
Subversion-Zero-Knowledge SNARKs

Georg Fuchsbauer1,2(B)

1 Inria, Paris, France
2 École normale supérieure, CNRS, PSL Research University, Paris, France

georg.fuchsbauer@ens.fr

Abstract. Subversion zero knowledge for non-interactive proof systems
demands that zero knowledge (ZK) be maintained even when the com-
mon reference string (CRS) is chosen maliciously. SNARKs are proof
systems with succinct proofs, which are at the core of the cryptocur-
rency Zcash, whose anonymity relies on ZK-SNARKs; they are also used
for ZK contingent payments in Bitcoin.

We show that under a plausible hardness assumption, the most effi-
cient SNARK schemes proposed in the literature, including the one
underlying Zcash and contingent payments, satisfy subversion ZK or can
be made to at very little cost. In particular, we prove subversion ZK
of the original SNARKs by Gennaro et al. and the almost optimal con-
struction by Groth; for the Pinocchio scheme implemented in libsnark
we show that it suffices to add 4 group elements to the CRS. We also
argue informally that Zcash is anonymous even if its parameters were
set up maliciously.

Keywords: Zero knowledge · SNARKs · Parameter subversion
Zcash · Bitcoin contingent payments

1 Introduction

One of the primary motivations for succinct non-interactive arguments (SNARG)
was verifiable computation. Consider a client that outsources resource-intensive
computation to a powerful server, which attaches a proof to the result, so the
client is convinced that it was computed correctly. For this to be meaningful,
verification of such a proof must be considerably more efficient than performing
the computation in the first place. SNARG systems provide such proofs and an
impressive line of research has led to more and more efficient systems with proofs
of size less than a kilobyte that can be verified in milliseconds. The reason why
SNARGs are not used in outsourcing of computation is that computing a proof
for complex computations is still not practical. (For example, a proof in Zcash,
which is for a very simple statement, takes minutes to compute on a PC.)

Zero-knowledge (ZK) SNARGs are used when some inputs to the computa-
tion come from the prover (the server in our example), who wants to keep its
inputs private. ZK systems guarantee that a proof does not reveal more about

c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10769, pp. 315–347, 2018.
https://doi.org/10.1007/978-3-319-76578-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76578-5_11&domain=pdf

316 G. Fuchsbauer

private inputs than what can be inferred from the result of the computation.
If the proofs prove knowledge of the private inputs, they are called SNARKs.
ZK-SNARKs are already deployed, for example in Zcash [Zca], which is a cryp-
tocurrency like Bitcoin [Nak09], based on the Zerocash protocol [BCG+14a]. As
opposed to Bitcoin, where all transactions are public, Zcash payments are fully
anonymous and protect the users’ privacy. Zcash achieves this by using SNARK
proofs that are zero-knowledge.

Zero-knowledge contingent payments use SNARKs for fair exchange of infor-
mation against payments over the Bitcoin network, assuming that the informa-
tion can be verified (in the sense that it can be formalized as the witness of an
NP statement), e.g. solutions to a Sudoku puzzle. Bitcoin’s scripting language
defines Pay-to-PubkeyHash transactions, which are bound to a hash value y and
can be redeemed by exhibiting a preimage, i.e., some x s.t. H(x) = y. In a con-
tingent payment Alice, the seller, chooses a key k, encrypts the information she
is offering as c under k and sends c together with y := H(k) to Bob, the buyer.
Bob makes a transaction to y. To redeem it, Alice must publish the preimage k,
which then allows Bob to decrypt c and obtain the purchased information. To
prevent Alice from cheating, she must prove that c encrypts the desired infor-
mation under a preimage of y, for which she can use SNARKs. Zero-knowledge
guarantees that no information is leaked before being paid.

The main drawback of SNARKs is that they require system parameters that
must be generated in a trusted way. In particular, whoever knows the random-
ness used when setting them up can convince verifiers of false statements (vio-
lating soundness of the system), which for Zerocash translates to counterfeiting
money. The authors of Zerocash write: “[D]ue to the zk-SNARK, our construc-
tion requires a one-time trusted setup of public parameters. The trust affects
soundness of the proofs, though anonymity continues to hold even if the setup
is corrupted by a malicious party.” [BCG+14a]. The last statement is then not
elaborated any further.

For ZK contingent payments (ZKCP) the parameters are generated by the
buyer, which prevents the seller from cheating. However, Campanelli et al.
[CGGN17] recently showed that the buyer can cheat in the reference imple-
mentation of ZKCP, which allows for selling the solution to a Sudoku puzzle. By
maliciously setting up the parameters, the buyer can learn information about
the solution from the SNARK proof sent by the seller before paying. This shows
that not only soundness but also zero knowledge of SNARKs breaks down in the
face of parameter subversion.

In this work we look at whether zero knowledge can be salvaged when the
parameters are set up in a malicious way and analyze the most efficient SNARK
constructions in the literature, including the one [BCTV14] that underlies Zcash
and ZKCP. We base our analyses on the theoretical framework introduced by
Bellare et al. [BFS16], who formalized the notion of subversion zero knowledge.

Zero-knowledge proofs. A zero-knowledge proof [GMR89] is a protocol
between a prover and a verifier that allows the former to convince the latter
of the validity of a statement without revealing anything else. The three main

Subversion-ZK SNARKs 317

properties of a ZK proof system are that an honestly computed proof for a valid
statement should convince a verifier (completeness); but there is no way that
a malicious prover can convince a verifier of false statements (soundness); and
nothing but the truth of the statement is revealed (zero knowledge).

In non-interactive ZK proofs [BFM88], the prover only sends one message
(the proof) to the verifier. NIZK systems rely on a common reference string
(CRS) to which both prover and verifier have access and which must be set up
in a trusted way (for SNARKs the CRS is often called parameters). Without
such a CRS, NIZK systems are not possible [GO94].

NIZK proof systems exist for every NP language [BFM88,BDMP91]. A lan-
guage L is an NP language if it can be defined via a polynomial-time computable
relation R: a statement x is in L iff there exists a witness w of length polynomial
in the length of x such that R(x,w) = true. In verifiable computation a server’s
private input would be a witness. For ZK contingent payments, the ciphertext c,
the hash value y and the Sudoku challenge are the statement. The witness is the
plaintext of c (the Sudoku solution) and the encryption key k.

Zero knowledge is formalized via a simulator that generates a CRS in which it
can embed a trapdoor. The trapdoor must allow the simulator to produce proofs
without a witness for the proven statement. ZK requires that there exists a sim-
ulator whose simulated CRSs and proofs are computationally indistinguishable
from real ones. If both types are distributed equivalently then we have perfect
ZK. Groth et al. [GOS06b,GOS06a,Gro06,GS08] constructed NIZK proof sys-
tems based on groups equipped with a pairing, i.e., an efficiently computable
bilinear map. They gave the first perfect ZK system for all NP languages and
very efficient schemes for specific languages based on standard cryptographic
hardness assumptions.

SNARKs. Another line of work considered the size of proofs from a theoretical
point of view, leading to schemes with a proof size that is sublinear in the length
of the proved statement [Mic00]. SNARGs are succinct non-interactive argu-
ments, where succinct means that the proof length only depends (polynomially)
on the security parameter. They are arguments (as opposed to proofs) because
soundness only holds against efficient provers. This is the best achievable notion,
since SNARGs are perfect-ZK, which implies that every CRS has a trapdoor.
SNARKs are succinct non-interactive arguments of knowledge, for which a valid
proofs implies that the prover knows the witness.

The first NIZK system with proofs whose size is independent of the proven
statement (and its witness) was given by Groth [Gro10] using bilinear groups; it
was later improved by Lipmaa [Lip12]. Gennaro et al. [GGPR13] introduced the
notion of a quadratic span program (QSP), showed how to efficiently convert
any boolean circuit into a QSP and then constructed a SNARK system for
QSPs whose proofs consist of 8 elements of a bilinear group. They gave another
construction based on quadratic arithmetic programs (QAP), which represent
arithmetic circuits, whose inputs are elements from a finite field F and whose
gates add or multiply F elements. QAPs are preferred in practice due to their
greater efficiency. As circuit satisfiability is NP-complete, SNARKs exist for all
NP languages.

318 G. Fuchsbauer

Parno et al. [PHGR13] improved on [GGPR13], making the conversion from
circuits to QAPs more efficient and reducing the proof size. They implemented
their scheme and named it “Pinocchio”. Ben-Sasson et al. [BCG+13,BCTV14]
improve the conversion of actual program code to QAPs, reduce the size of
SNARK parameters and implement their results as libsnark [BCG+14b]. The
size of SNARK proofs for boolean circuits was then further reduced by Danezis
et al. [DFGK14], who modified QSP to square span programs and built a system
for them whose proofs consist of only 4 group elements.

Recently, Groth [Gro16] presented the most efficient SNARK construction
to date, which is for arithmetic circuits and whose proofs consist of only 3
group elements (and require 3 pairings to verify). All previous bilinear-group-
based SNARKs are proven under strong cryptographic assumptions (knowl-
edge assumptions), for which there is evidence that they might be unavoid-
able [GW11,BCCT12]. Starting from Bitansky et al.’s [BCI+13] linear inter-
active proof framework, Groth [Gro16] achieves his result by proving security
directly in the generic-group model [Sho97] (which implies all previously consid-
ered assumptions). He also shows that SNARKs over asymmetric bilinear groups
must contain elements from both source groups, meaning that the proof size of
his construction is only one element short of the optimal size. Recently, Fuchs-
bauer et al. [FKL17] proved Groth’s scheme secure under a “q-type” variant of
the discrete log assumption in the algebraic group model, in which adversaries
are restricted adversaries can only output group elements if they were obtained
by applying the group operation to previously received group elements.

Subversion-resistance. The Snowden revelations documented the NSA’s
efforts to subvert standards, for which an illustrative example is the NSA-
designed and ISO-standardized Dual EC random number generator. Its param-
eters include two elliptic-curve points, whose respective discrete logarithms can
act as a backdoor that can be exploited to break TLS [CNE+14]. NIZK sys-
tems are particularly prone to parameter subversion, since their CRS must be
subvertible by design: zero knowledge requires that an honest CRS is indistin-
guishable from a backdoored CRS, where the backdoor is the trapdoor used to
simulate proofs. For SNARKs the parameters always contain a backdoor and
anyone knowing it can simulate proofs for false statements, which means break-
ing soundness.

Motivated by this, Bellare et al. [BFS16] ask what security can be maintained
for NIZKs when its trusted parameters are subverted. They formalize different
notions of resistance to CRS subversion and investigate their achievability. They
define subversion soundness (S-SND), meaning that no adversary can generate
a (malicious) CRS together with a valid proof π for a false statement x.

They also give a subversion-resistant analogue for zero knowledge. Recall
that ZK assumes that there exists a CRS simulator Sim.crs, which returns a
simulated CRS crs′ and an associated simulation trapdoor td, and a proof sim-
ulator Sim.pf that outputs proofs on input a valid instance x and td, such that
no efficient adversary can distinguish the following: either being given crs′ and
an oracle implementing Sim.pf, or an honest crs and an oracle returning hon-

Subversion-ZK SNARKs 319

estly computed proofs. Subversion ZK (S-ZK) requires that for any adversary X
creating a malicious CRS crs in any way it likes using randomness (coins) r,
there exists a simulator SimX.crs returning a simulated CRS crs′ with trapdoor
td together with simulated coins r′, as well as a proof simulator SimX.pf, such
that no adversary can distinguish the following: being given crs′ and r′ and a
SimX.pf oracle, or a crs output by X, together with the used coins r and an hon-
est proof oracle. The authors also define a subversion-resistant notion (S-WI) of
witness-indistinguishability [FLS90] (see Sects. 2.3 and 2.4).

Following [GO94], Bellare et al. [BFS16] first show that S-SND cannot be
achieved together with (standard) ZK for non-trivial languages (for trivial ones
the verifier needs no proof to check validity of statements). This is because ZK
allows breaking soundness by subverting the CRS. They then show that S-SND
can be achieved together with S-WI. Their main result is a construction that
achieves both S-ZK (and thus S-WI) and SND.

BFS’s S-ZK scheme. To achieve S-ZK, a simulator must be able to simulate
proofs under a CRS output by a subvertor, so it cannot simply embed a trapdoor
as in standard ZK. Bellare et al. [BFS16] base S-ZK on a knowledge assump-
tion, which is the type of assumption on which security (in particular, knowledge
soundness) of SNARKs relies. It states that an algorithm can only produce an
output of a certain form if it knows some underlying information. This is for-
malized by requiring the existence of an extractor that extracts this information
from the algorithm. In their scheme this information acts as the simulation trap-
door, which under their knowledge assumption can be obtained from a subvertor
outputting a CRS.

Concretely, they assume that for a bilinear group (G,+) with a generator
P any algorithm that outputs a Diffie-Hellman tuple (P, s1P, s2P, s1s2P) for
some s1, s2, must know either s1 or s2. They call their assumption Diffie-
Hellman knowledge-of-exponent assumption (DH-KEA) and note that a tuple
(P, S1, S2, S3) of this form can be verified via a (symmetric) bilinear map e by
checking e(S3, P) = e(S1, S2). A question that arises is: who chooses the group G

in their scheme? Bellare et al. address this by making the group G part of the
scheme specification. This begs the question whether the subversion risk has not
simply been shifted from the CRS to the choice of the group. They argue that
the group generation algorithm is deterministic and public, so users can create
the group themselves, and it is thus reproducible, whereas the CRS is inherently
not.

Parameter setup in practice. A way to avoid the problem of generating a
trusted CRS for NIZK systems is by proving its security in the random-oracle
model (ROM) [BR93]. Instead of a CRS, all parties are assumed to have access to
a truly random function (which is modeled as an oracle returning random values).
In practice the random oracle is replaced by a cryptographic hash function and a
proof in the ROM can be viewed as a security heuristic for the resulting scheme.

For NIZK systems whose CRS is a uniform random string, e.g. PCP-based
constructions like [BSBC+17] recently, one can in practice set the CRS to a
common random-looking public value such as the digits of π or the output of a

320 G. Fuchsbauer

standardized hash function on a fixed input. This intuitively guarantees that no
one has embedded a trapdoor. For the Groth-Sahai proof system [GS08] the CRS
consists of random elements of an elliptic-curve group; they can be set up by
hashing a common random string directly into the elliptic curve [BF01,BCI+10].

For practical SNARKs the situation is different: there are no CRS-less con-
structions in the random-oracle model and the CRS is highly structured. The
parameters typically contain elements of the form (P, τP, τ2P), where P is a
generator of a group G and τ is a random value. Soundness completely breaks
down if the value τ is known to anyone. Unfortunately, there is no known way
of creating such a triple obliviously, that is, without knowing the value τ .

Our techniques. In order to show subversion zero knowledge of SNARK
schemes, we assume that computing elements (P, τP, τ2P) cannot be done with-
out knowing τ . (Looking ahead, we actually make a weaker assumption in asym-
metric bilinear groups by requiring the adversary to return (P1, τP1, τ

2P1) ∈ G
3
1

as well as (P2, τP2) ∈ G
2
2, which makes the structure of the triple verifiable

using the bilinear map.) Under this assumption, which we call square knowledge
of exponent (SKE) assumption (Definition 14), we then prove subversion ZK of
five relevant SNARK constructions from the literature or slight variants of them.

As an additional sanity check, we prove that SKE holds in the generic group
model (Theorem 16). Following Groth [Gro16], we assume that the bilinear group
description is part of the specification of the language for which the proof sys-
tem is defined (and not part of the CRS as in [BFS16]). Following his previous
work [DFGK14], we let the CRS generation algorithm sample random group gen-
erators (in contrast to [BFS16], which assumes a fixed group generator). This
intuitively leads to weaker assumptions required to prove soundness.

To show subversion zero knowledge of existing SNARK schemes, we pro-
ceed as follows. Standard zero knowledge holds because the randomness used to
compute the CRS allows the simulator to produce proofs that are distributed
equivalently to honestly generated proofs under the (honestly computed) CRS.
However, for S-ZK this must hold even for a CRS that was computed in any
arbitrary way. While we cannot guarantee that the CRS subvertor used random
values when computing the CRS, we first show how to verify that the structure
of the CRS is as prescribed. (For the asymmetric Pinocchio scheme [BCTV14]
this requires us to extend the CRS slightly.)

Another difference between standard and subversion ZK is that in the former
the simulator creates the CRS and thus knows the simulation trapdoor, whereas
for S-ZK the CRS is produced by the subvertor, so it might not be clear how
proofs can be simulated at all. Now if the CRS contains elements (P, τP, τ2P),
whose correct structure can be verified via the pairing, then under our SKE
assumption we can extract the value τ . SKE thus allows the simulator to obtain
parts of the randomness even from a maliciously generated CRS. Unfortunately,
the simulation trapdoor typically contains other values that the S-ZK simulator
cannot extract.

Our next step is then to demonstrate that proofs can be simulated using τ
only, or to show how under our assumption more values can be extracted that

Subversion-ZK SNARKs 321

then enable simulation. Our final step is to show that if a CRS passes the ver-
ification procedure we define, then proofs that were simulated using the partial
trapdoor are distributed like real proofs. This shows that the analyzed scheme
is S-ZK under our SKE assumption. While knowledge assumptions are strong
assumptions, they seem unavoidable since S-ZK implies 2-move interactive ZK
by letting the verifier create the CRS. And such schemes require extractability
assumptions [BCPR14].

Since simulated proofs are by definition independent of a witness, our results
imply that under a verified, but possibly malicious, CRS, proofs for different wit-
nesses are equally distributed. As a corollary we thereby obtain that all SNARKs
we consider satisfy subversion witness indistinguishability unconditionally (i.e.,
no assumptions required).

We note that Ben-Sasson et al. [BCG+15] also consider making a CRS ver-
ifiable. Their goal is to protect soundness against subversion by sampling the
secret values underlying a CRS in a distributed way. Only if all participants in
the CRS-creation protocol collude can they break soundness. To guarantee a cor-
rectly distributed CRS, the participant(s) must prove adherence to the protocol
via NIZK proofs [Sch91,FS87] secure in the random-oracle model. The protocol
thus returns verifiable SNARK parameters. The parameters used for Zcash were
set up using this multiparty protocol, which was recently detailed by Bowe et
al. [BGG17].

Our Results

As already discussed, SNARKs are not subversion-sound because their CRS
contains the simulation trapdoor. In this work we look at subversion resistance
of their zero-knowledge property and investigate several SNARK constructions
from the literature that are based on bilinear groups. In particular,

1. the first QSP-based and 2. QAP-based constructions [GGPR13];
3. optimized Pinocchio [BCTV14] as implemented in libsnark [BCG+14b]; and
4. and 5. the two most efficient constructions by Groth et al. [DFGK14,Gro16].

We make the (reasonable) assumption that a privacy-conscious prover (whose
protection is the goal of zero knowledge) first checks whether the CRS looks
plausible (to whatever extent this is possible) before publishing a proof with
respect to it. All of our results implicitly make this assumption.

We start with the first SNARK construction for QAPs by Gennaro et al.
[GGPR13] and show how to verify that the CRS is correctly formed. We then
show that under the square knowledge of exponent (SKE) assumption their
construction satisfies subversion zero knowledge as defined in [BFS16]. The same
holds for their QSP-based SNARK. (Due to space constraints, and since these
results follow in much the same way as the next one, we defer our results on
GGPR to the full version [Fuc17].)

We next turn to the optimized version of Pinocchio over asymmetric bilinear
groups due to Ben-Sasson et al. [BCTV14]. For this construction we show that
adding 4 group elements to the CRS makes it efficiently checkable. We then

322 G. Fuchsbauer

prove that the scheme with this slightly extended CRS satisfies subversion zero
knowledge under SKE, whereas the original scheme, which is implemented in
libsnark [BCG+14b], succumbs to a parameter-subversion attack [CGGN17].
For the SNARK by Danezis, Fournet, Groth and Kohlweiss [DFGK14], we show
that CRS well-formedness can be efficiently verified without modifying the CRS
and that S-ZK holds analogously to Pinocchio.

Finally, we consider the most efficient SNARK scheme by Groth [Gro16] and
again show that the scheme is already subversion-zero-knowledge under SKE.
Proving this is more involved than for the previous schemes, since the value τ ,
for which P, τP, τ2P, . . . are contained in the CRS does not suffice to simulate
proofs, as for the previous schemes. We show that, using SKE twice, another
value can be extracted, which together with τ then enables proof simulation. As
corollaries, we get that S-WI holds unconditionally for all considered schemes.

Concurrent work. Campanelli et al. [CGGN17] show that Pinocchio as
implemented in libsnark [BCG+14b] is not subversion-zero-knowledge by
exhibiting an attack. As countermeasures they propose to instead use one of
the older SNARKs by Gennaro et al. [GGPR13], as they allow verification of
CRS well-formedness, which yields witness indistinguishability. They admit that
for applications for which there is only one witness, like selling a Sudoku solution,
WI is vacuous (as any protocol satisfies WI).

They refer to Bellare et al.’s [BFS16] S-ZK system and conjecture that “the
techniques extend to the original QSP/QAP protocol in [GGPR13]” (which we
proved rigorously). Moreover, “[i]t is however not clear if those techniques extend
to Pinocchio” and “it would require major changes in the current implementation
of ZKCP protocols”. (We show that it suffices to add 4 group elements to the
CRS and perform the checks of well-formedness.) They recommend following the
Zcash approach [BCG+15,BGG17] and using an interactive protocol that lets
the prover and verifier compute the CRS together.

In other concurrent work Abdolmaleki et al. [ABLZ17] present a S-ZK variant
of Groth’s SNARK [Gro16]. They need to modify the scheme, thereby reducing
efficiency, and they prove their result under a stronger assumption. In partic-
ular, they extend the CRS by 2d group elements (where d is the number of
multiplication gates in the circuit representing the relation). Their assumption
states that any adversary that for generators P1 ∈ G

∗
1 and P2 ∈ G

∗
2 outputs a

pair of the form (sP1, sP2) must know s. As they note, their assumption is false
in groups with a symmetric (“Type-1”) bilinear map as well as in asymmetric
groups of Type 2, whereas our SKE assumption holds generically in all bilinear
group settings. They claim security of their scheme under their own definition of
S-ZK, which is a statistical notion, in contrast to original computational S-ZK
notion [BFS16], which we consider1.

1 It is not clear how their scheme can achieve statistical S-ZK, considering that the
success of the simulator relies on a computational assumption. They also claim that
their notion is stronger because they let the subvertor X pass “extra information” to
the adversary A, whereas A “only” receives X’s coins r in [BFS16]. But A can itself
compute any such information from r.

Subversion-ZK SNARKs 323

Practical implications of our results. We show that for all analyzed
schemes except asymmetric Pinocchio, it suffices to verify the parameters once in
order to guarantee subversion zero knowledge. Any already deployed parameters
can thus be continued to be used after verification. Subversion-ZK of Pinocchio
can be obtained by adding 4 group elements to the CRS.

For Pinocchio-based ZK contingent payments this means that the scheme
can be made secure by slightly augmenting the size of the parameters and hav-
ing the seller verify them. No additional interaction between seller and buyer
(as recommended by Campanelli et al. [CGGN17]) is thus required. Of course,
admitting additional interaction could lead to more efficient schemes than using
the (costly) CRS verification.

The SNARK parameters used in Zcash have been computed by running the
multi-party protocol from [BCG+15,BGG17] and verifiability of this process is
achieved via random-oracle NIZK proofs. Let us define a CRS subvertor that
runs this protocol, playing the roles of all parties, and outputs the resulting
CRS, including the ROM proofs. Since the latter guarantee CRS well-formedness,
under SKE there exists an efficient extractor that can extract the simulation
trapdoor from the subvertor. Using the trapdoor, proofs can be simulated (as
specified in Sect. 4). We thus conclude that, assuming that users verify the CRS
and that the SKE assumption holds in the used bilinear group, Zcash provides a
subversion-resistant form of anonymity in the random oracle model. Thus, even
if all parties involved in creating the parameters were malicious, Zcash is still
anonymous.

We content ourselves with the above argument, as a formal proof would be
beyond the scope of this paper. Bowe et al. [BGG17] subsequently proved that
their protocol is S-ZK with a polynomially small (not negligible) simulation error
in the random-oracle model without making knowledge assumptions.

2 Definitions

2.1 Notation

If x is a (binary) string then |x| is its length. If S is a finite set then |S| denotes its
size and s ←$ S denotes picking an element uniformly from S and assigning it to
s. We denote by λ ∈ N the security parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for
“polynomial time”, whether for randomized or deterministic algorithms. By
y ← A(x1, . . . ; r) we denote the operation of running algorithm A on inputs
x1, . . . and coins r and letting y denote the output. By y ←$ A(x1, . . .), we denote
letting y ← A(x1, . . . ; r) for random r. We denote by [A(x1, . . .)] the set of points
that have positive probability of being output by A on inputs x1,

For our security definitions we use the code-based game framework [BR06].
A game G (e.g. Fig. 1) usually depends on a scheme and executes one or more
adversaries. It defines oracles for the adversaries as procedures. The game even-
tually returns a boolean. We let Pr[G] denote the probability that G returns true.

324 G. Fuchsbauer

We recall the standard notions of soundness, knowledge-soundness, witness-
indistinguishability and zero knowledge for NIZKs, which assume the CRS is
trusted and then give their subversion-resistant counterparts that were intro-
duced in [BFS16]. We mainly follow their exposition and start with the syntax.

2.2 NP Relations and NI Systems

NP relations. Consider R: {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗

we let R(x) = {w |R(x,w) = true } be the witness set of x. R is an NP relation
if it is PT and there is a polynomial PR such that every w in R(x) has length at
most PR(|x|) for all x. We let L(R) = {x |R(x) �= ∅ } be the language associated
to R. We will consider relations output by a PT relation generator Rg (which
may also output some auxiliary information z that is given to the adversary).
We assume λ can be deduced from R ∈ [Rg(1λ)] and note that definitions from
[BFS16], which are for one fixed relation R, are easily recovered by defining
Rg(1λ) := (1λ, R).

NI systems. A non-interactive (NI) system Π for relation generator Rg speci-
fies the following PT algorithms. Via crs ←$ Π.Pg(R) one generates a common
reference string crs. Via π ←$ Π.P(R, crs, x, w) the honest prover, given x and
w ∈ R(x), generates a proof π that x ∈ L(R). Via d ← Π.V(R, crs, x, π) a
verifier can produce a decision d ∈ {true, false} indicating whether π is a valid
proof that x ∈ L(R). We require (perfect) completeness, that is, for all λ ∈ N,
all R ∈ [Rg(1λ)], all crs ∈ [Π.Pg(R)], all x ∈ L(R), all w ∈ R(x) and all
π ∈ [Π.P(R, crs, x, w)] we have Π.V(R, crs, x, π) = true. We also assume that
Π.V returns false if any of its arguments is ⊥.

2.3 Standard Notions: SND, KSND, WI and ZK

Soundness. Soundness means that it is hard to create a valid proof for any
x �∈ L(R). We consider computational soundness as opposed to a statistical one,
which is the notion achieved by SNARGs.

Definition 1 (SND). An NI system Π for relation generator Rg is sound
if Advsnd

Π,Rg,A(·) is negligible for all PT adversaries A, where Advsnd
Π,Rg,A(λ) =

Pr[SNDΠ,Rg,A(λ)] and game SND is specified in Fig. 1.

Knowledge soundness. This strengthening of soundness [BG93] means that
a prover that outputs a valid proof must know the witness. Formally, there exists
an extractor that can extract the witness from the prover. The notion implies
soundness, since for a proof of a wrong statement there exists no witness.

Definition 2 (KSND). An NI system Π for relation generator Rg is
knowledge-sound if for all PT adversaries A there exists a PT extractor E such
that Advksnd

Π,Rg,A,E(·) is negligible, where Advksnd
Π,Rg,A,E(λ) = Pr[KSNDΠ,Rg,A,E(λ)]

and game KSND is specified in Fig. 1.

Subversion-ZK SNARKs 325

Note that (as for the following two notions) the output of game KSND is effi-
ciently computable, which is not the case for SND, since membership in L(R)
may not be efficiently decidable. This can be an issue when proving security of
more complex systems that use a system Π as a building block.

WI. Witness-indistinguishability [FLS90] requires that proofs for the same state-
ment using different witnesses are indistinguishable. The adversary can adap-
tively request multiple proofs for statements x under one of two witnesses w0, w1;
it receives proofs under wb for a challenge bit b which it must guess.

Definition 3 (WI). An NI system Π for relation generator Rg is witness-
indistinguishable if Advwi

Π,Rg,A(·) is negligible for all PT adversaries A, where
Advwi

Π,Rg,A(λ) = 2Pr[WIΠ,Rg,A(λ)] − 1 and game WI is specified in Fig. 1.

ZK. Zero knowledge [GMR89] means that no information apart from the fact
that x ∈ L(R) is leaked by the proof. It is formalized by requiring that a simula-
tor, who can create the CRS, can compute proofs without being given a witness,
so that CRS and proofs are indistinguishable from real ones. In particular, the
distinguisher A can adaptively request proofs by supplying an instance and a
valid witness for it. The proof is produced either by the honest prover using the
witness, or by the simulator. The adversary outputs a guess b′.

Definition 4 (ZK). An NI system Π for Rg is zero-knowledge if Π specifies
additional PT algorithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,Rg,A(·) is neg-
ligible for all PT adversaries A, where Advzk

Π,Rg,A(λ) = 2Pr[ZKΠ,Rg,A(λ)]−1 and
game ZK is specified in Fig. 1.

An NI system Π is statistical zero-knowledge if the above holds for all (not
necessarily PT) adversaries A. It is perfect zero-knowledge if Advzk

Π,Rg,A(·) ≡ 0.

2.4 Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK

For all notions considered in the previous section the CRS is assumed to be
honestly generated. Bellare et al. [BFS16] ask what happens when the CRS
is maliciously generated and define subversion-resistant analogues S-SND, S-
WI and S-ZK, in which the adversary chooses the CRS. The following three
definitions are from [BFS16].

Subversion soundness. This asks that if the adversary creates a CRS in any
way it likes, it is still unable to prove false statements under it. We accordingly
modify the soundness game SND by letting the adversary choose crs in addition
to x and π.

Definition 5 (S-SND). An NI system Π for generator Rg is subversion-sound
if Advs−snd

Π,Rg,A(·) is negligible for all PT adversaries A, where Advs−snd
Π,Rg,A(λ) =

Pr[S − SNDΠ,Rg,A(λ)] and game S − SND is specified in Fig. 1.

326 G. Fuchsbauer

Fig. 1. Games defining soundness, knowledge-soundness, witness-indistinguishability
and zero knowledge (left) and their subversion-resistant counterparts (right) for an NI
system Π.

Subversion-ZK SNARKs 327

Subversion WI. This notion demands that even when the subvertor creates a
CRS in any way it likes, it can still not decide which of two witnesses of its choice
were used to create a proof. The adversary is modeled as a two-stage algorithm:
it first outputs a CRS crs along with state information (which could e.g. contain
a trapdoor associated to crs) passed to the second stage. The second stage is
then defined like for the honest-CRS game WI, where via its Prove oracle, the
adversary can adaptively query proofs for instances under one of two witnesses.

Definition 6 (S-WI). An NI system Π for generator Rg is subversion-witness-
indistinguishable if Advs−wi

Π,Rg,A(·) is negligible for all PT adversaries A, where
Advs−wi

Π,Rg,A(λ) = 2Pr[S − WIΠ,Rg,A(λ)]−1 and game S − WI is specified in Fig. 1.
An NI system Π is perfect S-WI if Advs−wi

Π,Rg,A(·) ≡ 0.

Subversion ZK. This notion considers a CRS subvertor X that returns an arbi-
trarily formed CRS. Subversion ZK now asks that for any such X there exists a
simulator that is able to simulate (1) the full view of the CRS subvertor, includ-
ing its coins, and (2) proofs for adaptively chosen instances without knowing the
witnesses. The simulator consists of S.crs, which returns a CRS, coins for X and
a trapdoor which is then used by its second stage S.pf to simulate proofs. The
adversary’s task is to decide whether it is given a real CRS and the coins used
to produce it, and real proofs (case b = 1); or whether it is given a simulated
CRS and coins, and simulated proofs (case b = 0).

Definition 7 (S-ZK). An NI system Π for Rg is subversion-zero-knowledge if
for all PT CRS subvertors X there exists a PT simulator S = (S.crs,S.pf) such
that for all PT adversaries A the function Advs−zk

Π,Rg,X,S,A(·) is negligible, where
Advs−zk

Π,Rg,X,S,A(λ) = 2Pr[S − ZKΠ,Rg,X,S,A(λ)]−1 and game S − ZK is specified in
Fig. 1.

The definition is akin to ZK for interactive proof systems [GMR89], when
interpreting the CRS as the verifier’s first message. The simulator must produce
a full view of the verifier (including coins and a transcript of its interaction
with the Prove oracle). On the other hand, to imply ZK of NI systems, the
simulator needs to produce the CRS before learning the statements for which it
must simulate proofs. Moreover, the simulator can depend on X but not on A.

Subversion KSND. For completeness we give a subversion-resistant analogue
for knowledge soundness (not considered in [BFS16]), as this is the relevant
notion for SNARKs. We modify game KSND and let the adversary choose crs in
addition to x and π. We are not aware of any construction that achieves S-KSND
and some form of WI.

Definition 8 (S-KSND). An NI system Π for generator Rg is subversion-
knowledge-sound if for all PT adversaries A there exists a PT extrac-
tor E such that Advs−ksnd

Π,Rg,A,E(·) is negligible, where Advs−ksnd
Π,Rg,A,E(λ) =

Pr[S − KSNDΠ,Rg,A,E(λ)] and game S − KSND is specified in Fig. 1.

328 G. Fuchsbauer

2.5 Bilinear Groups and Assumptions

Bilinear groups. The SNARK constructions we consider are based on bilinear
groups, for which we introduce a new type of knowledge-of-exponent assumption.
We distinguish between asymmetric and symmetric groups.

Definition 9. An asymmetric-bilinear-group generator aGen is a PT algorithm
that takes input a security parameter 1λ and outputs a description of a bilinear
group (p,G1,G2,GT , e) with the following properties:

– p is a prime of length λ;
– (G1,+), (G2,+) and (GT , ·) are groups of order p;
– e : G1 × G2 → GT is a bilinear map, that is, for all a, b ∈ Zp and S ∈ G1,

T ∈ G2 we have: e(aS, bT) = e(S, T)ab;
– e is non-degenerate, that is, for P1 ∈ G

∗
1 and P2 ∈ G

∗
2 (i.e., P1 and P2 are

generators) e(P1, P2) generates GT .

Moreover, we assume that group operations and the bilinear map can be com-
puted efficiently, membership of the groups and equality of group elements can
be decided efficiently, and group generators can be sampled efficiently.

A symmetric-bilinear-group generator sGen returns a bilinear group with
G1 = G2, which we denote by G, and with a symmetric non-degenerate bilinear
map e : G × G → GT .

Assumptions. We recall the assumptions under which SNARKs in the literature
were proven sound. The following assumptions are from [DFGK14], who adapted
PDH from [Gro10] to asymmetric groups, and TSDH from [BB04,Gen04].

Definition 10 (q-PDH). The q(λ)-power Diffie-Hellman assumption holds for
an asymmetric group generator aGen if Advpdh

q,aGen,A(·) is negligible for all PT A,
where Advpdh

q,aGen,A(λ) = Pr[PDHq,aGen,A(λ)] and PDH is defined in Fig. 2.

The q-PDH assumption for symmetric group generators sGen is defined analo-
gously by letting G1 = G2 and P1 = P2 (A thus only receives 2q group elements).

Definition 11 (q-TSDH). The q(λ)-target-group strong Diffie-Hellman
assumption holds for an asymmetric group generator aGen if Advtsdh

q,aGen,A(·) is
negligible for all PT adversaries A, where Advtsdh

q,aGen,A(λ) = Pr[TSDHq,aGen,A(λ)]
and TSDH is defined in Fig. 2.

The q-TSDH assumption for symmetric group generators sGen is defined anal-
ogously by letting G1 = G2 and P1 = P2 (A thus only receives q + 1 group
elements).

KEA. The knowledge-of-exponent assumption [Dam92,HT98,BP04] in a group
G states that an algorithm A that is given two random generators P,Q ∈ G

∗ and
outputs (cP, cQ) must know c. This is formalized by requiring that there exists

Subversion-ZK SNARKs 329

Fig. 2. Games defining assumptions q-PDH, q-TSDH and q-PKE

an extractor for A which given A’s coins outputs c. This has been considered in
the bilinear-group setting [AF07] where A’s output (cP, cQ) can be verified by
using the bilinear map. Generalizations of KEA were made by Groth [Gro10],
who assumes that for every A that on input (P,Q, sP, sQ, s2P, s2Q, . . . , sqP, sqQ)
returns (cP, cQ) an extractor can extract (a0, . . . , aq) such that c =

∑q
i=0 ais

i.
Danezis et al. [DFGK14] port Groth’s assumption to asymmetric groups as fol-
lows.

Definition 12 (q-PKE). The q(λ)-power knowledge of exponent assumption
holds for aGen w.r.t. the class Aux of auxiliary input generators if for every PT
Z ∈ Aux and PT adversary A there exists a PT extractor E s.t. Advpke

q,aGen,Z,A,E(·)
is negligible, where Advpke

q,aGen,Z,A,E(λ) = Pr[PKEq,aGen,Z,A,E(λ)] and PKE is
defined in Fig. 2.

The q-PKE assumption for symmetric generators sGen is defined by letting
G1 = G2 but again choosing P1, P2 ←$ G

∗ (A thus again receives 2q + 2 group
elements).

Bellare et al. [BFS16] consider deterministically generated groups (whereas
for SNARK systems the group will be part of the relation R output by a relation
generator Rg). They therefore need to define all other assumptions, such as DLin
[BBS04], with respect to this fixed group. BFS introduce a new type of KEA,
called DH-KEA, which assumes that if A outputs a Diffie-Hellman (DH) tuple
(sP, tP, stP) w.r.t. the fixed P , then A must know either s or t. The auxiliary
input given to A are two additional random generators H0,H1. The intuition is

330 G. Fuchsbauer

that while an adversary may produce one group element without knowing its
discrete logarithm by hashing into the elliptic curve [BF01,SvdW06,BCI+10], it
seems hard to produce a DH tuple without knowing at least one of the logarithms.

Fig. 3. Games defining knowledge-of-exponent assumptions

Definition 13 (DH-KEA). Let detSGen be a deterministic group generator;
let Advdhke

detSGen,A,E(λ) = Pr[DHKEdetSGen,A,E(λ)], with game DHKE defined in
Fig. 3. The Diffie-Hellman knowledge of exponent assumption holds for detSGen
if for every PT A there exists a PT E s.t. Advdhke

detSGen,A,E(·) is negligible.

SKE. We now consider a weakening of DH-KEA where we prescribe s = t; that
is, if A on input P outputs a pair (sP, s2P) then E extracts s. This assumption is
weaker than (i.e., implied by) DH-KEA. As we consider groups with randomly
sampled generators, we let A choose the generator P itself and assume that
there exists an extractor that extracts s when A outputs a tuple (P, sP, s2P).
This allows us to choose a random generator when setting up parameters of a
scheme. The security of such schemes then follows from assumptions such as
PDH, as defined above, where the generators are chosen randomly.

Definition 14 (SKE). Let sGen be a symmetric-group generator and define
Advske

sGen,A,E(λ) = Pr[SKEsGen,A,E(λ)], where game SKE is defined in Fig. 3. The
square knowledge of exponent assumption holds for sGen if for every PT A there
exists a PT E s.t. Advske

sGen,A,E(·) is negligible.

SKE for asymmetric groups. For asymmetric bilinear-group generators, we
make assumption SKE in the first source group G1. Unlike for symmetric groups,

Subversion-ZK SNARKs 331

a tuple (S0, sS0, s
2S0) ∈ G

3
1 is not verifiable via an asymmetric pairing. To make

it verifiable, we weaken the assumption and require A to additionally output a
G2-element T0 as well as T1 = sT0, which enables verification (as done in game
SKEaGen).

Definition 15 (SKE). Let aGen be an asymmetric-group generator and define
Advske

aGen,A,E(λ) = Pr[SKEaGen,A,E(λ)], where game SKE is defined in Fig. 3. The
SKE assumption holds for aGen in the first source group if for every PT A there
exists a PT E s.t. Advske

aGen,A,E(·) is negligible.

We note that in addition to verifiability these additional elements T0 and T1

actually add to the plausibility of the assumption for asymmetric groups. Even
if outputting S2 was not required, one could argue that the following stronger
assumption holds in Type-3 bilinear groups, in which DDH holds in G1 and
in G2: it is hard to compute (S0, S1, T0, T1) ∈ G

2
1×G

2
2 with e(S1, T0) = e(S0, T1)

without knowing the logarithms of S1 to base S0 (or equivalently T1 to base T0):2

an adversary might choose S0 and S1 obliviously by hashing into the group; but if
it was able to compute from them the respective T0 and T1 then this would break
DDH in G1. (Given a DDH challenge (S0, S1 = s1S0, S2 = s2S0, R), compute T0

and T1 as above; then we have R = s1s2S0 iff e(R, T0) = e(S2, T1).) Of course,
this argument breaks down if there is an efficiently computable homomorphism
from G1 to G2 or vice versa.

Finally, we note that q-PKE with q = 0 does not imply SKE, since a PKE
adversary must return (V,W) which is a multiple of the received (P1, P2), while
an SKE adversary can choose the “basis” (S0, T0) itself. The converse does not
hold either (SKE�⇒PKE), since an SKE adversary must return S2 = s2S0.

2.6 SKE in the Generic-Group Model

We show that SKE holds in the generic-group model. We show it for symmetric
generic groups, which implies the result for asymmetric groups (where the adver-
sary has less power). As [BFS16] did for DH-KEA, we reflect hashing into elliptic
curves by providing the adversary with an additional generic operation: it can
create new group elements without knowing their discrete logarithms (which are
not known to the extractor either).

Theorem 16. SKE, as defined in Definition 14, holds in the generic-group
model with hashing into the group.

In the proof we will use the following lemma, which we prove first.

Lemma 17. Let F be a field and let A,B,C ∈ F[X1, . . . , Xk], with degree of A,
B and C at most 1. If A · C = B2 then for some s ∈ F: B = s · A.

2 When fixing the generators S0 and T0, this corresponds to the assumption made by
Abdolmaleki et al. [ABLZ17] to show S-ZK of their SNARK.

332 G. Fuchsbauer

Proof. Let αi, βi, γi, for 0 ≤ i ≤ k, denote the coefficients of Xi (where X0 := 1)
in A,B,C, respectively. If A = 0 then B = 0 and the theorem follows. Assume
thus A �= 0; Define j := min{i ∈ [0, k] : αj �= 0} and s := βj · α−1

j .
To prove the lemma, we will now show that for all i ∈ [0, k]:

βi = s · αi. (1)

From A · C = B2 we have

L(�X) :=
(
β0 +

∑k
i=1 βiXi

)2 − (
α0 +

∑k
i=1 αiXi

)(
γ0 +

∑k
i=1 γiXi

)
= 0. (2)

From L(0, . . . , 0) = 0, we get: (I) β2
0 = α0γ0, which implies that Eq. (1) holds

for i = 0: either α0 = 0, then from (I): β0 = 0; or α0 �= 0, then j = 0 and Eq. (1)
holds as well.

Let now i ∈ [1, k] be arbitrarily fixed and let ei denote the vector
(0, . . . , 0, 1, 0, . . . , 0) with 1 at position i. Consider L(ei) = 0, which together
with (I) yields

2β0βi + β2
i − α0γi − αiγ0 − αiγi = 0. (3)

Similarly, from L(2ei) = 0, we have 4β0βi + 4β2
i − 2α0γi − 2αiγ0 − 4αiγi = 0,

which after subtracting Eq. (3) twice yields: (II) β2
i = αiγi. If αi = 0 then βi = 0,

which shows Eq. (1). For the remainder let us assume αi �= 0.
Plugging (II) into Eq. (3) yields: (III) 2β0βi = α0γi − αiγ0.
If α0 �= 0 then j = 0 and plugging (I) and (II) into (III) yields

2β0βi − α0α
−1
i β2

i − αiα
−1
0 β2

0 = 0.

Solving for βi yields the unique solution βi = β0α
−1
0 αi, which shows Eq. (1) for

the case α0 �= 0.
Let us now assume α0 = 0. By (I) we have β0 = 0. If i = j then Eq. (1) holds

by definition of s. Assume i �= j. From L(ei + ej) we have (since α0 = β0 = 0):

0 = β2
i + β2

j + 2βiβj − αiγ0 − αiγi − αiγj − αjγ0 − αjγi − αjγj = 2βiβj − αiγj − αjγi,

where we used (II) and αiγ0 = αjγ0 = 0 (which follows from (III) and α0 =
β0 = 0). Together with (II) the latter yields

2βiβj − αiα
−1
j β2

j − αjα
−1
i β2

i = 0.

Solving for βi yields the unique solution βi = βjα
−1
j αi, which concludes the

proof. ��
Proof (of Theorem 16). In the “traditional” generic-group model, group elements
are represented by random strings and an adversary A only has access to opera-
tions on them (addition of elements in G, multiplication of elements in GT and
pairing of elements in G) via oracles. In particular, A can only produce new G

elements by adding received elements.

Subversion-ZK SNARKs 333

We also need to reflect the fact that by “hashing into the group”, A can cre-
ate a new group element without knowing its discrete logarithm w.r.t. one of the
received elements. We extend the generic-group model and provide the adversary
with an additional operation, namely to request a new group element “indepen-
dently of the received ones”. (And neither the adversary nor the extractor we
construct knows its discrete logarithm.)

For SKE the adversary A receives the group element P and needs to output
(S0, S1, S2) where for some s, t: S0 = tP , S1 = sS0 = stP and S2 = s2S0 = s2tP .
The adversary can produce these group elements by combining the received gen-
erator P with newly generated (“hashed”) group elements that it has requested.
We represent the latter as xiP , for i = 1, . . . k, for some k. The extractor keeps
track of the group operations performed by A and thus knows

α0, . . . , αk, β0, . . . , βk, γ0, . . . , γk ∈ Zp (4)

such that A’s output (S0, S1, S2) is of the form

S0 = α0P +
∑k

i=1 αi(xiP) S1 = β0P +
∑k

i=1 βi(xiP)

S2 = γ0P +
∑k

i=1 γi(xiP)

Note that the extractor does however not know x := (x1, . . . , xk).
Assume the adversary wins and e(S1, S1) = e(S0, S2). Taking the logarithms

of the latter yields
(
β0 +

∑k
i=1 βixi

)2 − (
α0 +

∑k
i=1 αixi

)(
γ0 +

∑k
i=1 γixi

)
= 0. (5)

Since the adversary has no information about x1, . . . , xk (except for a negligible
information leak by comparing group elements, which we ignore), the values
in Eq. (4) are generated independently of x1, . . . , xk. By the Schwartz-Zippel
lemma the probability that Eq. (5) holds when x1, . . . , xk are randomly chosen
is negligible, except if the left-hand side corresponds to the zero polynomial.
With overwhelming probability we thus have

B(�X)2 − A(�X) · C(�X) = 0 with

A(�X) = α0 +
∑k

i=1
αiXi B(�X) = β0 +

∑k

i=1
βiXi C(�X) = γ0 +

∑k

i=1
γiXi

By Lemma 17 we have that B = sA for some s ∈ F. The extractor computes
and returns s, which is correct since S1 = B(�x)P = sA(�x)P = s S0. ��

3 SNARKs

We start with a formal definition of SNARGs and SNARKs.

Definition 18 (SNARG). An NI system Π = (Π.Pg,Π.P,Π.V) is a suc-
cinct non-interactive argument for relation generator Rg if it is complete and
sound, as in Definition 1, and moreover succinct, meaning that for all λ ∈ N,

334 G. Fuchsbauer

all R ∈ [Rg(1λ)], all crs ∈ [Π.Pg(R)], all x ∈ L(R), all w ∈ R(x) and all
π ∈ [Π.P(1λ, crs, x, w)] we have |π| = poly(λ) and Π.V(1λ, crs, x, π) runs in time
poly(λ + |x|).
Definition 19 (SNARK). A SNARG Π is a succinct non-interactive argu-
ment of knowledge if it satisfies knowledge soundness, as in Definition 2.

Gennaro et al. [GGPR13] base their SNARK constructions on quadratic
programs. In particular, they show how to convert any boolean circuit into a
quadratic span program and any arithmetic circuit into a quadratic arithmetic
program (QAP).

Definition 20 (QAP). A quadratic arithmetic program over a field F is a
tuple

(
F, n, {Ai(X), Bi(X), Ci(X)}m

i=0, Z(X)
)
,

where Ai(X), Bi(X), Ci(X), Z(X) ∈ F[X], which define a language of statements
(s1, . . . , sn) ∈ F

n and witnesses (sn+1, . . . , sm) ∈ F
m−n such that

(
A0(X) +

∑m

i=1
siAi(X)

)
·
(
B0(X) +

∑m

i=1
siBi(X)

)

= C0(X) +
∑m

i=1
siCi(X) + H(X) · Z(X), (6)

for some degree-(d−2) quotient polynomial H(X), where d is the degree of Z(X)
(we assume the degrees of all Ai(X), Bi(X), Ci(X) are at most d − 1).

All of the discussed SNARK constructions are for QAPs defined over a bilin-
ear group. We will thus consider relation generators Rg of the following form:

Definition 21 (QAP relation). A QAP relation generator Rg is a PT algo-
rithm that on input 1λ returns a relation description of the following form:

R =
(
Gr, n, �A, �B, �C,Z

)
whereGr is a bilinear group whose order p

defines F := Zp and

�A, �B, �C ∈ (
F
(d−1)[X]

)(m+1)
, Z ∈ F

(d)[X], n ≤ m.
(7)

For x ∈ F
n and w ∈ F

m−n we define R(x,w) = true iff there exists H(X) ∈ F[X]
so that Eq. (6) holds for s := x ‖w (where “ ‖” denotes concatenation).

4 Asymmetric Pinocchio

The CRS of SNARKs systems is usually split into a (long) part pk, used to
compute proofs, and a (short) part vk, used to verify them. Pinocchio [PHGR13]
is one of the central SNARK systems. Ben-Sasson et al. [BCTV14] proposed a

Subversion-ZK SNARKs 335

variant in asymmetric groups for which they also shorten the verification key.
Their system is implemented in libsnark [BCG+14b] and underlies Zcash.

Campanelli et al. [CGGN17] show that the protocol is not subversion-zero-
knowledge and expect major changes to make it secure. In the following we show
that by adding merely 4 group elements to the CRS (which we denote by ck for
“checking key”), we can enable verification of well-formedness of (vk,pk) by
using the pairing available in the bilinear group. We then show that under SKE
(Definition 15), our modification of the scheme from [BCTV14] achieves subver-
sion zero knowledge. The protocol is given in Fig. 4, where we underlined our
modifications. Below we define procedure CRS verification, which a prover
runs on a CRS before using it the first time.

Theorem 22 ([PHGR13,BCTV14]). Let Rg be a relation generator that on
input 1λ returns a QAP of degree at most d(λ) over Gr. Define aGen that returns
the first output Gr of Rg and let q := 4d + 4. If the q-PDH, the q-PKE and the
2q-SDH assumptions hold for aGen then the scheme in Fig. 4 without including
ck in the CRS is knowledge-sound. Moreover, it is statistical zero-knowledge.

Inspecting the proof of the theorem in [PHGR13], it is easily seen that the
additional elements contained in ck can be produced by the reduction. Moreover,
knowledge soundness is independent of the prove algorithm Π.P, and a correctly
generated CRS passes CRS verification. This yields the following.

Corollary 23 (to Theorem 22). Let Rg and aGen be as in Theorem22. If the
q-PDH, the q-PKE and the 2q-SDH assumptions hold for aGen for q := 4d + 4
then the scheme in Fig. 4 is knowledge-sound statistical zero-knowledge.

CRS verification. On input (R, vk,pk, ck), let {ai,j}, {bi,j}, {ci,j}, {zk}
denote the coefficients of polynomials Ai(X), Bi(X), Ci(X) and Z(X), respec-
tively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d − 1 and 0 ≤ k ≤ d.

1. Check P1 �= 0G1 and P2 �= 0G2 .
2. Check correct choice of secret values: ckA �= 0G2 , ckB �= 0G2 , vkγ �= 0G2 ,

vkβγ �= 0G1 and vkZ �= 0G2 .
3. Check consistency of pkH : Check pkH,0 = P1; and for i = 1, . . . , d:

e(pkH,i, P2) = e(pkH,i−1, ckH)

4. Check consistency of pkA,pk′
A,pkB ,pk′

B : for i = 0, . . . ,m + 3:

e(pkA,i, P2) = e(
∑d−1

j=0
ai,jpkH,j , ckA) e(pk′

A,i, P2) = e(pkA,i, vkA)

e(P1,pkB,i) = e(
∑d−1

j=0
bi,jpkH,j , ckB) e(pk′

B,i, P2) = e(vkB ,pkB,i)

5. Check consistency of ckC : e
(
pkA,m+1, ckB) = e

(∑d
j=0zjpkH,j , ckC

)
(Note

that for an honest CRS we have pkA,m+1 = Z(τ)ρAP1 �= 0.)

336 G. Fuchsbauer

Fig. 4. S-ZK Asymmetric Pinocchio, adapted from [BCTV14].

Subversion-ZK SNARKs 337

6. Check consistency of vk: for i = 0, . . . , n: vkIC,i = pkA,i and

e(vkβγ , P2) = e(P1, v̂kβγ) e(P1, vkZ) = e
(∑d

j=0
zjpkH,j , ckC

)

7. Check consistency of pkC ,pk′
C ,pkK : for i = 0, . . . ,m + 3:

e(pkC,i, P2) = e(
∑d−1

j=0
ci,jpkH,j , ckC) e(pk′

C,i, P2) = e(pkC,i, vkC)

e(pkK,i, vkγ) = e(pkA,i + pkC,i, v̂kβγ) · e(vkβγ ,pkB,i)

8. If all checks in 1.–7. succeeded then return true and otherwise false.

Remark 24. The condition that in Key generation ρA, ρB , β, γ and Z(τ)
must be non-zero is not made explicit in [BCTV14]. However if γ = 0 then any
πK satisfies the verification equation in 3; and if β = 0 and γ �= 0 then no πK

satisfies it. If Z(τ) = 0 or ρA = 0 or ρB = 0 then vkZ = 0G2 and setting πB and
πC to zero always satisfies the equation in 4 in verification.

CRS Verifiability. We show that a CRS (vk,pk, ck) that passes verification is
constructed as in Key generation; in particular, there exist τ, αA, αB , αC ∈ F

and ρA, ρB , β, γ,∈ F
∗ such that (vk,pk, ck) is computed as in Key generation.

Let τ, αA, αB , αC , ρA, ρB , γ, ξ ∈ F be the values defined by the logarithms of the
elements ckH , vkA, vkB , vkC , ckA, ckB , vkγ and vkβγ , respectively. Check 2.
ensures that ρA, ρB , γ, ξ and Z(τ) are all non-zero. Set β := ξγ−1 �= 0.

Check 3. ensures that pkH is correctly computed w.r.t. τ . Check 4. ensures
that pkA,pk′

A,pkB and pk′
B are correctly computed w.r.t. τ , ρA, ρB , αA and αB .

Check 5. ensures that pkC is correctly computed: since by 4., pkA,m+1 =
Z(τ)ρA P1 and Z(τ) �= 0, we have ckC = ρAρBP2. Check 6. ensures that
v̂kβγ and vkZ are correctly computed and Check 7. does the same for pkC ,pk′

C

and pkK .
This shows that with respect to ckH , vkA, vkB , vkC , ckA, ckB, vkγ and vkβγ

(which implicitly define the randomness used in a CRS), all remaining elements
pkA,pk′

A,pkB ,pk′
B ,pkC ,pk′

C ,pkK ,pkH , as well as v̂kβγ , vkZ , vkIC and ckC are
defined as prescribed by Key generation.

Trapdoor Extraction. In order to prove subversion zero knowledge, we now
show how to construct a simulator (Π.Sim.crs,Π.Sim.pf) for a CRS subver-
tor X. Let X be a CRS subvertor that outputs (vk,pk, ck). Define X′(1λ; r)
that runs (vk,pk, ck) ← X(1λ; r), parses the output as above and returns
(pkH,0,pkH,1,pkH,2, P2, ckH). By SKE for aGen (Definition 15) there exists a
PT algorithm EX′ such that if for some τ ∈ F: pkH,1 = τ pkH,0,pkH,2 = τ2pkH,0

and ckH = τP2 then with overwhelming probability EX′ extracts τ . Using EX′

we define the CRS simulator S.crs which computes (crs, r, td) as follows: On
input 1λ:

338 G. Fuchsbauer

1. Sample randomness for X: r ←$ {0, 1}X.rl(λ).
2. Run (vk,pk, ck) ← X(1λ; r).
3. If (R, vk,pk, ck) passes CRS verification then τ ←$ EX′(1λ, r); else τ ← ⊥.
4. Return ((vk,pk, ck), r, τ).

Proof Simulation. Given (vk,pk, ck), trapdoor τ and a statement x ∈ F
n, the

proof simulator S.pf is defined as follows:

1. If τ = ⊥ then return ⊥.
2. Use τ to compute Z(τ) (which in a verified CRS is non-zero). Compute the

following “simulation keys”:

skA := Z(τ)−1pkA,m+1 = ρAP1 sk′
A := Z(τ)−1pk′

A,m+1 = αAρAP1

skB := Z(τ)−1pkB,m+2 = ρBP2 sk′
B := Z(τ)−1pk′

B,m+2 = αBρBP1

skC := Z(τ)−1pkC,m+3 = ρAρBP1 sk′
C := Z(τ)−1pk′

C,m+3 = αCρAρBP1

sk′′
A = Z(τ)−1pkK,m+1 = βρAP1

sk′′
B = Z(τ)−1pkK,m+2 = βρBP1 sk′′

C = Z(τ)−1pkK,m+3 = βρAρBP1

3. Compute vkx := pkA,0 +
∑n

i=1 xipkA,i and vk′
x := pk′

A,0 +
∑n

i=1 xipk
′
A,i

4. Choose a, b, c ←$ F and define π := (πA, π′
A, πB , π′

B , πC , π′
C , πK , πH) with:

πA := a skA − vkx = aρAP1 − vkx π′
A := a sk′

A − vk′
x = aαAρAP1 − αAvkx

πB := b skB = b ρBP2 π′
B := b sk′

B = b αBρBP1

πC := c skC = c ρAρBP1 π′
C := c sk′

C = c αCρAρBP1

πK := a sk′′
A + b sk′′

B + c sk′′
C πH := Z(τ)−1(ab − c)P1

Theorem 25. Let Rg be a QAP generator defining a bilinear-group generator
aGen for which SKE holds. Then the scheme in Fig. 4 for Rg satisfies subversion
zero knowledge.

Proof. Consider (vk,pk, ck) ← X(1λ; r) and let E denote the event that
(R, vk,pk, ck) passes CRS verification but EX′ fails to extract τ . From
Check 3 in CRS verification, we have e(pkH,1, P2) = e(pkH,0, ckH) and
e(pkH,2, P2) = e(pkH,1, ckH); thus (pkH,0,pkH,1,pkH,2, P2, ckH) is a valid SKE
tuple. By the SKE assumption the probability of E is thus negligible. It now
suffices to show that, conditioned on E not happening, the probability that A
outputs 1 in game S-ZK when b = 0 is the same as when b = 1.

If (vk,pk, ck) fails CRS verification then τ = ⊥ and both prover and proof
simulator return ⊥. If (vk,pk, ck) verifies then (because of ¬E) EX′ extracts τ .

We show that the outputs of the prover and the proof simulator are dis-
tributed equivalently. Above we showed that for a valid CRS there exist
τ, ρA, ρB , β, γ, αA, αB , αC ∈ F with ρA �= 0, ρB �= 0, β �= 0, γ �= 0 and Z(τ) �= 0
such that vk and pk are defined as in Items 4. and 5. in Key generation.

Subversion-ZK SNARKs 339

Because of this, δAZ(τ)ρAP1, the (m + 2)-th summand in πA is uniformly
random. And so are the (m+3)-th summand δBZ(τ)ρBP1 of πB and the (m+4)-
th summand δCZ(τ)ρAρBP1 in πC . But this means that πA, πB and πC are
uniformly random group elements. For fixed vk, πA, πB and πC the Eq. (2). of
Verify uniquely determine π′

A, π′
B and π′

C , while the Eqs. 3. and 4. uniquely
determine πK and πH (since vkγ �= 0G2 and vkZ �= 0G2).

Since for a valid CRS the values ρA and ρB are non-zero, the simulated proof
elements πA, πB and πC are also uniformly random. Thus, it suffices to show
that the remaining proof elements satisfy the verification equations:

e(π′
A, P2) = e

(
a αAρAP1 − αAvkx, P2

)
= e(πA, vkA)

e
(
π′

B , P2

)
= e

(
b αBρBP1, P2

)
= e(vkB , πB)

e
(
π′

C , P2

)
= e

(
c αCρAρBP1, P2

)
= e(πC , vkC)

e(πK , vkγ) = e
(
β(aρAP1 + bρBP1 + c ρAρBP1), γP2

)

= e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

e(πH , vkZ) = e
(
Z(τ)−1(ab − c)P1, Z(τ)ρAρBP2

)

= e
(
aρAP1, bρBP2

) · e(cρAρBP1, P2

)−1
= e(vkx + πA, πB) · e(πC , P2)

−1

This concludes the proof. ��
Corollary 26. The scheme in Fig. 4 for a QAP generator Rg satisfies perfect
subversion witness indistinguishability.

Proof. In Theorem 25 we showed that proofs under a (possibly maliciously
generated but) valid CRS are uniform group elements subject to satisfying
the verification equation. Proofs using different witnesses are thus equally
distributed. ��

DFGK’s SNARK. Danezis et al. [DFGK14] define square span programs, which
are described by only one set {Ai(X)}i of polynomials (cf. Definition 20). They
show how to convert any boolean circuit into an SSP. They construct a zk-
SNARK for SSPs with proofs only consisting of 4 elements of an asymmetric
bilinear group.

Analogously to the SNARK from [BCTV14], their scheme is shown to satisfy
subversion ZK by observing that (1) the structure of a CRS can be verified
via the bilinear map; (2) the trapdoor τ (s in their notation) can be extracted
analogously to the SNARK analyzed above; and (3) proofs can be simulated
using s by simply following the simulation procedure described in [DFGK14].
(When s is known, the element Gβ (in their multiplicative notation) can be
obtained from the CRS element Gβt(s) since t(s) �= 0.)

340 G. Fuchsbauer

5 Groth’s Near-Optimal SNARK

Groth [Gro16] proposed the most efficient zk-SNARK system to date. He dras-
tically reduced the proof size for QAP-based SNARKs to 3 group elements and
verification to one equation using 3 pairings. He achieves this by proving sound-
ness directly in the generic-group model. His system is given in Fig. 5, to which
we added a procedure CRS verification defined below.

Theorem 27. ([Gro16]). The scheme in Fig. 5 is knowledge-sound against
adversaries that only use a polynomial number of generic bilinear group opera-
tions. Moreover, it has perfect zero knowledge.

Fig. 5. Groth’s SNARK [Gro16] with CRS verification (in bold)

Subversion-ZK SNARKs 341

CRS verification. On input (R, vk,pk), let {ai,j}, {bi,j}, {ci,j}, {zk} denote
the coefficients of Ai(X), Bi(X), Ci(X) and Z(X), respectively.

1. Check P1 �= 0G1 and P2 �= 0G2 .
2. Check α, β, γ, δ and Z(τ) are non-zero: pkα �= 0G1 ,pkβ �= 0G1 , vk

′
γ �=

0G2 ,pkδ �= 0G1 ,pkZ,0 �= 0G1

3. Check consistency of pkH and pk′
H : check pkH,0 = P1 and pk′

H,0 = P2.
For i = 1, . . . , d:

e(pkH,i, P) = e(pkH,i−1,pk
′
H,1) e(P1,pk

′
H,i) = e(pkH,i, P2)

4. Check consistency of the remaining pk elements:

e(P1,pk
′
β) = e(pkβ , P2) e(P1,pk

′
δ) = e(pkδ, P2)

for i = n + 1, . . . ,m : e(pkK,i,pk
′
δ) =

e
(∑d−1

j=0
ai,jpkH,j , pk

′
β

) · e(pkα,
∑d−1

j=0
bi,jpk

′
H,j

) · e(
∑d−1

j=0
ci,jpkH,j , P2

)

for i = 0, . . . , d − 2 : e(pkZ,i,pk
′
δ) = e

(∑d−1

j=0
zj pkH,j ,pk

′
H,i

)

5. Check consistency of the remaining vk elements: check vkT = e(pkα,pk′
β)

and vk′
δ = pk′

δ. For i = 0, . . . , n:

e(pkL,i,pk
′
γ)

= e
(∑d−1

j=0
ai,jpkH,j , pk

′
β

) · e(pkα,
∑d−1

j=0
bi,jpk

′
H,j

) · e(
∑d−1

j=0
ci,jpkH,j , P2

)

6. If all checks in 1.–5. succeeded then return true and otherwise false.

CRS Verifiability. Let τ, α, β, γ, δ denote the logarithms of
pkH,1,pkα,pkβ , vk′

γ ,pkδ. By Check 2. in CRS verification, α, β, γ, δ, Z(τ)
are non-zero. It follows by inspection that if all checks in 3.–5. pass then the
remaining elements of pk and vk are correctly computed.

Trapdoor Extraction. Let X be a CRS subvertor that outputs (vk,pk).
Define X′(1λ; r) that runs (vk,pk) ← X(1λ; r), parses the output as above
and returns (P1,pkH,1,pkH,2, P2,pk

′
H,1). For a valid CRS this corresponds to

(P1, τP1, τ
2P1, P2, τP2) for some P1 ∈ G1, P2 ∈ G2 and τ ∈ F. By SKE there

exists a PT algorithm EX′ which from a valid tuple extracts τ with overwhelming
probability.

Define another algorithm X′′(1λ; (r, r′)) that runs (vk,pk) ← X(1λ; r) and
extracts τ ← EX′(1λ, r; r′), computes Z(τ) (which is non-zero in a valid CRS)
and sets P ′

1 := Z(τ)−1 pkZ,0 (which for a valid CRS yields P ′
1 = δ−1P1).

Finally, X′′ returns (P ′
1, P1,pkδ, P2,pk

′
δ). For a valid CRS this corresponds to(

P ′
1, δP

′
1, δ

2P ′
1, P2, δP2

)
. By SKE there exist a PT algorithm EX′′ that on input

r′′ = (r, r′) returns δ with overwhelming probability.
Using EX′ and EX′′ , we define the CRS simulator S.crs as follows: On input 1λ

do the following:

342 G. Fuchsbauer

– Sample randomness for X and EX′ : r ←$ {0, 1}X.rl(λ); r′ ←$ {0, 1}EX′ .rl(λ)

– Run (vk,pk) ← X(1λ; r)
– If (R, vk,pk) verifies then τ ← EX′(1λ, r; r′) and δ ←$ EX′′(1λ, (r, r′)),

else (τ, δ) ← (⊥,⊥)
– Return ((vk,pk), r, (τ, δ))

Remark 28. Proof simulation is defined in [Gro16] using the full randomness
of the CRS and does not work with the trapdoor (τ, δ), as the simulator requires
α and β, which SKE does not allow to extract. Note that it is impossible to
extract α, since a valid CRS can be computed without knowing α: obliviously
sample a random generator pkα ←$ G

∗
1 and then compute vkT and, for all i,

vkL,i and pkK,i from pkα. In the following we show how to simulate a proof
without knowledge of α and β.

Proof Simulation. Given (vk,pk), trapdoor (τ, δ) and a statement x ∈ F
n,

the proof simulator S.pf does the following:

1. If (τ, δ) = (⊥,⊥) then return ⊥.
2. Choose a, b ←$ F and define the proof π := (πA, π′

B , πC) as follows

πA := aP1 + pkα π′
B := bP2 + pk′

β

πC := δ−1
(
ab−C0(τ)−

∑n

i=1
xiCi(τ)

)
P1 + δ−1

(
b−B0(τ)−

∑n

i=1
xiBi(τ)

)
pkα

+ δ−1
(
a−A0(τ)−

∑n

i=1
xiAi(τ)

)
pkβ

Theorem 29. Let Rg be a QAP generator defining a bilinear-group generator
aGen for which SKE holds. Then Groth’s SNARK [Gro16] with CRS verification
(Fig. 5) for Rg satisfies subversion zero knowledge.

Proof. Let E denote the event that (R, vk,pk) passes CRS verification but either
EX′ or EX′′ fails to extract τ and δ. Since a correct (vk,pk) satisfies e(pkH,1, P2) =
e(P1,pk

′
H,1) as well as e(pkH,2, P2) = e(pkH,1,pk

′
H,1), by SKE (Definition 15),

the probability that EX′ fails when X′ outputs (P1,pkH,1,pkH,2, P2,pk
′
H,1) is

negligible. A correct CRS also satisfies both e(P1, P2) = e(Z(τ)−1pkZ,0,pk
′
δ)

and e(pkδ, P2) = e(P1,pk
′
δ), thus again by SKE, the probability that EX′′ fails

when X′′ outputs
(
Z(τ)−1 pkZ,0, P1,pkδ, P2,pk

′
δ

)
is also negligible. By a union

bound, the probability of E is thus negligible.
It now suffices to show that, conditioned on E not happening, game S-ZK

when b = 0 is distributed as game S-ZK when b = 1. If (vk,pk) fails verification
then (τ, δ) = (⊥,⊥) and both the prover and the proof simulator return ⊥.

If (vk,pk) verifies then we show that the outputs of the prover and the proof
simulator are distributed equivalently. Above we argued that for some non-zero
α, β, γ, δ and τ with Z(τ) �= 0 we have that vk and pk are defined as in 3. and
4. in Key generation.

Subversion-ZK SNARKs 343

Since for a valid CRS both pkδ and pk′
δ are non-zero, for honestly generated

proofs the elements rpkδ in πA, and spk′
δ in π′

B , make πA and π′
B uniformly ran-

dom. For fixed vk, πA and π′
B , the verification equation uniquely determines πC ,

since vk′
δ �= 0.

In a simulated proof πA and π′
B are also uniformly random, so it suffices to

show that the simulated πC satisfies the verification equation:

e(πC , vk′
δ) = e

((
ab − C0(τ) −

∑
xiCi(τ) + α

(
b − B0(τ) −

∑
xiBi(τ)

)
+

β
(
a − A0(τ) −

∑
xiAi(τ)

))
P1, P2

)

= e(abP1, P2) + e(aβP1, P2) + e(αbP1, P2) + e(αβP1, P2) − e(αβP1, P2)

− e
((

βA0(τ)+
∑

xiβAi(τ)+αB0(τ)+
∑

xiαBi(τ)+C0(τ)+
∑

xiCi(τ)
)
P1, P2

)

= e(πA, π′
B) − vkT − e(vkx, vk′

γ)

This concludes the proof. ��
Corollary 30. Groth’s SNARK [Gro16] with CRS verification for a QAP gen-
erator Rg (Fig. 5) satisfies perfect subversion witness indistinguishability.

Proof. The corollary follows analogously to Corollary 26. ��

Acknowledgments. The author would like to thank Mihir Bellare and Rosario Gen-
naro for helpful discussions and the anonymous reviewers for PKC’18 for their valuable
comments. The author is supported by the French ANR EfTrEC project (ANR-16-
CE39-0002).

References

[ABLZ17] Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70700-6 1

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 7

[BB04] Boneh, D., Boyen, X.: Short signatures without random oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 4

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, Jan-
uary 2012

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-28628-8_3

344 G. Fuchsbauer

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 6

[BCG+14a] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE
Computer Society Press, May 2014

[BCG+14b] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: libsnark
(2014). https://github.com/scipr-lab/libsnark

[BCG+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure
sampling of public parameters for succinct zero knowledge proofs. In: 2015
IEEE Symposium on Security and Privacy, pp. 287–304. IEEE Computer
Society Press, May 2015

[BCI+10] Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.:
Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 13

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 18

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC,
pp. 505–514. ACM Press, May/June 2014

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.)
USENIX Security Symposium, pp. 781–796. USENIX Association (2014)

[BDMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and
its applications (extended abstract). In: 20th ACM STOC, pp. 103–112.
ACM Press, May 1988

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BGG17] Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for construct-
ing the public parameters of the pinocchio zk-SNARK. Cryptology ePrint
Archive, Report 2017/602 (2017). http://eprint.iacr.org/2017/602

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-48071-4_28
http://eprint.iacr.org/2017/602

Subversion-ZK SNARKs 345

[BP04] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-28628-8 17

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73.
ACM Press, November 1993

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 25

[BSBC+17] Ben-Sasson, E., et al.: Computational integrity with a public random
string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 19

[CGGN17] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge
contingent payments revisited: attacks and payments for services. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp.
229–243. ACM Press, October/November 2017

[CNE+14] Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T.,
Ristenpart, T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson,
M.: On the practical exploitability of Dual EC in TLS implementations.
In: Fu, K., Jung, J. (ed.) USENIX Security Symposium, pp. 319–335.
USENIX Association (2014)

[Dam92] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 36

[DFGK14] Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs
with applications to succinct NIZK arguments. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 28

[FKL17] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. Cryptology ePrint Archive, Report 2017/620 (2017). http://
eprint.iacr.org/2017/620

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In: 31st
FOCS, pp. 308–317. IEEE Computer Society Press, October 1990

[FS87] Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[Fuc17] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. Cryptology ePrint
Archive, Report 2017/587 (2017). http://eprint.iacr.org/2017/587

[Gen04] Gennaro, R.: Multi-trapdoor commitments and their applications to
proofs of knowledge secure under concurrent man-in-the-middle attacks.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 14

https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-45611-8_28
http://eprint.iacr.org/2017/620
http://eprint.iacr.org/2017/620
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2017/587
https://doi.org/10.1007/978-3-540-28628-8_14
https://doi.org/10.1007/978-3-540-28628-8_14

346 G. Fuchsbauer

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptol. 7(1), 1–32 (1994)

[GOS06a] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[GOS06b] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://
doi.org/10.1007/11935230 29

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 24

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM
STOC, pp. 99–108. ACM Press, June 2011

[HT98] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge proto-
cols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055744

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9 10

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[Nak09] Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009).
http://bitcoin.org/bitcoin.pdf

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: 2013 IEEE Symposium on Security and
Privacy, pp. 238–252. IEEE Computer Society Press, May 2013

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
http://bitcoin.org/bitcoin.pdf

Subversion-ZK SNARKs 347

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[SvdW06] Shallue, A., van de Woestijne, C.E.: Construction of rational points on
elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.)
ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 36

[Zca] Zcash. http://z.cash

https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/11792086_36
http://z.cash

	Subversion-Zero-Knowledge SNARKs
	1 Introduction
	2 Definitions
	2.1 Notation
	2.2 NP Relations and NI Systems
	2.3 Standard Notions: SND, KSND, WI and ZK
	2.4 Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK
	2.5 Bilinear Groups and Assumptions
	2.6 SKE in the Generic-Group Model

	3 SNARKs
	4 Asymmetric Pinocchio
	5 Groth's Near-Optimal SNARK
	References

