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Abstract. If q is a prime and n is a positive integer then any two finite
fields of order qn are isomorphic. Elements of these fields can be thought
of as polynomials with coefficients chosen modulo q, and a notion of
length can be associated to these polynomials. A non-trivial isomorphism
between the fields, in general, does not preserve this length, and a short
element in one field will usually have an image in the other field with
coefficients appearing to be randomly and uniformly distributed modulo
q. This key feature allows us to create a new family of cryptographic
constructions based on the difficulty of recovering a secret isomorphism
between two finite fields. In this paper we describe a fully homomorphic
encryption scheme based on this new hard problem.
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1 Introduction

Let q be a prime, let Fq be the finite field with q elements, and let f(x) ∈ Fq[x]
and F (y) ∈ Fq[y] be irreducible monic polynomials of degree n. Then

X := Fq[x]/(f(x)) and Y := Fq[y]/(F (y)) (1)

are isomorphic fields with qn elements. Given knowledge of f(x) and F (y),
it is easy to write down an explicit isomorphism X → Y and its inverse. We
normalize mod q polynomials by choosing their coefficients between − 1

2q and 1
2q,

and then we define the size of a polynomial to be the magnitude of its largest
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coefficient. It is then an observation that, except in trivial cases, the isomorphism
X → Y does not respect the Archimedian property of size. Indeed, when f and
F are distinct monic irreducible polynomials, we have observed that polynomials
within a sphere of small radius (with respect to the L∞ or L2 norm) in X appear
to be essentially uniformly distributed in Y. We record this observation formally,
and construct arguments for its veracity in Sect. 2.2.1.

Observation 1. Let Mn,q be the set of all degree n monic irreducible polyno-
mials mod q and fix 1 ≤ β < q/2. Sample f ∈ Fq[x] and F ∈ Fq[y] uniformly
from Mn,q, and construct X, Y and the associated isomorphism φ : X → Y as
in (1). Let χβ be a distribution that produces samples with bounded length less
than β. Then the image in Y of a collection of polynomials in X sampled from χβ

is computationally hard to distinguish from a collection of polynomials sampled
uniformly in Y. By a proper choice of parameters, the ability to distinguish such
a collection can be made arbitrarily difficult.

Remark 1. We will refer to elements of X or Y as short if they have infinity norm
less than β, where generally β will be less than q/4.

We will find it essential to choose f from a subset of Mn,q consisting of monic
irreducible polynomials of degree n whose coefficients have absolute value less
than or equal to 1. Observation 1 appears to remain true, even when restricted
to this subset of Mn,q, and the security of our proposed homomorphic scheme
will rest on:

Observation 2. Observation 1 remains true if f ∈ Fq[x] is chosen from the
subset of polynomials in Mn,q whose coefficients have a max absolute value 1.

In this paper we base two distinct, but related, problems on Observation 2.

Definition 1. (FFI). Finite Field Isomorphism Problems: Let k be a
positive integer. Let X,Y, φ, χβ be as above. Let a1(x), . . . ,ak(x), b1(x) be sam-
ples from χβ, and Ai = φ(ai) and B1 = φ(b1) be the corresponding images.
Also sample B2(y) uniformly from Y.
Computational FFI problem: Given Y,A1(y), . . . ,Ak(y), recover f(x) and/or
a1(x), . . . ,ak(x).
Decisional FFI problem: Given Y,A1(y), . . . ,Ak(y), B1 and B2, with one of
B1,B2 an image of a sample from χβ, identify the image with a probability
greater than 1/2.

Clearly, the decisional FFI problem can be solved if the computational FFI prob-
lem can be solved, and if Observation 1 is correct, then the decisional FFI prob-
lem can be made arbitrarily hard. We will demonstrate that if a certain lattice
reduction problem of dimension roughly 2n can be solved, then the decisional
FFI problem can be solved, and this lattice reduction problem can be made arbi-
trarily hard. We do not, however, have a reduction showing that ability to solve
the decisional problem implies the ability to solve a lattice reduction problem.
In other words, the strongest attacks we have found on the decisional problem
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are via lattice reduction arguments, but we cannot rule out the possibility of
other, potentially stronger, attacks.

Our plan is to build a somewhat homomorphic encryption scheme based on
the decisional FFI problem. This will have double exponential noise growth, but
will also have the advantage of being able to handle a reasonable number of mul-
tiplications (and additions) of moderate sized integers. We will then analyze the
noise performance, and introduce a bit-decomposition-based noise management
scheme that allows us to reduce the noise growth to single exponential. This will
yield a bootstrappable, thus a fully homomorphic encryption scheme.

We will encode numbers, i.e. messages, as short elements in X, with noise
added for semantic security, and view their corresponding images in Y as cipher-
texts. This will create a symmetric encryption algorithm, which will be somewhat
homomorphic in the following sense: Polynomials in elements of X can be eval-
uated, and lifted to polynomials over Z[x]/(f(x)) as long as their coefficients
do not exceed q/2 in absolute value. Knowledge of these output polynomials
will allow the user with knowledge of f(x) to recover the value of the polyno-
mial over Z, and the output of the computation. The corresponding ciphertext
polynomials in Y can be evaluated by anyone with knowledge of the public key
F (y), and substantial reduction modulo q will occur. Decryption will occur by
mapping isomorphically back to X, and the correct result will be output as long
as the coefficients do not exceed q/2 in absolute value.

This is where an important point arises. In 1996, (eventually published in
[25]), NTRU introduced the idea that if two short polynomials in Z[x] are mul-
tiplied, and the result is reduced modulo xn − 1, then the reduced product is
also (moderately) short. This observation has been used, in the years since then,
in a variety of cryptographic constructions. In this paper we make use of a vari-
ation on this observation: This property remains true for a considerably larger
class of polynomials than xn ± 1. In particular, if f(x) is chosen to be monic,
of degree n, and have coefficients from the set {−1, 0, 1}, then a short polyno-
mial times a short polynomial remains moderately short when reduced modulo
f(x). If parameters are chosen properly, the search space for f(x) can be made
arbitrarily large, making it impractical to locate f(x) by a brute force search.

The symmetric system sketched above can be converted into a public key
encryption scheme using the standard technique of publishing a list of encryp-
tions of 0 and adding short linear combinations of these encryptions as noise. Its
semantic security can be seen to be based on the decisional FFI problem, not
on the presumably harder computational FFI problem. It is not immediately
obvious that this is the case, as all ciphertexts of messages will be images of
short vectors in X, but in the simple instantiation we will present here, it can
be shown that this is true. (See Theorem1 in Sect. 3.2.4.)

1.1 Subfield Attack

Despite major advances over the past few years the biggest challenge prevent-
ing the deployment of FHE schemes in real life applications is efficiency. To
address the efficiency bottleneck, many optimizations were proposed including
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some that take advantage of specialization of the underlying field/ring struc-
ture. Such specializations enable efficient batched parallel evaluations, make it
possible to choose parameters that support highly efficient number theoretical
transforms, and in some cases even reduce the size of evaluation keys.

However, such customizations may potentially introduce weaknesses in the
security assumptions of the schemes. A recent family of attacks proposed by
Albrecht et al. [29], by Cheon et al. [8], and by Kirchner and Fouque [27] exploit
the special structure, namely subfields, in ring based FHE schemes. Furthermore,
the attack in [27] also works when the underly ring does not admit subfields.
Moving to a subfield with a Norm mapping as in [29], or a Trace mapping as
in [8] or the Gentry-Szydlo mapping [22] as in [27] will reduce the dimension
of the lattice. Then, via a projection, also named zero-forcing in the original
May-Silverman description [30], the Kirchner-Fouque method is able to create
a lattice with an even smaller dimension, at the cost of reducing the number of
unique shortest vectors in the lattice.

This set of attacks demonstrated that several NTRU based FHEs with
medium size parameters are no longer secure. Specifically, if the NTRU scheme
is constructed with the DSPR security assumption, which is the case in some of
the NTRU based FHE schemes [3,28], the assumed security level of the scheme
can be significantly reduced. While the authors suggest more caution on param-
eter selection by avoiding specialized fields in this particular case, there could
be further attacks that exploit specialized parameters. It has become quite clear
that we need more generic constructions that avoid specialized structures as
much as possible. Furthermore, we need diversity in the FHE constructions, i.e.
FHEs that remain secure even if other conjectured hard problems, e.g. DSPR or
Approximate GCD, are shown to be weaker than expected.

These are among the goals of the FHE scheme proposed in this paper: The
proposed construction is based on the DFFI problem; a new problem we propose
and analyze here for the first time. The proposed construction avoids specializa-
tions. The FHE scheme is based on a fixed prime q and a class of short generic
private keys f(x) with the property that f(x) is monic, irreducible mod q, and
the Galois group of the associated finite field Zq[x]/(f(x)) is Cn.

With such choice of parameters it is safe to claim that attacks in [8,29] no
longer apply due to the lack of subfields. In addition, as one shall see in Sect. 2.4,
the unique shortest vectors in this class of lattices are not sparse vectors with
many 0s, and they are not cyclic rotations of each other. Therefore, the projection
method will not work either. Thus we also assert that attack in [27] is not
applicable either.

Remark 2. The security of the finite field homomorphic encryption scheme pre-
sented here is based on the decisional problem (DFFI). It may be possible to
construct a homomorphic encryption scheme that solely depends on the com-
putational problem, (CFFI), but in the interest of simplicity we will not pursue
this here. It is certainly possible to construct a signature scheme, based on the
CFFI, and this will appear elsewhere.
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1.2 A Sketch of the Main Ideas

Messages, which are integers, will be mapped to elements of X by some method.
These elements will be sparse, low weight polynomials, m(x), of degree at most
n−1. For each message encryption, a sparse low weight, e.g. trinary, polynomial
r(x) of degree at most n − 1 will be chosen at random. A polynomial p(x) will
be fixed as a public parameter. This polynomial will have coefficients with small
infinity norm. Two useful possibilities for p(x) are p(x) = 2, and p(x) = x − 2.
We will illustrate below with the example p(x) = x − 2. To encode an integer
1 ≤ m < 2n, write m in base two as m = b0+2b1+ · · ·+2n−1bn−1, and represent
m by m(x) = b0 + b1x + · · · + bn−1x

n−1. Thus m(2) = m. An encoding of m(x)
in X will be done as follows:

– Choose r(x) at random from a given distribution of sparse, binary or trinary,
polynomials of degree less than n.

– The encoded message is em(x) := m(x) + p(x)r(x) mod f(x). As the coeffi-
cients of p(x) and r(x) are very small, and f(x) is chosen as described above,
the reduction of m(x) + p(x)r(x) mod f(x) will have coefficients that remain
small relative to q. In other words, the lift of em(x) from X to an element of
Z[x]/(f(x)) with coefficients in the interval (−q/2, q/2] will have no reduction
modulo q occurring.

Encryption of em(x) is done by mapping em(x) to its isomorphic image Em(y) in
Y, using the isomorphism X → Y that is known to the encryptor. The somewhat
homomorphic property for multiplication is seen as follows: Given em1(x) =
m1(x) + p(x)r1(x) and em2(x) = m2(x) + p(x)r2(x), the product is given by

em1(x)em2(x)

= m1(x)m2(x) + p(x)r1(x)m2(x) + p(x)r2(x)m1(x) + p(x)2r1(x)r2(x)

= m1(x)m2(x) + p(x)[r1(x)m2(x) + r2(x)m1(x) + p(x)r1(x)r2(x)] mod (f(x), q).

(2)

The key observation is that since the coefficients of em1(x) and em2(x) are
small compared to q, the product, even after reduction mod f(x), will still have
coefficients that are small compared to q. As a result, if the reduced product
em1(x)em2(x) is lifted from X to Z[x]/(f(x)) with coefficients chosen from the
interval (−q/2, q/2], then the coefficients will be the same as if the computation
had taken place over Z[x]/(f(x)).

A similar comment applies to em1(x)+em2(x). Because the mapping between
X and Y is a field isomorphism, it follows that

Em1(y)Em2(y) = Em1m2(y) and Em1(y) + Em2(y) = Em1+m2(y).

This means that a polynomial function of elements of X can be computed on
the isomorphic images of these elements in Y and the output mapped back to
X, and, as long as the coefficients in the corresponding X computation remain in
the interval (−q/2, q/2], the image of the output in X can be lifted to Z[x]/(f(x))
without any loss of information.
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The key question then is how to recover m(x) from a polynomial of the form
m(x) + p(x)r(x) in X. After a computation is performed, as seen in (2) above,
the output in X will still have this form, although the coefficients of m(x) and
r(x) may be considerably larger than binary or trinary. As long as they have not
passed q/2 in absolute value, the lift to Z[x]/(f(x)) will not involve any mod q
reduction. The decryption process, then consists of:

– Map the output of the computation in Y back to X. It will have the form
m′(x) + p(x)r′(x), for unknown polynomials m′(x) and r′(x)

– This can be further lifted to Z[x] by viewing of it as m′(x) + p(x)r(′x) +
s(x)f(x) for some also unknown polynomial s(x)

– Compute the resultant of f(x) and p(x). This is the ideal in Z[x] generated
by p(x) and f(x) which, in the case p(x) = x − 2, is simply f(2). Also,
m′(x) + p(x)r′(x) + s(x)f(x) reduced mod f(x) and x − 2 is m(2) mod f(2).
Thus, as long as m is less than f(2), m = m(2) will be recovered exactly.

The process breaks down when the size of any coefficient of the computation
exceeds q/2 in absolute value. Note that the collection of all p(x)r(x) in X is all
possible encodings of 0, and their images in Y are all possible encryptions of 0.
As we are in a field, not a ring, the ideal generated by all such p(x)r(x) is, of
course, all of Y.

1.3 Related Work

The first Fully Homomorphic Encryption (FHE) scheme was constructed by Gen-
try [17,19] in 2009, answering a problem that had remained open for over three
decades. Gentry’s scheme is based on ideal lattices and the security assumptions
are based on hard problems in lattices. A key innovation in Gentry’s construc-
tion is bootstrapping, which allows a party to refresh the noise level in a cipher-
text without having access to a secret key. Despite its success, bootstrapping
has remained the bottleneck in FHE implementations. After Gentry’s original
scheme, many other constructions based on a variety of hardness assumptions
followed that aimed to improve the efficiency of FHE.

One such construction based on the learning-with-errors (LWE) problem was
proposed by Brakerski and Vaikuntanathan [6]. The security of the scheme is
based on the hardness of short vector problems. The LWE-based construction
was later improved by Brakerski, Gentry and Vaikuntanathan (BGV) in [5] using
a modulus switching technique that slows the noise accumulation drastically.
Modulus switching is applied at each multiplicative level, which prevents expo-
nential noise growth. Thereby the noise remains fixed throughout the homomor-
phic evaluation levels. Later, a new noise management technique was introduced
by Brakerski [4], applicable to LWE schemes, that decreases noise growth from
quadratic to linear using tensor products. Gentry et al. [20] demonstrated that
it is possible to perform deep homomorphic evaluations by providing the first
AES evaluation implemented using the BGV scheme embodied in a software
library called HElib [23]. The authors optimize the design using the SIMD tech-
nique introduced in [31] to batch multiple messages and process parallel AES
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operations. Another FHE construction based on the assumed hardness of the
Integer Approximate-GCD problem was proposed by van Dijk et al. [12]. This
work was followed by Coron et al. [10], where the public key size was reduced
from λO(κ10) to O(κ7) where κ is the security parameter. In [11] the pub-
lic key size was further reduced from O(κ7) to O(κ5) and modulus switching
methods were adapted to the integer scheme. Another follow up work by Coron
et al. [9] implements a variant of van Dijk et al.’s scheme using the scale invariant
property introduced earlier by Brakerski [4].

Another leveled FHE scheme was presented by López-Alt, Tromer, Vaikun-
tanathan (LTV) in [28]. It is based on a variant of NTRU [25] constructed earlier
by Stehlé and Steinfeld [32]. The scheme is a multi-party scheme that is capable
of processing homomorphic functions for various users each with their individual
keys. The authors use the relinearization technique introduced in [6] and also
adapt modulus switching to mitigate the noise growth, thus keeping the growth
linear in size over the levels. To compute relinearization, the scheme requires eval-
uation keys, which increases the memory requirement and becomes prohibitive
especially in deep evaluations. The NTRU variant by Stehlé and Steinfeld [32]
was later modified and implemented by Bos et al. in [3]. Their scheme, named
YASHE, adopts the tensor product technique in [4] and achieves a scale-invariant
scheme with limited noise growth on homomorphic operations. Also, with the
use of the tensor product technique, the authors managed to improve the secu-
rity of the LTV scheme [28] by using much higher levels of noise and thereby
removed the Decisional Small Polynomial Ratio (DSPR) assumption. Instead,
the scheme relies only on standard lattice reductions as in [32]. However, as the
authors also note, the YASHE scheme requires a large evaluation key and a com-
plicated key switching procedure. In [3] the authors introduce a modification
(YASHE’) to their scheme to eliminate the problems of expensive tensor product
calculations and large evaluation keys. However, this modification re-introduces
the DSPR assumption. Another modified LTV-FHE implementation, along with
AES evaluation, was presented by Doröz et al. in [13]. The security of their
scheme depends on the DSPR and R-LWE assumptions as in [28]. Their imple-
mentation uses the relinearization and modulus switching methods as in [28] to
cope with noise, and it introduced a specialized ring structure to significantly
reduce the evaluation key size. Since both the YASHE’ and LTV-FHE schemes
rely on the DSPR problem, both are vulnerable to the Subfield Attack [29].

Motivated by the large evaluation key requirements come by complex noise
management techniques such as relinearization, modulus switching, and boot-
strapping employed by earlier FHE schemes Gentry et al. [21] proposed a new
scheme based on the approximate eigenvector problem. The system uses matrix
additions and multiplications, which makes it asymptotically faster. At first,
they constructed the GSW scheme as a somewhat homomorphic scheme, since
for a depth L circuit with B-bounded parameters, the noise grows with a double
exponential B2L

. To convert the scheme into a leveled FHE, they introduced
a Flattening operation that decomposes the ciphertext entries into bits. The
secret key is also kept in a special powers-of-two form. With these modifica-
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tions, the noise performance is improved significantly. For a depth L circuit with
B-bounded secret key entries and 1-bounded (flattened) ciphertexts, the error
magnitude is at most (N + 1)LB for N = log(q)(n + 1). However, ciphertexts
still require a considerable amount space, roughly Θ(n2 log(q)2), and as noted
by GSW [21], in practice their scheme may not be as efficient as existing lev-
eled schemes. More recently, the Flattening technique was adapted by Doröz
and Sunar to NTRU in a new FHE scheme called F-NTRU [14]. Similar to the
GSW scheme, F-NTRU does not require evaluation keys or key switching. More
significantly, the scheme eliminates the DSPR assumption and relies only on
the standard R-LWE assumption which makes it the only NTRU variant FHE
scheme immune to the Subfield Attack.

1.4 Paper Organization

In Sect. 2 we formally introduce the finite field isomorphisms problem, state
hardness assumptions, and study lattice and non-lattice techniques to establish
the difficulty of the problem against known techniques. We then show how to
construct a fully homomorphic public-key encryption scheme in Sect. 3 by first
building a somewhat homomorphic encryption scheme and then by converting
it into a bootstrapable scheme via a new bit decomposition based noise manage-
ment scheme. In Sect. 4, we conclude our paper.

In the appendices, we discuss how to construct field representations X and Y

and the necessary isomorphisms X → Y and Y → X (Sect. A), we give a more
detailed noise analysis (Sect. B), we perform security analysis and give esti-
mates on the parameters (Sect. C), and we give test results for our observation 2
(Sect. D).

2 The Finite Field Isomorphism (FFI) Problem

2.1 Preliminaries

We begin by formally introducing some notation that has already been used
in the previous section. Additional notation will be introduced at the start
of Sect. 3. For given degree n monic irreducible polynomials f(x) ∈ Fq[x]
and F (y) ∈ Fq[y], we create two copies of Fqn , which we denote by X :=
Fq[x]/(f(x)) and Y := Fq[y]/(F (y)). In general, polynomials denoted by lower
case letters will be polynomials in X, and their isomorphic images in Y will be
denoted with the corresponding capital letters. The vector form of a polyno-
mial is simply the vector consisting of its coefficients. We often identify poly-
nomials and vectors when there is no ambiguity. Consider a polynomial a(x) =
a0 + a1x + · · · + an−1x

n−1 ∈ X. We will informally say that a(x) is short if
for all i, the congruence class ai mod q reduced into the interval (−q/2, q/2]
is small relative to q. An important class of such polynomials are those sat-
isfying ai ∈ {−1, 0, 1}; these are called trinary polynomials. We denote by
‖a‖ = ‖a‖∞ := max |ai| and ‖a‖2 := (a2

0 + · · · + a2
n−1)

1/2 the L∞ and L2
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norms of a, respectively, where it is understood that the coefficents of a are
always normalized to lie in the interval (−q/2, q/2]. Denote by Mn,q the set of
all degree n monic irreducible polynomials mod q. When there is no ambiguity,
we will suppress the subscripts.

2.2 Discussions and Proofs

2.2.1 Arguments for the Truth of Observation 1
Lemma 1. For large n, for any fixed f(x) ∈ Fq[x], and any given degree n −
1 polynomial φ(y) ∈ Fq[y], there will exist, with probability approaching 1, a
unique monic irreducible F (y) ∈ Fq[y] such that the map x → φ(y) induces an
isomorphism between Fq[x]/(f(x)) and Fq[y]/(F (y)).

Proof. As Fqn/Fq is Galois, any irreducible polynomial with one root must split
completely, implying that f(x) has n distinct roots in Fq[y]/(F (y)), and simi-
larly, that no two monic irreducible polynomials of degree n in Fq[x] can share
a root. Fix a degree n monic irreducible polynomial f(x) ∈ Fq[x]. By the prime
number theorem for function fields, for fixed q and large n, |Mn,q|, i.e., the num-
ber of distinct irreducible monic polynomials over Fq[x], is asymptotic to qn/n;
see [26, Chap. 7, Sect. 2, Corollary 2]. It follows that for any polynomial f ∈ Mn,q

there are asymptotically qn/n distinct isomorphic images of Fq[x]/(f(x)) and
hence also qn/n potential F . Choose at random a degree n − 1 polynomial
φ(y) ∈ Fq[y]. There are exactly (q − 1)qn−1 such polynomials. There are also,
asymptotically, a total of n×qn/n = qn isomorphisms between Fq[x]/(f(x)) and
all possible Fq[y]/(F (y)), where F (y) varies over all distinct monic irreducible
polynomials. These are given by sending x to each of the n distinct roots of each
F (y). With probability approaching 1 (for large q), these sets have the same
order, and as one is contained in the other, they are asymptotically equal. ��

This provides evidence for the truth of Observations 1 for the following rea-
son. Suppose one chooses, independently, a private monic irreducible f(x), and
a φ(y), with the coefficients of φ(y) chosen randomly and uniformly from Fq.
Then with high probability there will be a corresponding (monic, irreducible)
F 1(y) and a short polynomial a(x) will be mapped to A(y) = a(φ(y)) reduced
modulo F 1(y). As the coefficients of φ(y) are random and uniformly distributed
modulo q it is reasonable to assume that the coefficients of A(y) will be similarly
uniformly distributed modulo q. Unfortunately, because of the highly non-linear
aspect of this mapping, it appears to be hard to construct a proof of this. The
polynomial F 1(y) can be used as the public key. However, it may be conve-
nient to use a polynomial of a simpler form, such as F 2(y) = yn − y − 1 to make
computations easier for the public party. In this case the composite isomorphism

Fq[x]/(f(x)) → Fq[y]/(F 1(y)) → Fq[y]/(F 2(y))

can be used for encryption. It is again reasonable to assume, though hard to
prove, that the composite mapping continues to cause coefficients of images of
short polynomials to be uniformly distributed modulo q.
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Remark 3. Because of Observation 2, that non-trivial isomorphisms send short
polynomials in X to uniformly distributed elements of Y, we believe that there
are no easy cases of CFFI. Hence, similar to hard lattice problems such as those
described in [1], we suspect that there may well be an average-case/worst-case
equivalence for the computational finite field isomorphism problem. However,
research in this direction is beyond the scope of the present paper and clearly
requires considerable further study.

2.2.2 Arguments for the Truth of Observation 2
In order to build a multiplicative homomorphic encryption scheme we require
that products of short elements in X are also short. Hence, we cannot simply
sample f(x) uniformly from Mn,q. Instead, we will sample f(x) uniformly from
Mn,q with the requirement that ‖f(x)‖ is bounded.

In order to estimate the size of the search space for f(x), we will rely on the
following very reasonable assumption:

Assumption 1. Monic irreducible polynomials are uniformly distributed
over Fq[x].

This assumption implies that Observation 2 is true. It also implies (together with
the argument that |Mn,q| is on the order of qn/n) that for 1 ≤ β ≤ 1

2q there are
approximately (2β)n/n distinct irreducible monic polynomials a(x) over Fq[x]
satisfying ‖a(x)‖ ≤ β. This quantifies the size of the set of all possible f and
enables us to verify that with well chosen parameters it is large enough to be
robust against a brute force search.

This shortness of f(x) is exploited via the following useful property:

Property 1. If f(x) is short, and if a(x) and b(x) are short elements of X, then
the product a(x)b(x) mod f(x) is also a reasonably short element of X.

As remarked earlier, Property 1 has been widely exploited in ideal and lattice-
based cryptography, especially with f(x) = xn ± 1, starting with the original
NTRUEncrypt [25].

2.3 An Algorithm to Find an Isomorphism

We explain how to find suitable polynomials f(x) and F (y) and an explicit
isomorphism Fq[x]/(f(x)) �→ Fq[y]/(F (y)). We need to find four polynomials
(f ,F ,φ,ψ) satisfying:

• f(x) ∈ Fq[x] is irreducible monic of degree n with ‖f(x)‖ ≤ β.
• F (y) ∈ Fq[y] is irreducible monic of degree n with random coefficients.
• φ(y) ∈ Fq[y] and ψ(x) ∈ Fq[x] have degree less than n.
• F (y)

∣
∣ f

(

φ(y)
)

.
• φ

(

ψ(x)
) ≡ x (mod f(x)).

The algorithm for finding such an isomorphism is shown in Algorithm1.
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Algorithm 1. Finite Field Isomorphism Generation
1: Sample f (x) and F (y) as required.
2: Find a root of f (x) in the finite field Fq[y]/(F (y)) ∼= Fqn and lift this root to a

polynomial φ(y) ∈ Fq[y] of degree less than n.
3: Construct the unique polynomial ψ(x) ∈ Fq[x] of degree less than n satisfying

ψ
(
φ(y)

) ≡ y (mod F (y)).
4: return f (x), F (y), φ(y) and ψ(x).

Remark 4. We note again that the secret polynomial f(x) and the public polyno-
mial F (y) are chosen independently, so in particular, knowledge of F (y) reveals
no information about f(x). In other words, any polynomial satisfying the norm
bound is a potential candidate for f(x). The attacker only begins to acquire infor-
mation about f(x) when she is given isomorphic images in Y of (short) polynomi-
als in X. Further, the fact that there are no security issues in the choice of F (y),
other than the requirement that it be irreducible in Fq[y], means that F (y) may
be chosen to simplify field operations in the quotient field Fq[y]/(F (y)). For
example, one could take F (y) to be a trinomial. The point is that the attacker
can always replace your F (y) with her choice of F ′(y), since she can easily
construct an isomorphism from Fq[y]/(F (y)) to Fq[y]/(F ′(y)).

We now discuss the steps in the generation algorithm in more details. In
Step 2, we are required to find a root of a polynomial f(x) in a finite field Fqn

that is given explicitly as a quotient Fq[y]/(F (y)). There are fast polynomial-
time algorithms for doing this.1 We note that in our set-up, the polynomial f(x)
is irreducible of degree n, so any one of its roots generates the field Fqn , and
since any two fields with qn elements are isomorphic, it follows that f(x) must
have a root in Fq[y]/(F (y)). Further, since Fqn/Fq is Galois, any irreducible
polynomial with one root must split completely, so in fact f(x) has n distinct
roots in Fq[y]/(F (y)). We may take φ(y) mod F (y) to be any one of these roots.

In Step 3, we need to construct ψ(x). We describe three ways to do this. All
are efficient. Method 2 is always faster than method 1. It is not clear which is
the more efficient between methods 2 and 3.

1. One can compute the roots of F (y) in Fq[x]/(f(x)). As above, there will be n
distinct roots, and one of them will be the desired ψ(x).

2. One can compute a root of φ(y) − x in the field Fq[x]/(f(x)).
3. One can use linear algebra as described in AppendixA.

2.4 Known Approaches to Recovering the Secret Isomorphism

In this section, we explore two possible methods to solve the finite field isomor-
phism problem. Such an isomorphism will be described as an n-by-n matrix M .
The first approach is based on lattice reduction. The second approach is a highly
non-linear attack of unknown but, we believe, high difficulty.
1 For example, Pari-GP [33] provides the routine polrootsff.
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2.4.1 Lattice Attack of (dim ≈ 2n)
In this subsection we describe a lattice attack that uses a transcript of cipher-
texts. We formulate this abstractly by saying that there is an unknown n-by-n
matrix M with mod q coefficients, and there are known vectors A1,A2, . . . ,Ak

with the property that the unknown vectors MAi mod q are small for all
i = 1, 2, . . . , k.

For the computational isomorphism problem we would need to recover the
rows of M exactly, and place them in the correct order. However, to solve the
decisional problem it would suffice to search for a single row of M . The dimension
of an attack lattice can be further reduced. To accomplish this, let m be some
(unknown) row of M , say the jth row, and let bi = m · Ai for i = 1, 2, . . . , k, be
the corresponding (unknown) small values of the indicated dot products. Then

A = (A1 | A2 | · · · | Ak), a = (a1 | a2 | . . . | ak), bj = (b1, b2, . . . , bk),

and we set D =
(

A
qI

)

. Thus A and a are two n-by-k matrices, and D is an

(n + k)-by-k matrix. The vector bj is a k dimensonal “slice” consisting of the
jth coordinates of the ai, which are the inverse images in X of the Ai. Let L(D)
denote the row span of D, so dim L(D) = k. Then L(D) contains the short row
vector of bj . If we choose k sufficiently large, then the vectors bj will stand out
as unusually short, relative to the Gaussian heuristic, and a successful lattice
reduction argument would recover them, or short linear combinations of them.
This means that an attacker with sufficient lattice reduction resources could
solve the decisional FFI problem, in the following way. Suppose the attacker is
provided with a list of Ai, images in Y of short vectors in X, and a vector B,
which might or might not be the image in Y of a short vector in X. Considering

(A1 | A2 | · · · | Ak | B),

a successful lattice reduction could produce a slice through the jth coordinates.
If each Ai = (ai,1, ai,2, . . . , ai,n)T then (a1,j , a2,j , . . . , ak,j , bj) will be in L(D). If
B is the image of a short vector in X then (a1,j , a2,j , . . . , ak,j , bj) will have all
short entries, say, around β in absolute value, and a successful lattice reduction
argument should recover it. If B is not the image of a short vector in X then
(a1,j , a2,j , . . . , ak,j , bj) will have k short entries and one entry that is random mod
q. If the vector, with this new final entry were recovered by lattice reduction,
it is highly unlikely that the random length of the final entry would be on the
order of β, and, as q will be considerably larger than k, it is also highly unlikely
that this output would be shorter than the gaussian heuristic expected vector.
This would enable the decision problem to be solved with greater than 50%
probability. The technical estimates are given in the remainder of this section.

Since ‖a‖ ≤ β, the length of the target vector is roughly ‖a‖2 
 β
√

k. The
determinant of L(D) is the gcd of the k-by-k minors of the matrix D. Each such
minor includes at least k − n rows from the bottom part of the matrix, which
gives a factor of qk−n to each k-by-k minor. Since the entries of A are more-or-
less random, it is likely that detL(D) is some small multiple of qk−n. Hence the
Gaussian expected shortest vector in L(D) has length roughly



Fully Homomorphic Encryption from the FFI Problem 137

γ
(L(D)

) 

√

dim L(D)
2πe

(

DetL(D)
)1/ dimL(D) =

√

k

2πe
· (qk−n)1/k.

To analyze the hardness of recovering this vector via lattice reductions, we focus
on the k-th root of the ratio between the Gaussian expected length and the
unique shortest vectors:

(

q
k−n

k

β
√

2πe

) 1
k

.

This attack appears to be optimal when k ≈ 2n. In the meantime, analyses in
[7,16] suggest that recovering this vector is hard for BKZ 2.0 algorithm when
q

1
4n β− 1

2n � 1.005.

Remark 5. This lattice is a little different from those used in instantiating the
unique shortest vector problem, as in our lattice, there are roughly n unique
shortest non-zero vectors of similar length. Previous results in [15,16] show that
the hardness of finding a short vector in q-ary lattices that contain many unique
shortest vectors depends not on the gap, but rather on the ratio between the
Gaussian heuristic and the actual length of the shortest vector. We conjecture a
similar property applies to our lattice.

2.4.2 A Non-Lattice Attack on Small Solutions
There are two pieces of structure lurking within the isomorphism X → Y that
are not used in the lattice attack described in Sect. 2.4.1:

1. The map X → Y is a field isomorphism between two copies of Fqn , not merely
an Fq-vector space isomorphism between two copies of Fn

q ;
2. The secret polynomial f(x) used to define one of the copies of Fqn has small

coefficients. (And the attacker may, in principle, take F (y) to be any irre-
ducible polynomial that she chooses.)

In this section we explain how to exploit these properties to formulate an attack
that requires finding small solutions to systems of higher degree multivariable
polynomial equations. We note that solving such systems appears to be exponen-
tially difficult. The polynomials f(x) and F (y) almost, but not quite, determine
the polynomials φ(y) and ψ(x) used to define the isomorphism

Fq[x]/(f(x)) ∼= Fq[y]/(F (y)).

More precisely, if x → φ′(y) is some other isomorphism, then necessarily

φ′(y) = φ(y)qt

(mod F (y)) for some 0 ≤ t < d.

This follows immediately from the fact that Gal(Fqd/Fq) is cyclic of order d, gen-
erated by the q-power Frobenius map. Alternatively, the possible values for φ(y)
are exactly the roots of f(x) in the field Fq[y]/(F (y)), so in any case there are
exactly d possible φ(y)’s. As stated in Remark 4, an attacker knows no useful
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information about f(x) until she acquires an image, since as already noted, the
public value F (y) is chosen independently of f(x). We assume that the attacker
is given the value of an arbitrary number of images. As per Definition 1, the
attacker is given A1, . . . ,Ak ∈ Y with the promise that ai, . . . ,ak ∈ X are
small, in other words:

Ai(y) = ai

(

φ(y)
)

mod F (y), (3)

where ai has small coefficients. The Eq. (3) contain 2n quantities that are
unknown to the attacker, namely the coefficients of a and φ. Of these, the coef-
ficients of a are small, so she can try to eliminate the coefficients of φ. We note
that (3) really gives n equations for the coefficients, since both sides are polyno-
mials of degree n−1. Unfortunately, this doesn’t quite allow her to eliminate all n
of the coefficients of φ. If she uses both A1(y) and A2(y), then she obtains 2n
equations for the 3n unknowns consisting of the coefficients of a1, a2, and φ. So
using elimination theory (as a practical matter, using Gröbner basis algorithms),
she can eliminate the coefficients of φ and obtain a system of n equations for
the 2n coefficients of a1 and a2. These are highly non-linear equations over the
field Fq, so the attacker is faced with the problem of finding an Fq-point with
small coordinates on a high degree n-dimensional subvariety of F2n

q . As far as
we are aware, there are no algorithms to solve such problems that are faster
than an exhaustive (or possibly collision-based) search. Indeed, there does not
appear to be an efficient algorithm to solve the decision problem of whether a
small solution exists.

We note that the attacker may continue eliminating variables until eventually
arriving at a single equation in F

n+1
q . But this is likely to be counter-productive,

since it greatly increases the degree of the underlying equation while discard-
ing the information that the eliminated variables are small. Alternatively, the
attacker can use one element in Y and the knowledge that there is a polyno-
mial f(x) with small coefficients that satisfies

f
(

φ(y)
)

= 0 mod F (y). (4)

Thus (3) and (4) again provide 2n equations, this time for the 3n coefficients
of a, f , and φ. The first two polynomials have small coefficients, so eliminating
the coefficients of φ again yields an n-dimensional subvariety in F

2n
q on which

the attacker must find a small point.

3 Fully Homomorphic Encryption Based on DFFI

In this section we use the approach of López-Alt et al. [28] to show how to turn
our scheme into a fully homomorphic encryption scheme. First, we present Gen-
try’s definitions and theorems on fully homomorphic encryption [17,18]. Later,
we show that our scheme satisfies the definitions on somewhat homomorphism,
but it does not reach the circuit depth required for evaluating decryption cir-
cuit homomorphically. We resolve the issue by turning our scheme into a leveled
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homomorphic encryption scheme using a technique to reduce the noise growth
from doubly exponential to singly exponential. We then describe our leveled
homomorphic scheme and show that it is fully homomorphic by showing that it
is able to evaluate its decryption circuit homomorphically.

3.1 Fully Homomorphic Encryption Definitions

We give the definitions of fully homomorphic encryption and leveled homomor-
phic encryption.

Definition 31 (C-Homomorphic Encryption [6]). Let C = {Cκ}κ∈N be a class of
functions with security parameter κ. A scheme E is C-homomorphic if for any
sequence of functions fκ ∈ Cκ and respective inputs μ1, . . . , μ� ∈ {0, 1} (where

 = 
(κ)), it is true that

PR[E .Decsk(E .Evalevk(f, c1, . . . , c�)) �= f(μ1, . . . , μ�)] = negl(κ),

where (pk, evk, sk)← E .KeyGen(1κ) and ci ← E .Encpk(μi).

Definition 32 (Fully Homomorphic Encryption [28]). An encryption scheme E
is fully homomorphic if it satisfies the following properties:

Correctness: E is C-homomorphic for the class C of all circuits.
Compactness: The computational complexity of E’s algorithms is polynomial

in the security parameter κ, and in the case of the evaluation algorithm, i.e.
the size of the circuit.

Now as given in [28], we continue with the leveled homomorphic encryption
definition that is taken from [5]. It is a modified definition of fully homomorphic
encryption (Definition 32) into a leveled homomorphic encryption scheme. It
removes the requirement that the scheme is able to evaluate all possible circuits
and instead imposes a circuit depth D. It requires the scheme to be able to
evaluate all circuits (including the decryption circuit) that are depth at most D.

Definition 33 (Leveled Homomorphic Encryption [28]). Let C(D) be the class
of all circuits of depth at most D (that use some specified complete set of gates).
We say that a family of homomorphic encryption schemes {E(D) : D ∈ Z

+} is
leveled fully homomorphic if, for all D ∈ Z

+, it satisfies the following properties:

Correctness: E(D) is C(D)-homomorphic.
Compactness: The computational complexity of E(D)s algorithms is polynomial

in the security parameter κ and D, and in the case of the evaluation algorithm,
the size of the circuit. We emphasize that this polynomial must be the same
for all D.

3.2 Somewhat Homomorphic FF-Encrypt Construction

We present a somewhat homomorphic version of our FF-Encrypt construc-
tion. We first give the details of our construction, and then we prove that our
scheme is able to evaluate homomorphic circuits (multiplications and additions)
of bounded depth.
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3.2.1 Preliminaries
Here we give some preliminary notation and information that we use for the
construction of our homomorphic schemes:

• The error distribution χ is a truncated Gaussian distribution DZn
r

with stan-
dard deviation r.

• The random polynomials r(x) are ephemeral short noise polynomials that are
sampled from χ.

• The message space uses a fixed polynomial p(x), which we take for this instan-
tiation to be the number 2.

• The message m(x) consists of a monomial with a single coefficient that is
chosen from {0, 1}.

Polynomial Multiplication Noise in X. The noise of the product of two
polynomials is significantly affected by the choice of the polynomial f(x). Two
factors that affect noise growth are the choice of the coefficient bound βf for f(x)
and the degree d := deg(f ′(x)), where we write f(x) = xn + f ′(x). The noise
bound for the product of two β-bounded polynomial a(x) and b(x) for d < n/2
satisfies

∥
∥a(x)b(x) mod f(x)

∥
∥

∞ ≤ n[(d + 1)2 + 1]β2. (5)

A detailed noise analysis for general f(x) is given in AppendixB.

3.2.2 Secret-Key Instantiation
The secret key version of our Somewhat Homomorphic Finite Field scheme uses
the following four algorithms:

– SHFF-SK.Keygen(1κ):
• Input a security parameter κ.
• Generate a parameter set Ξ = {n, q, β} as a function of κ.
• Use Algorithm 1 ( from the FF-Encrypt paper) to generate a finite field

homomorphism {f ,F ,ψ,φ}.
• Output {f ,F ,ψ,φ}. Also output p(x) and γ > 0.

– SHFF-SK.Enc(f ,F ,φ,m):
• Encode a plaintext by some method into a short polynomial m(x) ∈ X;
• Sample a polynomial r(x) ∈ X from the distribution χβ .
• Compute C(y) = p(φ(y))r(φ(y)) + m(φ(y)) mod F (y).
• Output C(y) as the ciphertext.

– SHFF-SK.Dec(f ,ψ,C):
• For a ciphertext C(y), compute c′(x) = C(ψ(x)).
• Output m′(x) = c′(x) mod

(

p(x),f(x)
)

.
– SHFF-SK.Eval(C,C1,C2, . . . ,C�):

• The circuit C is represented by two input binary arithmetic circuits with
gates {+,×}. Then, we can evaluate the circuit C homomorphically, since
we can perform homomorphic addition and homomorphic multiplication.
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3.2.3 Public-Key Instantiation
The public key version of our Somewhat Homomorphic Finite Field scheme is
similar to the secret key instantiation in most aspects. We use a subset sum
problem to instatiate the public key version. The scheme uses the following four
algorithms:

– SHFF-PK.Keygen(1κ):
• Perform the key generation as in secret key instantiation SHFF-
SK.Keygen(1κ).

• Choose two integers S, s which
(
S
s

)

> 2κ for security parameter κ.
• Set ci = SHFF-SK.Enc(f ,F ,φ, 0)i, create an array of zero encryptions
pk = S = {C0(y),C1(y), . . . ,CS−1(y)}.

– SHFF-PK.Enc(S,m):
• Choose s random encryptions of zero Ci(y) from S and compute their

summation with message C(y) =
∑

i=rand(S) Ci(y) + M(y) in which M
is the representation of the message m in Y.

• Output C(y) as the ciphertext.
– SHFF-PK.Dec(f ,ψ,C):

• Compute and output SHFF-SK.Dec(f ,ψ,C).
– SHFF-PK.Eval(C,C1,C2, . . . ,C�):

• Compute and output SHFF-SK.Eval(C,C1,C2, . . . ,C�).

The noise and depth performance of this scheme is captured by the following
Lemma.

Lemma 2. The encryption scheme

ESHFF = (SHFF.KeyGen,SHFF.Enc,SHFF.Dec,SHFF.Eval)

described above is somewhat homomorphic for circuits having depth less than
D < log log q − log (3 log n) where q = 2nε

with ε ∈ (0, 1), and χ is a β-bounded
Gaussian distribution for random sampling.

Proof. We denote the encryptions of two messages m1 and m2 by C1(y) and
C2(y). Then we want the noise of the ciphertexts after an addition or a multi-
plication to be smaller than q/2 so that it can be correctly decrypted.

Addition. Set C(y) = C1(y) + C2(y). Dropping y from the notation,
we have C = (

∑
p(φ)r1(φ) + m1(φ)) + (

∑
p(φ)r2(φ) + m2(φ)) . Apply

ψ(x) as the first step of the decryption C(x) = (
∑

p(x)r1(x) + m1(x)) +
(
∑

p(x)r2(x) + m2(x)) . Then the infinity norm of C(x) is ‖C(x)‖∞ = 2sβ′.

Multiplication. We compute

C =
(∑

p(φ)r1(φ) + m1(φ)
)

·
(∑

p(φ)r2(φ) + m2(φ)
)

=
∑

p(φ)2r1(φ)r2(φ) +
∑

p(φ)r1(φ)m2(φ)

+
∑

p(φ)r2(φ)m1(φ) + m1(φ)m2(φ).
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We calculate the infinity norm of C(x) using Eq. 5,

‖C(x)‖∞ = n
(

(d + 1)2 + 1
)

(sβ′)2 + 2sβ′.

Multiplicative Level D. For D-level homomorphic operations, we need to

compute the bound of
∥
∥
(

p(x)r(x) + m(x)
)2D∥

∥
∞. Since p(x)r(x) � m(x), this

is essentialy equal to
∥
∥
(

p(x)r(x)
)2D∥

∥
∞. This gives an error bound equal to

(nd′)2
D−1(sβ′)2

D

with d′ = (d+1)2+1. We want this noise to be smaller than q/2,
so we impose the inequality (nd′)2

D−1(sβ′)2
D

< q/2. Taking the logarithms, we
rewrite this as (2D−1) log(nd′)+(2D) log(sβ′) < log q−1 Taking logarithm again
yields D+log(log (nd′)+log(sβ′)) < log(log q+log (nd′)−1). We can simplify this
inequality by noting that d′ ≈ n2/4, which makes log (nd′) ≈ 3 log (n) > log(sB′)
and log (q) > 3 log (n). Omitting small terms, we obtain

D < log log q − log (3 log n)

Taking q = 2nε

, our upper bound for the multiplicative depth D is O(ε log n). ��

3.2.4 Security
Our construction relies on two security assumptions. The first assumption is the
hardness of the Decisional Finite Field Isomorphism problem, which ensures that
small norm elements in X are mapped to random-looking elements in Y. The
mapping function is secret, and an attacker has to find some way of identifying
images of short objects in X in order to break the scheme. The second assumption
is the difficulty of the subset sum problem that is used to generate encryptions
of 0 to add to encryptions of messages. We will choose s ciphertexts from a list
length S, so the pair of parameters (S, s) should give reasonable combinatorial
security, e.g.,

(
S
s

)

> 2256. Beyond combinatorial security, solving this subset
sum problem and identifying an encryption of 0 can be translated into a lattice
reduction problem in the rows of an S by S + n matrix, which can be made
arbitrarily difficult. In particular S > 2n should suffice. We prove the semantic
security via the following theorem.

Theorem 1. If there is an algorithm A that breaks the semantic security with
parameter Ξ = {n, q, β} and p(x) = p, i.e., if one inputs of any public keys
(C1, . . . ,Ck), a ciphertext D which encrypts a message m of either 0 or 1,
and A outputs the message m with probability 1/2 + ε for some non-negligible
ε > 0, then there exist another algorithm B that solves the decisional FFI with
parameter {n, q, β/p} with probability 1/2 + ε.

Proof. Notice that if the input (C1, . . . ,Ck,D) to algorithm A is invalid (either
D cannot be written as subset sum of Ci, or D does not encrypt 0 or 1), it
will either output an error or output 0 or 1 with equal probability. On the other
hand, if the input is valid, it will output the correct m with probability 1/2 + ε.
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Now we can use A to build an algorithm B as follows. Let A1, . . . ,Ak,B1,B2

be the input to the decisional FFI problem. Upon receiving those inputs, algo-
rithm A calls algorithm B with a “public key” (pB1, pA2, . . . , pAk) and a cipher-
text 0. Therefore, if B1 has short images in X, then (pB1, pA2, . . . , pAk) is a
legit public key, while if B1 is uniformly sampled in Zq[x], then the probability
of (pB1, pA2, . . . , pAk) been a legitimate public key is negligible, roughly ( β

pq )n.
Notice that 0 is a subset sum of the “public key” regardless if the “public

key” is legitimate or not. So from A’s point of view, 0 is a legit ciphertext
that encrypts 0 if B1 has a short image. Upon receiving those public key and
ciphertext, A will return 0 with probability 1/2 + ε if B1 has a short image. It
will return error or random if B1 doesn’t. Thus B solves the decisional FFI with
probability 1/2 + ε. ��

For completeness sake, we also show that if one can solve the Decisional FFI,
one can also break the semantic security. Given a ciphertext C with an image
C = pr + 
m, one can compute p−1C mod q (assuming p is an integer, say 2)
which has a reverse image r + p−1
m. If m = 0, this quantity will be short. If
m = 1, this quantity will be of length ‖p−1
 r mod q‖. This is highly probable
to be large, as if, say, p = 2, then ‖p−1 mod r mod q‖ will probably be of a size
that takes random values mod q as 
 varies.

3.3 From Somewhat to Fully Homomorphic Encryption

We give the definitions of bootstrappable scheme and weak circular security [17,
18]. Later, we use these two definitions to describe the bootstrapping theorem.

Definition 34 (Bootstrappable Scheme [18]). Let E = (Keygen,Enc,Dec,Eval)
be a C-homomorphic encryption scheme, and let fadd and fmult be the augmented
decryption functions of the scheme defined as

fc1,c2
add (sk) = Dec(sk, c1) XOR Dec(sk, c2),

fc1,c2
mult (sk) = Dec(sk, c1) AND Dec(sk, c2).

Then we say that E is bootstrappable if {fc1,c2
add , fc1,c2

mult }c1,c2 ⊆ C, i.e., if E can
homomorphically evaluate fadd and fmult.

Definition 35 (Weak Circular Security [18]). A public-key encryption scheme
E = (Keygen,Enc,Dec) is weakly circular secure if it is IND-CPA secure even
for an adversary with auxiliary information containing encryptions of all secret
key bits: {Enc(pk, sk[i])}i. In other words, no polynomial-time adversary can dis-
tinguish an encryption of 0 from an encryption of 1, even given this additional
information.

Theorem 2. Let E be a bootstrappable scheme that is also weakly circular
secure. Then there exists a fully homomorphic encryption scheme E ′.
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In its current construction, our scheme is not bootstrappable, because it can-
not reach the required multiplicative depth for decryption. For details
on the evaluation of the depth of decryption circuit, see Sect. 3.3.5. The current
scheme is only able to compute circuits with depth ε log(n). In order to con-
vert our scheme into a bootstrappable one, in the next section we introduce a
multiplication method with better noise management. This helps to significantly
improve the depth of the circuits that the scheme can evaluate.

3.3.1 Regular Multiplication
A straightforward multiplication in the SHFF scheme causes the noise to grow
doubly exponentially (nd′)2

D−1(sβ′)2
D

with respect to the level D. To reduce
the growth to singly exponential, we introduce a multiplication technique similar
to the flattening in [21]. In rest of this section for notational simplicity, we drop
x and y and represent elements of X with lowercase letters and elements of Y
with uppercase letters, e.g., r ∈ X and R ∈ Y satisfy r(φ(y)) = R(y). We
first consider the product for two ciphertexts, C1 =

∑
PR1+M1 and C2 =

∑
PR2+M2. To ease notation we write R =

∑
R. Then C1 ·C2 = P 2R1R2+

PR1M2 + PR2M1 + M1M2.

Remark 6. Obviously this method creates a significant noise term P 2R1R2 +
PR1M2 + PR2M1. If we map it back to X, the norm of the noise is bounded
by ‖p2s2r2 + 2psr‖ for m ∈ {0, 1}.

We look at the steps more closely. If we expand the second ciphertext C2(y)
and do not expand C1(y), we obtain C1 · C2 = PR2C1 + C1M2. Here C1M2

gives the desired message product, with the side effect that the PR2C1 term
adds a significant amount of noise. To curb the noise growth, we have to find a
way to evaluate C1M2 while avoiding PR2C1.

3.3.2 Multiplication with Noise Management
In this section we explain the idea behind computing the ciphertext product
while avoiding the noisy PR2C1 term. To achieve this we change the format of
the ciphertexts and define two ciphertext operands: the Left-Hand-Side (LHS)
and the Right-Hand-Side (RHS).
LHS Operand: The LHS-operand format is simply a matrix formed by bit
decomposition of the ciphertext. We write Ĉ

m

BD for the bit decomposition matrix
of the ciphertext C = PR + M with message m(x). We denote the elements of
the matrix by Ci,j = Ĉ

m

BD[i][j] for 0 < i < n and 0 < j < 
. More precisely, in
the matrix, the entry Ci,j denotes the jth bit of the ith coefficient of C. From
this point on, we denote matrices by using a hat on top of the letters, e.g., Ĉ
means that it is a matrix.
RHS Operand: We create an n-by-
 matrix Ĉ, where each entry is a ciphertext
that holds the message m with a specific construction. For simplicity we drop
the indices on R, so each R represents a different sample. Then, the entries
of the matrix are computed as Ĉ

m
[i][j] = PRi,j + 2iψ(φ)jM for 0 ≤ i <
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n and 0 ≤ j < 
. Note that with each new row, we multiply the message by 2,
and for each new column, we increase the power of ψ(φ). Since y = ψ(φ), this
matrix is equal to Ĉ

m
[i][j] = PRi,j + 2iyjM for 0 ≤ i < n and 0 ≤ j < 
.

One-Sided Homomorphic Multiplication: In the first method we use an
LHS operand and an RHS operand to create an LHS operand, i.e., LHS = LHS×
RHS. The homomorphic product is computed by computing a component-wise
product followed by a summation over the products:

〈Ĉm 1

BD , Ĉ
m 2〉 =

∑

i<n

∑

j<�

Ci,j · (

PRi,j + 2jyiM2

)

=
∑∑

PRi,j + PR1M2 + M1M2.

If we look more closely, each column in the component-wise product creates
an encrypted version of the coefficients of the ciphertext C1. The result of the
product is a standard FF-Encrypt ciphertext. To continue using the result, we
apply bit decomposition BD to obtain an LHS ciphertext. An LHS operand can
be computed from a regular ciphertext on the fly via bit-decomposition. An
RHS operand must be constructed before it is given to the cloud/server. This
means that the ciphertext size grows by a factor of n
 for RHS operands only.

Remark 7. Noise growth in multiplications is significantly reduced compared to
the earlier method. Using this one-sided multiplication approach and having
fresh ciphertexts on the right-hand side, with flattening we obtain a new noise
bound of n
‖psr‖. Therefore the noise growth is no longer doubly exponential,
and we can support deep evaluations with reasonably sized parameters as long
as we restrict evaluations to be one sided evaluations. This may be achieved by
expressing the circuit first using NAND gates and then evaluating left to right
similar to GSW.

Remark 8. Another significant contribution is that we eliminate polynomial mul-
tiplications and only perform polynomial additions. This way, the effect of f(x)
is omitted for noise analysis, i.e., it does not have any effect on noise.

Lemma 3. Let n be the polynomial degree, let q = 2nε

be the modulus, let
χ = DZn,r be the β-bounded Gaussian distribution, and let D be the multiplicative
level. Then, the proposed One-Sided Homomorphic Multiplication algorithm has
noise bound (2D − 1)(n
 + 1)‖psr‖ = O(2Dn log q) for fixed s and β.

Generic Homomorphic Multiplication: This second method uses two RHS
operands to do multiplication and achieves an RHS product as the result of
the multiplication, i.e., RHS = RHS × RHS. The multiplication is similar to the
multiplication algorithm for LHS and RHS operands. We represent an element
(ciphertext) in the RHS operand matrix as Cm [k][l] (kth row and lth column).
In order to compute all the elements in the matrix we compute the following:

Cm1·m 2 [k][l] = 〈Ĉm 1

BD [k][l], Ĉ
m2〉 =

∑

i<n

∑

j<�

Ci,j [k][l] · (

PRi,j + 2jyiM2

)

=
∑ ∑

PRi,j + PR1M2 + 2kylM1M2.
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Here we compute an element of the matrix using same approach that we used for
LHS-RHS multiplication. We take an element in the matrix at any location (k, l)
and apply the bit decomposition of that element Cm 1

BD [k][l]. Later, we compute
component-wise products, which gives us the ciphertext result at location (k, l)
in the result matrix. One RHS × RHS multiplication requires n
 multiplications
of LHS×RHS type. Also, multiplication does not require one-sided evaluation as
in the One-Sided Homomorphic Multiplication method. Since we can create an
RHS operand, we can evaluate an arbitrary circuit, which gives an advantage over
One-Sided Homomorphic Multiplication. The noise growth in multiplications is
still low, but it accumulates as we compute depth D multiplication using a binary
tree multiplication. This leads to a worse noise growth compared to LHS-RHS
multiplication. But just as in method 1, we have still eliminated the effect of
f(x) on noise.

Lemma 4. Let n be the polynomial degree, let q = 2nε

be the modulus, let
χ = DZn,r is the β-bounded Gaussian distribution, and let D be the multiplicative
level. Then, the proposed Generic Homomorphic Multiplication algorithm has
noise bound (n
 + 1)D‖psr‖ = O((n log q)D) for fixed s and β.

3.3.3 Leveled Homomorphic Public Key Scheme Instantiation
We construct a leveled homomorphic scheme using the noise management tech-
nique described above and the SHFF-PKscheme. Here we list the primitive func-
tions of the Leveled Homomorphic Public Key scheme:

– LHFF-PK.Keygen(1κ):
• Compute SHFF-PK.Keygen(1κ).

– LHFF-PK.Enc(S,m):
• We form n by 
 ciphertext matrix Ĉ by computing its elements

C(y)[i][j] = SHFF − PK.Enc(S, 2iψjm) for i < 
 and j < n.
• Output Ĉ as the ciphertext.

– LHFF-PK.Dec(f ,ψ, Ĉ):
• Compute SHFF-PK.Dec(f ,ψ,C[0][0]).

– LHFF-PK.Eval(C, Ĉ1, Ĉ2, . . . , Ĉ�):
• We follow a similar approach to that we used in SHFF-SK. We show that

the homomorphic properties are preserved under the binary circuit evalu-
ation with gates {+,×}. This proves that any circuit C can be evaluated
using two gates with two binary inputs.

Homomorphic Addition (+). Homomorphic addition of two ciphertext
matrices Ĉ1 and Ĉ2 is evaluated by performing a matrix addition, Ĉ = Ĉ1+Ĉ2.
Namely, we compute the elements of the ciphertext matrix at each loca-
tion (k, l) by computing C(y)[k][l] = C1(y)[k][l] + C2(y)[k][l] (mod F (y)).
The summation at each location preserves the ciphertext matrix property,
C[k][l] = (PR1 + 2kylM1) + (PR2 + 2kylM2), which simplifies to C[k][l] =
P (R1 + R2) + 2kyl(M1 + M2). This shows that the ciphertext property of the
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matrix holds. Also, the first element C[0][0] is decryptable and gives us the result
of the summation.

Homomorphic Multiplication (×). Homomorphic multiplication is evalu-
ated using the multiplication method that is explained in Sect. 3.3.2. A matrix
ciphertext multiplication preserves its format, which allows it to continue the
homomorphic process. This may be sees by comparing the format of a fresh
ciphertext and a product of ciphertexts. First we recall the format of an element
of a fresh ciphertext: Cm 1 [k][l] = PR1 + 2kylM1. Next we recall the result of
multiplication using multiplication method 2:

Cm1·m 2 [k][l] = 〈Ĉm 1

BD [k][l], Ĉ
m2〉 =

∑ ∑

PRi,j + PR1M2 + 2kylM1M2.

When we compare the ciphertext elements, it is clear that in a multiplication,
we preserve the ciphertext matrix format while computing the multiplication,
i.e., 2kylM1M2. Also, in order to decrypt successfully, we need only decrypt
the first element C[0][0] of the matrix .

Multiplicative Level D. We capture the multiplicative depth of the leveled
homomorphic scheme as follows.

Lemma 5. The encryption scheme

ELH{LHFF − PK.KeyGen, LHFF − PK.Enc, LHFF − PK.Dec, LHFF − PK.Eval}

described above is leveled homomorphic for circuits having depth D =
O(nε/log n) where q = 2nε

with ε ∈ (0, 1), and χ is a β-bounded Gaussian
distribution for random sampling.

Proof. In order to determine an upper bound for depth D, we use the noise bound
that is calculated in Sect. 3.3.2. The noise has a bound (n log q+1)D‖pr‖, which is
equal to (n log q+1)D(sβ′). We require that this be smaller than q/2, which gives
an upper bound for multiplicative level D in the form (n log q + 1)D(sβ′) < q/2.
Taking the logarithm of both sides gives D log (n log q + 1)+log (sβ′) < log q−1.
Since 1 � n log q, using q = 2nε

yields

D <
nε − 1 − log (sβ′)

log n + ε log n
.

In big-O notation, this gives an upper bound of the form O(nε/log n). ��

3.3.4 Security
The construction of the leveled homomorphic encryption is based on the Some-
what Homomorphic Finite Field Encryption scheme. Since there is not any sig-
nificant change that affects the security, the leveled version of our construction
is based on the same security assumptions as SHFF-PK: the hardness of the
Decisional FFI and the subset sum problems.
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Lemma 6. Let n be the polynomial degree, let q = 2nε

be the modulus, and let
χ = DZn,r be a Gaussian distribution. Then, the proposed leveled homomorphic
encryption scheme

ELH{LHFF − PK.KeyGen, LHFF − PK.Enc, LHFF − PK.Dec, LHFF − PK.Eval}
is secure under the assumptions of hardness of the Decisional Finite Field Iso-
morphism problem and the subset sum problem.

3.3.5 Bootstrapping
In order to demonstrate that E is fully homomorphic, we show that the depth
of the decryption circuit can be homomorphically achieved by our scheme. First
we look at the depth of the decryption circuit.

Decryption Circuit Depth. We recall that decryption is given by evaluat-
ing c′(x) = C(ψ(x)) (mod p(x),f(x)). Denoting the coefficients of C(y) by
ζi, this can be expanded as c′(x) = ζ0 + ζ1ψ(x) + ζ2ψ(x)2 + . . . ζn−1ψ(x)n−1

(mod f(x),p(x)). Modular reduction by f(x) can be avoided by pre-computing
ψ′(i)(x) = ψ(x)i (mod f(x)). This turns decryption into summation of polyno-
mials are multiplied by scalars, c′(x) =

∑

i<n ζiψ
′(i)(x). Let c′

j be the coef-
ficients of the result c′(x). Then each coefficient is evaluated by computing
c′

j =
∑

i<n ζiψ
′(i)
j where ψ

′(i)
j denotes the jth coefficient of ψ′(i).

In [6, Lemma 4.5] the authors prove that evaluating the sum of n elements
with log q bits results in circuit depth O(log n + log log q). They also show that
they can do modular reduction mod q with circuit depth O(log n+log log q). Since
p(x) is small, say p(x) = 2, we can perform modular reduction mod p by taking
the first bit, which does not require any circuit. Therefore, the bootstrapping
operation has an upper bound O(log n + log log q).

Theorem 3. Let χ is a β-bounded distribution for β = poly(n), and let q = 2nε

for 0 < ε < 1. Then there exists a fully homomorphic encryption scheme based on
the leveled homomorphic encryption scheme E = LHFF − PK with the assump-
tions that scheme is secure under the Decisional Finite Field Isomorphism Prob-
lem and that it is weakly circular secure.

Proof. The decryption circuit requires O(log n+log log q) depth, and our scheme
can compute O(nε/log n) depth circuits (Lemma 5). Therefore, the following
inequality is sufficient in order to be bootstrappable:

Υ (log n + log log q) < nε/log n

where Υ > 0 is used to capture the constants in the circuit. Since 0 < ε < 1, in
worst case scenario we obtain 2Υ < log q/ log2 n. ��

4 Conclusion

In this work we proposed a new conjectured hard problem: the finite field isomor-
phism problem. Informally, the FFI problem asks one to construct an explicit
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isomorphism between two representations of a finite field, given only access to
long (large norm) representations of field elements and the assurance of the
existence of a representation where each of these elements has a short (low
norm) expression. We formalized the FFI problem and study the effectiveness
of various approaches, including lattice attacks and non-lattice algebraic tech-
niques, for recovering the secret isomorphism. Relying on the assumed hardness
of the decisional-FFI problem, we first presented a secret-key somewhat homo-
morphic encryption scheme. This was extended, using a subset-sum problem
technique, to a public-key scheme. We briefly analyze the noise performance
of both schemes and introduced a bit-decomposition-based noise managements
scheme that allows us to reduce the noise growth to single exponential. This
yielded a bootstrapable, and thus a fully homomorphic encryption scheme.

A Constructing the Inverse Isomorphism

The map defined by x �→ φ(y) is a field isomorphism. It follows that there is an
inverse isomorphism, and that inverse isomorphism is determined by the image
of y. So we write the inverse isomorphism as

y �−→ ψ(x) =
n−1∑

i=0

cix
i, (6)

and our goal is to determine the ci coefficients. We know that the composition
y �−→ ψ(x) �−→ ψ

(

φ(y)
)

gives an automorphism of Fq[y]/(F (y)), so

ψ
(

φ(y)
) ≡ y (mod F (y)). (7)

Hence it suffices to determine the (unique) polynomial ψ(x) of degree less than n
satisfying (7). Using the expression (6) for ψ(x), we want to find ci so that
∑n−1

i=0 ciφ(y)i ≡ y (mod F (y)). We write each power φ(y)i modulo F (y) as a
polyomial of degree less than n. In other words, we use the known values of φ(y)
and F (y) to write φ(y)i =

∑n−1
j=0 aijy

j (mod F (y)) for 0 ≤ i < n. Substitut-
ing this into ψ

(

φ(y)
)

yields ψ
(

φ(y)
)

=
∑n−1

i=0 ciφ(y)i ≡ ∑n−1
i=0 ci

∑n−1
j=0 aijy

j

(mod F (y)) ≡ ∑n−1
j=0

(
∑n−1

i=0 aijci

)

yj (mod F (y)). Hence ψ will satisfy (7) if

we choose c0, . . . , cn−1 to satisfy
∑n−1

i=0 aijci = 1 if j = 1, and
∑n−1

i=0 aijci = 0 if
j = 0. This is a system of n equations for the n variables c0, . . . , cn−1 over the
finite field Fq, hence is easy to solve, which gives the desired polynomial ψ(y).

B Noise Analysis

To estimate the noise, we need to find the effect of modular reduction operation
(with f(x)) on the norm. One way is to use Barrett’s Reduction algorithm.
In Barrett’s algorithm, a precomputed factor M(x) = x2n/f(x) plays a key
role in estimating the quotient of the division with the modulus. Therefore,
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determining M(x) will give us the main contributing factor to the noise level.
Our goal is to bound the norm of the factor M(x) as tightly as possible. We start

by rearranging M(x) =
⌊

x2n/f(x)
⌋

=
⌊

xn

1+
f ′(x)

xn

⌋

Note that deg(f ′(x)) < n and

the floor operator simply truncates the polynomial beyond the constant term.
This allows us to write the Taylor Series expansion (polynomial equivalent for
1/(1 + x)) as follows M(x) =

⌊

xn +
∑i=�

i=1 (−1)i f ′(x)i

x(i−1)n

⌋

Set d = deg(f ′(x)).
Then, each element in the series contributes up to a polynomial degree in the
summation. It is important to notice that since n > d each term in the expansion
of M(x) the degree is bounded by d (except of course the xn term. Therefore
deg(M(x) − xn) ≤ d. In the series expansion a power f ′(x)i contributes to the
series as long as (i−1)n ≤ id. For larger i values the new additive term is simply
truncated away, i.e. has no effect on M(x). Therefore in the summation we only
need to consider up to a degree 
 which is determined as follows 
 = �n/(n−d)�.
In the special case of d < n/2 we have 
 = 1 and M(x) = 1 − f ′(x) and
βM = βf . In the general case, to bound the norm of M(x), we have to find the
largest possible value for each term in the expansion. Assume that we sample
f ′(x) from a β-bounded distribution. We first assume β = 1 and later generalize
the worst and average case bounds to cover arbitrary β values.

B.1 Worst Case Analysis

For clarity we first consider the first few terms in the expansion and then gen-
eralize the contribution to an arbitrary term:

f ’(x): Since this is a fresh polynomial, the coefficients are sampled from a β-
bounded distribution. For β = 1 in the worst case all coefficients are set to 1,
i.e. f ′(x) = xd + xd−1 + xd−2 + · · · + x1 + 1.

f ’(x)2/xn: Assume we compute the square of f ′(x) using as schoolbook multi-
plication. It is easy to see that starting from the middle degree d, the coefficients
of the result decrease as we go to lower and higher degrees. In other words, the
coefficients of f ′(x)2 are symmetric around the middle degree. Since β = 1, we
can write the polynomial as x2d + 2x2d−1 + · · · + (d + 1)xd + · · · + 2x + 1. The
division by xn eliminates the first n terms. This results in following polynomial
x2d−n +2x2d−n−1 +3x2d−n−2 + · · ·+(2d−n+1)x0. Since d < n then 2d−n < d
and thus the largest coefficient is the constant coefficient with value (2d−n+1).

f ’(x)i
/x(i−1)n: We are now ready to generalize the approach to find the largest

coefficient for a degree i. When computing f ′(x)i = f ′(x)i−1 · f ′(x) since it is
divided by x(i−1)n, we only use the last id − (i − 1)n + 1 coefficients of f ′(x)i−1.
We multiply f ′(x)i−1 with each coefficient of f ′(x) and only take the last id −
(i − 1)n + 1 coefficients. If βi−1 = max(f ′(x)i−1), then we add id − (i − 1)n + 1
of Bi−1 ·β which makes the upper bound (id− (i−1)n+1) ·βi−1 ·β. If we apply
this recursively to compute for previous values of i, we achieve an upper bound
(id − (i − 1)n + 1)i−1 for β = 1.
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B.2 Worst Case for Arbitrary β

f ’(x)i
/x(i−1)n. We use the general formula as explained in the section above. For

the current i we have (id− (i− 1)n+1) ·βi−1 ·β as the upper bound. For any β,
recursively we have βi so the upper bound will be (id− (i− 1)n+1)i−1 ·βi. The
overall bound on M(x) is therefore BM = ||M(x)|| ≤ ∑

i=1,..,�(id − (i − 1)n +
1)i−1βi where B0 = β and as established before 
 = �n/(n − d)�. Our goal is
to bound the norm ||a(x)b(x) mod f(x)|| using Barrett Reduction. We assume
both ||a(x)||, ||b(x)|| ≤ β and deg(f(x)) = n. We compute the worst case noise
bound using the following steps:

– Step 1. Compute M(x) =
⌊

x2n/f(x)
⌋

(M(x) is the quotient of the division).
Also assume ||M(x)|| = βM .

– Step 2. Compute regular product c(x) = a(x)b(x). ||c(x)|| = nβ2.
– Step 3. Estimate quotient of c(x)/f(x) (dropping (x) for brevity) q1 =

�c/xn�. Since we take half of c, worst case noise still remains: ||q1|| = nβ2.
q2 = Mq1. This yields ||q2|| = (d + 1) · βM · nβ2 = n(d + 1)βMβ2

q3 = �q2/xn�. Worst case noise remains the same as q2: ||q3|| = n(d+1)βMβ2

– Step 4. Fix the result using the lower half of c(x)
r1 = c mod xn, thus ||r1|| = nβ2,
r2 = q3f mod xn ||r2|| = n ·(d+1)2βMβ2 ·βf , where we choose ||f(x)|| = βf .
r = r1 − r2 = a(x)b(x) mod f(x). This gives us an overall bound of
||a(x)b(x) mod f(x)|| ≤ nβ2 + n(d + 1)2β2βMβf

For d < n/2 and βf = 1, we have βM = 1 and the worst case norm simplifies to
||a(x)b(x) mod f(x)|| ≤ n[(d+1)2+1]β2. In the average case the noise norm can
be approximated by ||a(x)b(x) mod f(x)||avg ≈ n1/2β2 + n1/2(d + 1)β2βMβf .

C Sample Parameters and Their Security Estimates

In Table 1 we present some parameters for the somewhat homomorphic encryp-
tion scheme. The proposed parameter set does not take into account our noise
management technique. We compute the levels (circuit depth) by doing straight-
forward multiplications. In all 5 examples, we choose β = 2 and d = n/2 (recall
that d is the degree of f ′(x) where f(x) = xn + f ′(x)). For each level we give a
noise estimate and also give a maximum selectable q size.

To estimate the cost of BKZ 2.0, we follow the cryptanalysis in [2,24]. We
use Tables 2 and 3 to estimate the block size and the number of nodes for a
given root Hermite factor. Then we use the following formula ([24], which is an
interpolation of data reported in [7] to get the cost of BKZ 2.0).

BKZCost(dim, b, rounds) = LogNodes(b) + log2(dimension · rounds) + 7.

We remark that in [2] the authors proposed to use (quantum) sieving, rather
than enumeration with extreme pruning, to estimate the cost of BKZ 2.0. In this
analysis, we stick to the original estimation model, to show a proof-of-concept
that practical parameters can be derived for our scheme. We leave the parameter
derivation under the more conservative model in [2] to future work.
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Table 1. Sample parameters for somewhat homomorphic encryption

Level n log noise logmax(q) Ciphertext size Root of Ratio BKZ 2.0 cost

1 256 13 15 0.4 KB 1.0060 >2145

2 2048 50 83 12.5 KB 1.0065 >2135

3 4096 127 161 63.5 KB 1.0066 >2136

4 8192 293 317 293 KB 1.0066 >2137

5 32768 698 1250 2.7 MB 1.0066 >2139

Table 2. Requried blocksize for target root Hermite factor [7]

Target root Hermite factor 1.01 1.009 1.008 1.007 1.006

Approximate block size 85 106 133 168 216

Table 3. Upper bounds on log2 number of nodes enumerated in one call to enumeration
subroutine of BKZ 2.0 [7].

Block size b 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

LogNodes(b) 39 44 49 54 60 66 72 78 84 96 99 105 111 120 127 134

D Testing Results for Observation 2

We test the soundness of Observation 2 as follows. We setup toy size isomor-
phisms with n ∈ {20, 30, 40, 80} and q ∈ {1031, 2053, 220 + 7}. For each test we
generate a long transcript of elements in X and Y; We examine the distribution
of the coefficients in Y and compare it with uniform distribution; We show that
the Renyi divergence between our distribution and a uniform distribution scales
properly with log2(q/n). Two example distribution of the coefficients are shown

Fig. 1. Testing results for Observation 2
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in Fig. 1. We compute the Renyi divergence with α = 2. Our results shows that
our distribution is less than 2−14 away from a uniform distribution for out toy
example with n = 20 and q = 1031.

Table 4. Renyi divergence

q n = 20 n = 30 n = 40 n = 80

1031 2−14.3 2−14.8 2−15.3 2−16.2

2053 2−13.3 2−13.9 2−14.3 2−15.3

220+7 2−4.3 2−4.8 2−5.3 2−6.2

We summarize the testing result in Table 4. As one can see the exponent of
the divergence is linear in log2(q/n). We estimate that for moderate n ≈ q the
divergence is around 2−11.
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