⊥

p )
· r(〈h, c〉) =

1
ρs(Λ⊥

p )

∑
j∈Zq

r̂j

∑
h∈Λ⊥

(ρs · ejc/q)(h + h0),

where h0 is any vector of the coset Λ⊥
p . We will now apply the Poisson Summa-

tion Formula (Lemma 2.6): f(Λ⊥) = det((Λ⊥)∗)f̂((Λ⊥)∗) = det(1q Λ)f̂( 1q Λ). Set
f(h) = (ρs · ejc/q)(h + h0). We have:

f̂ = ρ̂s · ev · eh0 = smρ1/s,v · eh0 .

We proceed:

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Zq

r̂j · (ρ1/s,jc/q · eh0)
(

1
q
Λ

)

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Zq

r̂j ·
∑
y∈Λ

(ρq/s,jc · eh0/q) (y) .
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Assuming s ≥ ηε(Λ⊥) for some negligible ε ensures that det((Λ⊥)
∗
)sm

ρs(Λ⊥
p )

= 1 +
O(ε) by Lemma 2.3. We shall split the sum into three parts:

– j = 0,y = 0, contributing exactly r̂0 (where r̂0 = 1
q

∑
x∈Zq

r(x) ∈ [0, 1]),
– j = 0,y �= 0, contributing at most |r̂0|ρq/s(Λ \ {0}) in absolute value,
– j �= 0, contributing at most |r̂j |ρq/s(Λ − jc) in absolute value for each j.

We can now bound P :∣∣∣∣ P

1 − O(ε)
− r̂0

∣∣∣∣ ≤ |r̂0|ρq/s(Λ \ {0}) +
∑

j∈Zq\{0}
|r̂j |ρq/s(Λ − jc).

We now want to bound the right-hand side using Lemma2.1, with c = 1
for simplicity. Fix j ∈ Zq \ {0}, and let α = q

√
m/s. If α < d(jc, Λ), then

(Λ − jc) \ αB = (Λ − jc). Also, note that ρq/s(Λ) = ρ1/s( 1q Λ) = ρ1/s((Λ⊥)∗). So,
as long as s ≥ ηε(Λ⊥) for some negligible ε (which we already assumed earlier),
it holds that ρq/s(Λ) ≤ 1 + ε by definition of ηε(Λ⊥). Under those conditions,
ρq/s(Λ − jc) = ρq/s((Λ − jc) \ αB) ≤ 2Cmρq/s(Λ) ≤ 2Cm(1 + ε) is negligible.
Using Lemma 2.1, we deduce the following:

Theorem 3.1. Fix A ∈ Z
m×n
q , c ∈ Z

m
q , and p ∈ Z

n
q , where m is polynomial in

n. Fix a probabilistic rounding function R : Zq → {0, 1} such that for all x ∈ Zq,

Pr[R(x) = 1] = r(x) =
∑
j∈J

r̂jej/q(x),

where J ⊆ Zq and r̂j ∈ C. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Assume
furthermore that

∀j ∈ J \ {0}, s · d(jc, Λ(A)) > q
√

m.

Denote P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is taken
over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned on
htA = pt. Then:

|P (c) − r̂0| ≤ (2 + O(ε)) |J |Cm + O(ε) where C =
√

2πe · e−π < 1.

Setting up the Rounding Function. If one wishes to avoid having to attempt
decryption of many multiples of the ciphertext c, one should choose a probabilis-
tic rounding function with a small number of harmonics.

In particular, the typical deterministic rounding function R(x) = 	2x/q
 mod
2—the so-called square-signal—and has harmonic coefficients r̂j decreasing as
Θ(1/j) in absolute value (for odd j ∈ {�−q/2
, . . . , 	q/2�}). With such a round-
ing function, one would still need to attempt trapdoor inversion for q/2 many
multiples of c, as it was already the case in [22].

On the contrary, one may easily avoid costly harmonics by setting the round-
ing function so that 2r(x) = 1 + cos(2πx/q), which has Fourier coefficients
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r̂0 = 1/2, r̂1 = r̂−1 = 1/4, and r̂j = 0 for any other j.9 More precisely, we have
the following corollary by remarking that when c /∈ L and α = q

√
m/s < B′,

we have d(c, Λ) ≥ B′ and (Λ − c) \ (αB) = (Λ − c).

Corollary 3.2. Let A ∈ Z
m×n
q with m = Θ(n log q), and fix p ∈ Z

n
q . Let B′ =

q/Θ(
√

m), and L = {c ∈ Z
m
q | d(c, Λ(A)) ≤ B′}. Suppose that R satisfies:

Pr[R(x) = 1] = r(x) =
1
2

+
1
2

cos
(

2πx

q

)
, (1)

and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also that: s > q
√

m
B′ .

Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is
taken over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned
on htA = pt. Then, for all c �∈ L :

|2P (c) − 1| ≤ 2 (6 + O(ε))Cm + O(ε) ≤ negl(n),

where C =
√

2πe · e−π < 1.

3.3 Approximate Correctness

Let us check that the scheme above achieves approximate correctness, that is,
for all c ∈ L̃ ,Hash(h,A, c) = ProjHash(p,A, c, (s,e)) with probability substan-
tially greater than 1/2. Using our rounding function R, this means that we want
R(〈h, c〉) and R(〈p, s〉) to output the same bit with some probability Q sub-
stantially greater than 1/2, where the two applications of R use independent
coins.

Recall that r(x) is the probability that the rounding function R outputs 1
on input x, and that for c ∈ L̃ , we can write 〈h, c〉 = 〈p, s〉 + 〈h,e〉, where
c = As + e. We argue that as long as 〈h,e〉 is small with respect to q, then our
scheme achieves approximate correctness:

Lemma 3.3. Fix A ∈ Z
m×n
q and c = As + e ∈ L̃ , where m and q are polyno-

mial in n, and where ‖e‖ ≤ B = 2t
√

m. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n).
Assume that R is the cosine rounding function (Eq. (1)). Let Q be the probability
that R(〈Ath, s〉; coins1) and R(〈h, c〉; coins2) output the same bit, over the ran-
domness of h ← Dm

Z,s, and the randomness of the two independent coins coins1
and coins2 used by R. If tsm = o(q), then Q = 3/4 + o(1).

Proof. As s ≥ ηε(Λ⊥) for ε = negl(n), the distribution of htA, when h ← Dm
Z,s,

is at negligible statistical distance from uniform.
Therefore, Q is negligibly close to Pr[R(x; coins1) = R(x + 〈h,e〉; coins2)]

where the probability is taken over uniform x ∈ Zq, h ← Dm
Z,s, and the random-

ness of the two independent coins coins1 and coins2 used by R.
9 Of course, one could also obtain perfect universality by setting a constant rounding

function r(x) = 1/2, and even avoid the first harmonic, but there is no way to reach
correctness even with amplification in that case.
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Then:

Q =
1
q

∑
x∈Zq

(r(x)r(x + 〈h,e〉) + (1 − r(x))(1 − r(x + 〈h,e〉))) + negl(n)

=
1
2

+
1
q

∑
x∈Zq

1
2

cos
(

2π
x

q

)
cos

(
2π

x + 〈h,e〉
q

)
+ negl(n).

As tsm = o(q), we have 〈h,e〉 = o(q) with overwhelming probability. As cos
is a Lipschitz continuous function, we can approximate the sum by an integral:
Q = 1

2 + 1
2

∫ 1

0
cos2(2πx)dx + o(1) = 3

4 + o(1). ��

3.4 Wrap-Up

Consider the bit-PHF described in Sect. 3.1 instantiating R with the cosine
rounding function (Eq. (1)), together with the encryption scheme of Sect. 2.2.
Let us now show that all the parameters can be instantiated to satisfy secu-
rity and correctness of the encryption scheme, simultaneously with statistical
universality and approximate correctness of the bit-PHF.

IND-CCA2. To base the security of the scheme described in Sect. 2.2 on LWEχ,q

for χ = DZ,σ and σ = 2
√

n,10 we apply Theorem 2.9 with m = Θ(n log q) and
t =

√
mn · ω(

√
log n).

Decryption Correctness. For the encryption scheme to be correct, we want
B < B′, recalling that B := 2t

√
m and B′ := q/Θ(

√
m).

Universality. In Corollary 3.2, we used the hypothesis s ≥ ηε(Λ⊥(Au)) for some
negligible ε. Assuming s ≥ Θ(

√
n), one can apply Lemma 2.11, to ensure the

above hypothesis for ε = 2−n simultaneously for all u ∈ U except with probability
2−n over the randomness of TrapGen.

Still in Corollary 3.2, we also needed s > q
√

m/B′, where B′ = q/Θ(
√

m).
This holds for s = Θ(m).

Approximate correctness. For Lemma 3.3, we assumed that tsm = o(q). Equiva-
lently, it is sufficient that sm3/2n1/2ω(

√
log n) = o(q).

Summary. Therefore, all the desired conditions can be satisfied with q = Θ̃(n3),
m = Θ̃(n), s = Θ̃(n), and t = Θ̃(n). We have proved the following:

Theorem 3.4. Set parameters q = Θ̃(n3),m = Θ̃(n), s = Θ̃(n), t = Θ̃(n).
Define a probabilistic rounding function R : Zq → {0, 1} such that Pr[R(x) =
1] = 1/2+cos (2πx/q) /2. Then, (i) the encryption scheme of Sect. 2.2 is correct
and tag-IND-CCA2 under the hardness of LWEχ,q for χ = DZ,2

√
n; and (ii) the

bit-PHF described in Sect. 3.1 achieves statistical universality and (1/4 − o(1))-
correctness.
10 This is the smallest parameter σ for which LWEχ,q is known reduce to a worst-case

problem. One may of course choose to use a different width for the LWE error, and
derive different appropriate parameters.
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4 Word-Independent SPHF for IND-CPA Ciphertexts

4.1 Overview

In the previous section, we built a bit-PHF with negl(n)-universality but approx-
imate correctness. Even though correctness can be amplified, the transformation
inherently makes the new projection key depend on the word we want to hash,
even if that was not the case for the initial bit-PHF.

We now build a bit-PHF with statistical correctness and K-universality for
some universal constant K < 1 (but using a super-polynomial LWE modulus q).
The main benefit of such a construction is that amplifying universality can be
done regardless of the word we want to hash, that is, the projection key will not
depend on the word. When the tag u of the ciphertext c is known in advance or is
constant (in which case, the encryption scheme is only IND-CPA instead of IND-
CCA2), we therefore get a word-independent bit-PHF which can be transformed
into a word-independent SPHF. This is the first word-independent SPHF for any
lattice-based language.

We use the same natural approach as described in Sect. 3.1. The only differ-
ences with the construction in the previous section are the probabilistic rounding
function we use, and the parameters necessary to argue correctness and univer-
sality. Recall that in the last section, we used a rounding function with only low
order harmonics to get negl(n)-universality.

The starting point is the observation that, for the naive square rounding
introduced in the previous section, the correctness is statistical, but clearly not
negl(n)-universal, depending on which word c is hashed (as seen in the two case
studies in the technical overview in the introduction, where j · c is close to Λ for
some j ∈ Z

∗
q). However, the distribution of R(〈h, c〉) conditioned on htA might

still have enough entropy to give us K-universality, for some constant K < 1. In
other words, we can hope that |2 · Pr[R(〈h, c〉) = 1 | p] − 1| ≤ K for all c ∈ Z

m
q .

Let R� be a rounding function defined by: R�(x) = 1 + 	2x/q
 mod 2, that
is:

∀x ∈ [−q/2, q/2], R�(x) =

{
1 if x ∈ [−q/4, q/4),
0 otherwise.

Using this rounding function gives good correctness: when s ≥ ηε(Λ⊥), 〈h, c〉
is statistically close to uniform in [−q/2, q/2], and therefore R�(〈h, c〉) is a uni-
form bit up to some statistical distance O(ε+1/q) (due to the fact that q is odd).
So for super-polynomial q, we get statistical correctness using R� as rounding
function, as long as 〈h,e〉 is sufficiently small with respect to q.

For universality, we express the probability distribution defined by R�, seen
as a q-periodic function over R, as a Fourier series:

∀x ∈ [−q/2, q/2], r�(x) := Pr[R�(x) = 1] =
∑
j∈Z

r̂�
j · ej/q(x),

where r̂�
j are the Fourier coefficients of the q-periodic function r� : R → R.
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However, one can show that |r̂�
j | = Θ(1/j) (for odd integers j). Therefore, it

is not clear how to show universality with a similar analysis as in Sect. 3.2: the
total contribution of harmonics j such that j · c is close to Λ could potentially
be arbitrarily large!

To solve this issue, we consider a new rounding function R, which has the
same probability distribution as R� but on a negligible fraction of integer points
(so that statistical correctness is preserved), and such that its Fourier coefficients
of high enough order have small enough amplitude.

Then, we use the observation that the set of integers j such that j · c is in Λ
is an ideal of Z, which is proper if c itself is not in Λ. More generally, the set of
small integers j ∈ Z such that j · c is close to Λ is contained in an ideal of Z;
furthermore, if c is far from Λ, then the smallest such ideal is a proper ideal of Z.
This will allow us to discard all harmonics whose order is not in this ideal. As
we will show, the remaining harmonics necessarily have destructive interferences,
which allows us to establish K-universality for some constant K < 1.

The roadmap follows. First, in Sect. 4.2, we smooth the discontinuities of the
probability distribution of the square rounding function r� so that the Fourier
coefficients of high order have small magnitude, but such that we keep statistical
correctness. Then to prove universality, in Sect. 4.3, we show that for c far from
Λ, the set of small j ∈ Z such that j ·c is close to Λ is contained in a proper ideal
of Z. Finally, in Sect. 4.4 we show that the distribution of R(〈h, c〉) conditioned
on htA has some bounded min entropy.

4.2 Smoothing the Discontinuities: A New Rounding Function

In the following, unless specified otherwise, we will see Zq as embedded in
{�−q/2
, . . . , 	q/2�}, and the canonical period we use for q-periodic functions
will be [−q/2, q/2]. Recall that r� satisfies:

∀x ∈ [−q/2, q/2], r�(x) =

{
1 if |x| ∈ [−q/4, q/4),
0 otherwise.

In particular, r� has two discontinuities on q/4 and on −q/4. To smooth those
discontinuities, we consider the convolution product of the square signal r� with
a rectangular signal of appropriate width T such that T/q = negl(n). More
precisely, consider the q-periodic function r� defined on [−q/2, q/2] by:

∀x ∈ [−q/2, q/2], r�(x) =

{
1
2T if |x| ≤ T,

0 otherwise.

We define a new rounding function R such that for all x ∈ R (see Fig. 1):

Pr[R(x) = 1] := r(x) := (r� � r�)(x) :=
∫ q/2

−q/2

r�(u) · r�(x − u) du,

where, in this context, � corresponds to the convolution of q-periodic functions.
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Intuitively, this corresponds to replace the discontinuities on r�(±q/4) by
a linear slope ranging from ±q/4 − T to ±q/4 + T (see Fig. 1). Therefore, over
[−q/2, q/2], the functions r and r� only differ on at most 4�T 
 integer points (the
points on the slope). Recall that if s ≥ ηε(Λ⊥) for some negligible ε, then 〈h, c〉
is statistically close to uniform in {�−q/2
, . . . , 	q/2�}. Therefore, if 〈h,e〉/q and
T/q are negligible, then:

Pr[R(〈h, c〉) �= R(〈p, s〉)] ≤ negl(n),

and we get statistical correctness using such a rounding function.

Lemma 4.1 (Correctness). Suppose that s ≥ ηε(Λ⊥) for some ε = negl(n),
tsm/q = negl(n), and T/q = negl(n). Assume that R satisfies: Pr[R(x) = 1] =
r(x) = (r� � r�)(x). Then the approximate bit-PHF defined in Sect. 3.1 achieves
statistical correctness.

Furthermore, r is q-periodic, and can therefore be expressed as a Fourier
series:

∀x ∈ [−q/2, q/2], r(x) =
∑
j∈Z

r̂jej/q(x),

with Fourier coefficients r̂j . As r = r� � r�, we have r̂j = q · r̂�
j · r̂�

j for j ∈ Z,
where r̂�

j and r̂�
j are the Fourier coefficients of the q-periodic functions r� and r�

respectively. Thus, r̂0 = 1/2, and for j ∈ Z \ {0}, the jth harmonic of r is:

r̂j =
q

2π2Tj2
· sin(πj/2) · sin(2πTj/q) ≤ q

19Tj2
. (2)

4.3 Inclusion of Contributing Harmonics in a Proper Ideal

In the following, we focus on showing that even though we do not have negl(n)-
universality using this new rounding function, we still have some K-universality
for some constant K < 1 (that we can amplify).

We start by a simple useful lemma:

Lemma 4.2. Let N = kq/T for some k. Then
∑

j∈Z, |j|>N |r̂j | ≤ 1/k.

Proof. It follows from Eq. (2) and the fact that for all N > 2:
∑+∞

k=N
1
k2 ≤∑+∞

k=N

(
1

k−1 − 1
k

)
= 1

N−1 . ��

Suppose now that d(c, Λ) ≥ B′. Consider the set of j ∈ Z such that
d(j · c, Λ) ≤ δ for some appropriately chosen δ. Let P = P (c) = Pr[R(〈h, c〉) =
1 | htA = pt], for our new rounding function R. For any h0 ∈ Λ⊥

p , we can show
similarly to Sect. 3.2, that:

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Z

r̂j

∑
y∈Λ

(ρq/s,jc · eh0/q)(y), (3)
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where det((Λ⊥)
∗
)sm

ρs(Λ⊥
p )

= (1 + O(ε)) as long as s ≥ ηε(Λ⊥). Note that
∑

|j|≥N |r̂j |
can be made arbitrarily small for appropriate N , by Lemma 4.2. Thus only the
terms of the sum corresponding to |j| ≤ N will have a substantial contribution
to the sum above (recall that ρq/s(Λ − jc) ≤ 1 + ε for all c, for appropriate
parameters). Therefore we only consider those small j such that |j| < N for some
appropriately chosen N (with respect to q). Furthermore, for large enough δ, the
terms corresponding to indices j such that d(j · c, Λ) > δ also have a negligible
contribution to the sum by Lemma2.1. For appropriate parameters N and δ to
be instantiated later, let:

J = {j ∈ Z | |j| < N ∧ d(j · c, Λ) ≤ δ}. (4)

As a subset of Z, J is contained in the ideal j0Z of Z, where j0 = gcd(J).
Let us show that it is a proper ideal of Z, i.e., j0 �= 1. To do so, we rely on the
existence of small Bézout coefficients.

Lemma 4.3 (Corollary of [26, Theorem 9]). Let a1, . . . , ak ∈ Z, and let
g = gcd(a1, . . . , ak). Then there exists u1, . . . , uk ∈ Z such that the following
conditions hold:

k∑
i=1

uiai = g,
k∑

i=1

|ui| ≤ k

2
max |ai|.

We can now prove that J is a proper ideal of Z:

Lemma 4.4. Suppose that δN2 < B′. Then, for c ∈ Z
m
q such that d(c, Λ) > B′,

the set J = {j ∈ Z | |j| < N ∧ d(j · c, Λ) ≤ δ} is contained in a proper ideal of Z.

Proof. Let j0 = gcd(J). By definition, J ⊆ j0Z. Suppose by contradiction that
j0 = 1. By Lemma 4.3, there exists a set of integers {uj , j ∈ J} such that∑

j∈J uj ·j = 1 and then
∑

j∈J uj ·(j ·c) = c. But by definition of J, d(j ·c, Λ) ≤ δ
for all j ∈ J , and therefore:

d(c, Λ) ≤ δ ·
∑
j∈J

|uj | ≤ δ · |J |
2

max
j∈J

|j| ≤ δN2 < B′,

which is absurd as we assumed d(c, Λ) > B′. ��

4.4 Imperfect Universality from Destructive Interferences

We now want to quantify how biased R(〈h, c〉) conditioned on htA can be when
c is far from Λ. We start from Eq. (3):

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Z

r̂j

∑
y∈Λ

(ρq/s,jc · eh0/q)(y),

where det((Λ⊥)
∗
)sm

ρs(Λ⊥
p )

= 1 + O(ε) as long as s ≥ ηε(Λ⊥).
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We split the sum into three parts P = P1 + P2 + P3:

P1. |j| > N ∧ j �∈ j0Z: those indices have a negligible contribution to the sum
by Lemma 4.2.

P2. |j| ≤ N ∧ j �∈ j0Z: those indices contribute negligibly since ρq/s(Λ − jc) is
small as jc is far from Λ (by definition of δ and J ⊂ j0Z).

P3. j ∈ j0Z: the contributing terms. Unlike the previous ones we won’t use
absolute bounds for each term, and must consider destructive interferences.

It remains to study P3, for which a similar computation as in Sect. 3.2 gives:

P3 =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈j0Z

r̂j

∑
y∈Λ

(ρq/s,jc · eh0/q)(y)

=
∑

h∈Λ⊥
p

ρs(h)
ρs(Λ⊥

p )

∑
j∈j0Z

r̂jej/q(〈h, c〉).

If we were to have j0 = 1 (i.e. j0Z = Z), we could compute the inner sum
simply by inverse Fourier transform, evaluating r at x = 〈h, c〉. Instead, we note
that selecting only the harmonics in j0Z, corresponds in the temporal domain to
averaging the function r over all its temporal shifts by multiples of q/j0. More
formally, recall the identity:

j0−1∑
k=0

ej/j0(k) =

{
j0 if j ∈ j0Z

0 otherwise.

We may now rewrite:

∑
j∈j0Z

r̂jej/q(x) =
1
j0

∑
j∈Z

r̂jej/q(x)
j0−1∑
k=0

ej/j0(k) =
1
j0

j0−1∑
k=0

r(x + k
q

j0
),

Note that 1
j0

∑j0−1
k=0 r�(x + k q

j0
) is not too far away from 1/2: if j0 is even,

this is exactly 1/2 (for all x), and if j0 = 2k + 1, this is either k/j0 or (k + 1)/j0
(depending on x), which is at distance 1/(2j0) ≤ 1/6 from 1/2 (recall that j0 > 1
by Lemma 4.4). Furthermore, we have:

∀x ∈ [−q/2, q/2], r(x) =
1

2T

∫ T

−T

r�(x + u)du,

which gives, for all x ∈ [−q/2, q/2]:
∣∣∣∣∣
1
j0

j0−1∑
k=0

r(x + k
q

j0
) − 1

2

∣∣∣∣∣ ≤ 1
2T

∫ T

−T

∣∣∣∣∣
1
j0

j0−1∑
k=0

r�(x + u + k
q

j0
) − 1

2

∣∣∣∣∣ du ≤ 1/6.

Therefore, P3 is also not too far from 1/2 as a convex combination of values not
too far from 1/2. More precisely we have |P3 − 1/2| ≤ 1/6.

Putting everything together, we can quantify the distance from P to 1/2:
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Theorem 4.5 (Universality). Let A ∈ Z
m×n
q with m = Θ(n log q), and fix

p ∈ Z
n
q . Let B′ = q/Θ(

√
m), and L = {c ∈ Z

m
q | d(c, Λ(A)) ≤ B′}. Let R be as

defined in Sect. 4.2 and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also
that parameters T,N, δ, and k satisfy δ > q

√
m

s , N = kq
T , and δN2 < B′.

Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is
taken over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned
on htA = pt. Then, for all c �∈ L :

|P (c) − 1/2| ≤ 1
6

+ (1 + O(ε))
(

1
k

+ 4NCm

)
,

where C =
√

2πe · e−π < 1.

Remark 4.6. Informally, this theorem states that the second case study of the
technical overview of the introduction is essentially the worst case.

Proof. Writing P = P1 + P2 + P3 as above, we showed that |P3 − 1/2| ≤ 1/6.
Moreover, as s ≥ ηε(Λ⊥(A)), we have:

det((Λ⊥)∗)sm

ρs(Λ⊥
p )

= 1 + O(ε),

and, for any j ∈ Z and c, we also have:
∣∣∣∣∣∣
∑
y∈Λ

(ρq/s,jc · eh0/q)(y)

∣∣∣∣∣∣ ≤ ρq/s(Λ − jc) ≤ 1 + ε.

Therefore, by Lemma 4.2, and as ε = negl(n), we have:

|P1| ≤ (1 + O(ε))(1 + ε)
∑

|j|>N

|r̂j | ≤ 1 + O(ε)
k

.

Furthermore, as δ > q
√

m
s , and |r̂j | ≤ 1 for all j, Lemma 2.1 gives us that

|P2| ≤ 4NCm(1 + O(ε)), which concludes the proof. ��

4.5 Wrap-Up

Let us now show that all the parameters can be instantiated to get approximate
smoothness and correctness for the SPHF, using a rounding function R defined
by Pr[R(x) = 1] = r� � r�(x).

IND-CPA. To apply Theorem 2.9 with Remark 2.10, we can use the fact that
m = Θ(n log q) and t =

√
mn · ω(

√
log n).

Decryption Correctness. For the encryption scheme to be correct, we want
B < B′, with B = 2t

√
m and B′ = q/Θ(

√
m).
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Correctness. For correctness of the bit-PHF, we need a super-polynomial mod-
ulus q, and require T/q to be negligible. Furthermore, we need tsm/q to be
negligible, so that 〈h,e〉 can only take a negligible fraction of values in Zq. Also,
we need s ≥ ηε(Λ⊥(Au)), which is satisfied with high probability by Lemma2.11
for ε = 2−n as long as s ≥ Θ(

√
n).

Bounding the amplitude of high frequencies. The parameter N which upper
bounds the elements of J must be taken so that

∑
|j|≥N |r̂j | is small. By

Lemma 4.2, by taking N = kq/T , this sum is ≤ 1/k.

Threshold distance to Λ defining J . The parameter δ, which denotes how close j ·c
is close to Λ for j ∈ J (Eq. (4)) has to be chosen so that N · ρq/s(Λ−v) must be
small whenever d(v, Λ) ≥ δ. As in the analysis for the cosine rounding function,
setting δ = q

√
m/s implies that ρq/s(Λ − v) ≤ 2Cm(1 + O(ε)) by Lemma 2.1.

Showing that j0 �= 1. We also required δN2 < B′ to conclude that J was included
in a proper ideal of Z. As we have δN2 = Θ

(
q3k

√
m

sT 2

)
, this holds as long as

s ≥ Ω(mk2q2

T 2 ).
Putting everything together, we get the following theorem:

Theorem 4.7. Suppose q = O(2n) is superpolynomial in n,m = Θ(n log q). Set
parameters: (i) T such that T/q and q/T 2 are both negligible in n (using T = q2/3

for instance), (ii) k = Θ(n), and (iii) s ≥ Θ(
√

n) such that s/q = negl(n) and
s = Ω(mk2q2

T 2 ), which exists by construction of T . Define a probabilistic rounding
function R : Zq → {0, 1} such that Pr[R(x) = 1] = r� � r�(x). Then the bit-PHF
described in Sect. 3.1 achieves (1/3+o(1))-universality and statistical correctness.

Proof. The theorem follows from the discussion above and Theorem 4.5 using:
(i) N = kq/T (in which case NCm is negligible in n), and (ii) δ = q

√
m

s . ��

5 Applications

In this section, we present several applications of our new construction. It under-
lines the importance of revisiting this primitive.

5.1 Password-Authenticated Key Exchange

3-Round PAKE. Gennaro and Lindell proposed in [13] a generic framework
for building 3-round PAKE protocols based on an IND-CCA2 encryption scheme
and an associated SPHF. Later in [22], Katz and Vaikuntanathan refined it to
be compatible with approximate SPHF over a CCA2-secure encryption scheme.

We can instantiate the construction in [22] using the encryption scheme à la
Micciancio-Peikert in Sect. 2.2 together with an approximate SPHF generically
derived from the approximate bit-PHF constructed in Sect. 3. This allows us to
achieve a PAKE protocol in three flows, with a polynomial modulus.
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Moving to a 2-Round PAKE. An interesting optimization in cryptography
is to reduce the number of rounds, so that each user only has to speak once. Is
it possible to achieve a PAKE, where each user sends simply one flow?

In [1], the authors revisited the Groce-Katz framework [17]. Their construc-
tion (called GK-PAKE) uses a pseudo-random generator, an IND-CPA encryp-
tion scheme, with a simple regular SPHF on one hand, and an IND-PCA (Indis-
tinguishable against Plaintext-Checkable Attacks) encryption on the other.

Every IND-CCA2 encryption being also IND-PCA, we can trivially meet the
requirements and achieve the expected 2-rounds efficiency, using our SPHF from
Sect. 3.11 Contrary to the construction of Zhang and Yu [30], we do not need a
simulation-sound non-interactive proof (SS-NIZK), which we do not know how
to construct from lattice assumptions in the standard model.

Achieving a 1-Round PAKE. Actually, if we allow ourselves to use SS-NIZK,
we can construct a 1-round PAKE by combining our word-independent SPHF
with the ideas in [23], which solves an open problem in [30]. Concretely, we use
the first instantiation of [23], except that the ElGamal encryption scheme and its
associated SPHF are replaced by our IND-CPA LWE-based encryption scheme
à la Micciancio-Peikert and the word-independent SPHF is the one from Sect. 4.
The SS-NIZK can be a simple variant of the one in [30]. Details are provided in
the full version [6].

5.2 Honest-Verifier Zero-Knowledge

Following the methodology from [7], using our SPHF in Sect. 3, we can construct
honest-verifier zero-knowledge proofs for any NP language of the form L̈ = {ẍ |
∃ẅ , R̈(ẍ , ẅ)} where R̈ is a polynomial-size circuit. At a very high level, the
prover simply encrypts each wire of the circuit using an IND-CPA encryption
scheme12 and then shows the correct evaluation at each gate, using SPHFs.

For the sake of simplicity, we suppose that all gates of the circuit R̈ are
NAND gates. We just need to construct an SPHF for the languages L̃ ⊆ L of
ciphertexts C1, C2, C3 encrypting values (b1, b2, b3) so that b3 = NAND(b1, b2),
such that L̃ is the set of encryptions of bi that fits the NAND gate evaluation,
while L is the set of ciphertexts whose decryptions fit the gate evaluation. We
can do that by combining our SPHFs using the classical techniques described
in [2]. Details are provided in the full version [6].

5.3 Witness Encryption

Witness encryption [12] allows to encrypt a message, with respect to a particular
word x and a language L , instead of using a classical public key. If the word
11 In this application, as in our 3-round PAKE from [22], the gap between correctness

and smoothness is not an issue: the proof of the resulting 2-round PAKE works
exactly as in [1].

12 We actually will use our IND-CCA2 encryption scheme à la Micciancio-Peikert.
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is in the language, then a user knowing a witness for the word can decrypt the
ciphertext, otherwise the ciphertext hides the message.

An SPHF can be used to construct such a primitive as follows: To encrypt a
message M with respect to a word x and a language L , use an SPHF for L to
generate a hashing key hk, a projection key hp, and a hash value H, and output
the ciphertext C = (hp,H ⊕ M). To decrypt such a ciphertext, simply use the
witness w associated with the word x together with the projection key hp to
compute the projected hash value and recover M . Details are available in the
full version [6].

Acknowledgments. We would like to sincerely thank Zvika Brakerski for many useful
and interesting discussions.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46447-2 15

2. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for con-
ditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8 39

3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

4. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-secure authenticated key-exchange for algebraic languages. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 18

5. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

6. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices
revisited. Cryptology ePrint Archive, Report 2017/997 (2017). http://eprint.iacr.
org/2017/997

7. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 6

8. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 8

9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-642-03356-8_39
https://doi.org/10.1007/978-3-642-03356-8_39
https://doi.org/10.1007/978-3-642-36362-7_18
https://doi.org/10.1007/978-3-642-40041-4_25
http://eprint.iacr.org/2017/997
http://eprint.iacr.org/2017/997
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717


Hash Proof Systems over Lattices Revisited 673

11. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

12. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013

13. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 25

17. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS
10, pp. 516–525. ACM Press, October 2010

18. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious trans-
fer. J. Cryptol. 25(1), 158–193 (2012)

19. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 19

20. Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
485–503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 29

21. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 5

22. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

23. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

24. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

25. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

26. Majewski, B.S., Havas, G.: The complexity of greatest common divisor computa-
tions. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp.
184–193. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1 56

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-540-30564-4_19
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/3-540-58691-1_56


674 F. Benhamouda et al.

27. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

28. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October
2004

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May
2005

30. Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations
from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 2

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2

	Hash Proof Systems over Lattices Revisited
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Lattices and Gaussians
	2.3 Approximate Smooth Projective Hash Functions

	3 SPHF for IND-CCA2 Ciphertexts
	3.1 Languages and Natural Bit-PHF
	3.2 Universality
	3.3 Approximate Correctness
	3.4 Wrap-Up

	4 Word-Independent SPHF for IND-CPA Ciphertexts
	4.1 Overview
	4.2 Smoothing the Discontinuities: A New Rounding Function
	4.3 Inclusion of Contributing Harmonics in a Proper Ideal
	4.4 Imperfect Universality from Destructive Interferences
	4.5 Wrap-Up

	5 Applications
	5.1 Password-Authenticated Key Exchange
	5.2 Honest-Verifier Zero-Knowledge
	5.3 Witness Encryption

	References




