Skip to main content

Antimicrobial Food Pads Containing Bacterial Cellulose and Polysaccharides

  • Living reference work entry
  • First Online:
Book cover Cellulose-Based Superabsorbent Hydrogels

Abstract

Antimicrobial food packaging is one of the major innovations in the field of packaging technology. To extend food shelf life and to contribute to the consumer’s health are the main challenges of the new technology. Absorbent pads are widely used in food industry in order to preserve sensorial characteristics of packaged fresh or refrigerated food products, such as meat or poultry and also fruit and vegetables which could generate exudates during storage time. Cellulose and cellulose-derived materials are already used as components in food pads architecture. To tailor an antimicrobial food pad using natural antimicrobial agents is also a challenge which could be achieved. The aim of this chapter is to give an overview of antimicrobial packaging, underlying especially the role of natural antimicrobial agents and biopolymers. Examples are focused on cellulose and its derivative uses. In the second part of this chapter, we propose new composite hydrogels composed of bacterial cellulose and other polysaccharides as xanthan and carboxymethylcellulose, hydrogels which could act as superabsorbent of moisture and fluids exuded from packaged fresh food products. As antimicrobial substances we have tested potassium sorbate and thyme essential oil. The samples impregnated with thyme essential oil were tested against four microbial strains: Escherichia coli, Bacillus subtilis, Candida utilis (Torula), and Penicillium hirsutum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lee KT (2010) Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci 86:138–150

    Article  PubMed  CAS  Google Scholar 

  2. Biji KB, Ravishankar CN, Mohan CO, Srinivasa Gopal TK (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52(10):6125–6135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Han JH, Floros JD (1998) Simulating diffusion model and determining diffusivity of potassium sorbate through plastic to develop antimicrobial packaging films. J Food Process Preserv 22:107–122

    Article  CAS  Google Scholar 

  4. Jipa IM, Stoica A, Stroescu M, Dobre LM, Dobre T, Jinga S, Tardei C (2012) Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films. Chem Pap 66(2):38–143

    Article  CAS  Google Scholar 

  5. Flores S, Conte A, Campos C, Gerschenson L, Del Nobile M (2007) Mass transport properties of tapioca-based active edible films. J Food Eng 8:580–586

    Article  CAS  Google Scholar 

  6. Silveira MFA, Soares NFF, Geraldine RM, Andrade NJ, Botrel DA, Gonçalves MPJ (2007) Active film incorporated with sorbic acid on pastry dough conservation. Food Control 18:1063–1067

    Article  CAS  Google Scholar 

  7. Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86:157–164

    Article  PubMed  CAS  Google Scholar 

  8. Eklund T (1985) Inhibition of microbial growth at different pH levels by benzoic acid and esters of p-hydroxybenzoic acid. Int J Food Microbiol 2:159–167

    Article  CAS  Google Scholar 

  9. Vojdani F, Torres JA (1990) Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: effect of fatty acids. J Food Sci 55(3):841–846

    Article  CAS  Google Scholar 

  10. Redl A, Gontard N, Guilbert S (1996) Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. J Food Sci 61(1):116–120

    Article  CAS  Google Scholar 

  11. Guilbert S, Gontard N, Gorris LGM (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LTW-Food Sci Technol 29:10–17

    CAS  Google Scholar 

  12. Cagri A, Ustunol Z, Ryser ET (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-aminobenzoic or sorbic acids. J Food Sci 66(6):865–870

    Article  CAS  Google Scholar 

  13. Eswaranandam S, Hettiarachchy NS, Johnson MG (2004) Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J Food Sci 69(3):FMS79–FMS84

    CAS  Google Scholar 

  14. Hauser C, Wunderlich J (2011) Antimicrobial packaging films with a sorbic acid based coating. Procedia – Food Sci 1:197–202

    Article  CAS  Google Scholar 

  15. Wang H, He J, Sun H (2016) Diffusion analysis and modeling of potassium sorbate in gelatin based antimicrobial film. J Mater Sci Chem Eng 4:1–7

    Google Scholar 

  16. de Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69

    Article  CAS  Google Scholar 

  17. Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR (2015) Activity of phenolic compounds from plant origin against Candida species. Ind Crop Prod 74:648–670

    Article  CAS  Google Scholar 

  18. Reis Giada LM (2013) Chapter 4: food phenolic compounds: main classes, sources and their antioxidant power. In: Morales-González JA (ed) Oxidative stress and chronic degenerative diseases – a role for antioxidants. In Tech. ISBN 978-953-51-1123-8, under CC BY 3.0 licence, Open access, pp 87–112

    Google Scholar 

  19. Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol Adv 29:365–373

    Article  PubMed  CAS  Google Scholar 

  20. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods–a review. Int J Food Microbiol 94:223–253

    Article  PubMed  CAS  Google Scholar 

  22. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  PubMed  CAS  Google Scholar 

  23. Tiwari BK, Valdramidis VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57(14): 5987–6000

    Article  PubMed  CAS  Google Scholar 

  24. Gaare M, Hussain SA, Mishra SK, Ram C (2014) Chapter 2: natural antimicrobials for preservation of food. In: Mishra BK (ed) Dairy and food processing industry (recent trends) Part1. Astral International Ltd, New Delhi, pp 204–230

    Google Scholar 

  25. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  26. No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  PubMed  CAS  Google Scholar 

  27. Zheng L-Y, Zhu J-F (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530

    Article  CAS  Google Scholar 

  28. Foster LJR, Butt J (2011) Chitosan films are NOT antimicrobial. Biotechnol Lett 33:417–421

    Article  PubMed  CAS  Google Scholar 

  29. Tripathi S, Mehrotra GK, Dutta PK (2008) Chitosan based antimicrobial films for food packaging applications. e-Polymers 093:1–7

    Google Scholar 

  30. Zhai M, Zhao L, Yoshii F, Kume T (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57(1):83–88

    Article  CAS  Google Scholar 

  31. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem 120:193–198

    Article  CAS  Google Scholar 

  32. Ouattara B, Simard RE, Piette G, Bégin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139–148

    Article  CAS  Google Scholar 

  33. Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LTW–Food Sci Technol 38:859–865

    CAS  Google Scholar 

  34. Yang S-C, Lin C-H, Sung CT, Fang J-Y (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241. https://doi.org/10.3389/fmicb.2014.00241

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bemena LD, Mohamed LA, Fernandes AM, Lee BH (2014) Applications of bacteriocins in food, livestock health and medicine. Int J Curr Microbiol Appl Sci 3(12):924–949

    Google Scholar 

  36. Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56(8):1262–1274

    Article  PubMed  CAS  Google Scholar 

  37. Gharsallaoui A, Joly C, Oulahal N, Degraeve P (2016) Nisin as a food preservative: part 2: antimicrobial polymer materials containing Nisin. Crit Rev Food Sci Nutr 56(8):1275–1289

    Article  PubMed  CAS  Google Scholar 

  38. Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469

    Article  PubMed  CAS  Google Scholar 

  39. Hong SI, Rhim JW (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8(11):5818–5824

    Article  PubMed  CAS  Google Scholar 

  40. Maryan AS, Montazer M (2015) Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment. J Ind Eng Chem 22:164–170

    Article  CAS  Google Scholar 

  41. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  PubMed  CAS  Google Scholar 

  42. Monte-Serrano M, Fernandez-Saiz P, Ortí-Lucas RM, Hernando B (2015) Effective antimicrobial coatings containing silver-based nanoclays and zinc pyrithione. J Microbiol Biochem Technol 7:398–403

    Article  CAS  Google Scholar 

  43. Puthussery H, Prasad R, Gorazda K, Roy I (2015) Production, chemistry and properties of biopolymers in food science. In: Cirillo G, Gianfranco U, Iemma SF (eds) Functional polymers in food science: from technology to biology. 1, Food packaging. Scrivener Publishing, Beverly,MA, Wiley, p 96. ISBN 978-1-118-59489-6

    Google Scholar 

  44. Fabra MJ, Lopez-Rubio A, Lagaron JM (2014) Biopolymers for food packaging applications. In: De Aguilar de Armas MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing, Elsevier, pp 476–509

    Chapter  Google Scholar 

  45. Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, Dima A, Terpou A, Koutinas A, Castro GR (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol 213:172–180

    Article  PubMed  CAS  Google Scholar 

  46. Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules 14(6):1741–1750

    Article  PubMed  CAS  Google Scholar 

  47. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  48. Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511

    Article  PubMed  CAS  Google Scholar 

  49. Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061

    PubMed  CAS  Google Scholar 

  50. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  51. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352

    Article  PubMed  CAS  Google Scholar 

  52. Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314

    Article  CAS  Google Scholar 

  53. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  54. Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571

    Article  PubMed  CAS  Google Scholar 

  55. Santos SM, Carbajo JM, Gómez N, Quintana E, Ladero M, Sánchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci 51:1541–1552

    Article  CAS  Google Scholar 

  56. Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181

    Article  PubMed  CAS  Google Scholar 

  57. Tomé LC, Brandão L, Mendes AM, Silvestre AJ, Neto CP, Gandini A, Freire CS, Marrucho IM (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211

    Article  CAS  Google Scholar 

  58. Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19(4):909–915

    Article  PubMed  CAS  Google Scholar 

  59. Stroescu M, Stoica-Guzun A, Jinga SI, Dobre T, Jipa IM, Dobre LM (2012) Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose. Korean J Chem Eng 29(9):1216–1223

    Article  CAS  Google Scholar 

  60. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478

    Article  PubMed  CAS  Google Scholar 

  61. Padrão J, Gonçalves S, Silva JP, Sencadas V, Lanceros-Méndez S, Pinheiro AC, Vicente AA, Rodrigues LR, Dourado F (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll 58:126–140

    Article  CAS  Google Scholar 

  62. Dobre L-M, Stoica-Guzun A, Stroescu M, Jipa I, Dobre T, Ferdes M, Ciumpiliac S (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151

    Article  CAS  Google Scholar 

  63. Jipa IM, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66(1):125–127

    Article  CAS  Google Scholar 

  64. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LTW–Food Sci Technol 47:400–406

    CAS  Google Scholar 

  65. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28:515–518

    Article  CAS  Google Scholar 

  66. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  67. Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R (2015) pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int J Biol Macromol 76:209–217

    Article  PubMed  CAS  Google Scholar 

  68. Dobre L-M, Stoica A, Stroescu M, Jinga S, Jipa I, Dobre T (2010) Characterization of composite materials based on biocellulose membranes impregnated with silver particles as antimicrobial agent. UPB Sci Bull Ser B 72(4):55–64

    CAS  Google Scholar 

  69. Nieto MB (2009) Chapter 3: structure and function of polysaccharide gum-based edible films and coatings. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, New York, pp 77–78

    Google Scholar 

  70. Jiménez A, Fabra MJ, Talens P, Chiralt A (2015) Polysaccharides as valuable materials in food packaging. In: Cirillo G, Spizzirri UG, Iemma F (eds) Functional polymers in food science; from technology to biology. Wiley, Hoboken, p 214

    Google Scholar 

  71. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulose films. Innov Food Sci Emerg Technol 11:697–702

    Article  CAS  Google Scholar 

  72. Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89:346–353

    Article  PubMed  CAS  Google Scholar 

  73. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12

    Article  CAS  Google Scholar 

  74. Bejenariu B, Popa M, Dulong V, Picton L, Le Cerf D (2009) Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behavior. Polym Bull 62:525–538

    Article  CAS  Google Scholar 

  75. Tao Y, Zhang R, Xu W, Bai Z, Zhou Y, Zhao S, Xu Y, Yu D (2016) Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocoll 52:923–933

    Article  CAS  Google Scholar 

  76. Garcia-Hernandez A, Lobato-Calleros C, Vernon-Carter EJ, Sosa-Hernandez E, Alvarez-Ramirez J (2017) Effects of clay concentration on the morphology and rheological properties of xanthan gum-based hydrogels reinforced with montmorillonite particles. J Appl Polym Sci 134:44517. https://doi.org/10.1002/APP.44517

    Article  Google Scholar 

  77. Argin-Soysal S, Kofinas P, Lo YM (2009) Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels. Food Hydrocoll 23:202–209

    Article  CAS  Google Scholar 

  78. de Morais LM, Carneiro LC, Bianchini D, Dias AR, Zavareze ER, Prentice C, Moreira AS (2017) Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. J Food Sci 82(3):698–705

    Article  CAS  Google Scholar 

  79. Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099

    Article  PubMed  CAS  Google Scholar 

  80. Bueno VB, Petri DFS (2014) Xanthan hydrogel films: molecular conformation, charge density and protein carriers. Carbohydr Polym 101:897–904

    Article  PubMed  CAS  Google Scholar 

  81. Gils PS, Ray D, Sahoo PK (2009) Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol 45:364–371

    Article  PubMed  CAS  Google Scholar 

  82. Jindal R, Kaith BS, Mittal H (2011) Rapid synthesis of acrylamide onto xanthan gum based hydrogels under microwave radiations for enhanced thermal and chemical modifications. Polym Renew Resour 2(3):105–116

    CAS  Google Scholar 

  83. Srivastava A, Mishra DK, Tripathy J, Behari K (2009) One pot synthesis of xanthan gum-g-N-vinyl-2-pyrrolidone and study of their metal ion sorption behavior and water swelling property. J Appl Polym Sci 111:2872–2880

    Article  CAS  Google Scholar 

  84. Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A (2013) Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym 98:64–72

    Article  PubMed  CAS  Google Scholar 

  85. Feng E, Ma G, Wu Y, Wang H, Lei Z (2014) Preparation and properties of organic–inorganic composite superabsorbent based on xanthan gum and loess. Carbohydr Polym 111:463–468

    Article  PubMed  CAS  Google Scholar 

  86. Hemvichian K, Chanthawong A, Suwanmala P (2014) Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethylcellulose for controlled release of agrochemicals. Radiat Phys Chem 103:167–171

    Article  CAS  Google Scholar 

  87. Bao Y, Ma J, Lib N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  88. Ni B, Liu M, Lü S (2009) Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 155:892–898

    Article  CAS  Google Scholar 

  89. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11

    Article  CAS  Google Scholar 

  90. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554

    Article  PubMed  CAS  Google Scholar 

  91. Ge H, Wang S (2014) Thermal preparation of chitosan–acrylic acid superabsorbent: optimization, characteristic and water absorbency. Carbohydr Polym 113:296–303

    Article  PubMed  CAS  Google Scholar 

  92. Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745–59757

    Article  CAS  Google Scholar 

  93. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  94. Bidgoli H, Zamani A, Taherzadeh MJ (2010) Effect of carboxymethylation conditions on water binding capacity of chitosan-based superabsorbents. Carbohydr Res 345:2683–2689

    Article  PubMed  CAS  Google Scholar 

  95. Chen P, Zhang W, Luo W, Fang Y (2004) Synthesis of superabsorbent polymers by irradiation and their applications in agriculture. J Appl Polym Sci 93:1748–1755

    Article  CAS  Google Scholar 

  96. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    Article  PubMed  CAS  Google Scholar 

  97. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  98. Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24(4):1073–1087

    Article  CAS  Google Scholar 

  99. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  PubMed Central  Google Scholar 

  100. Li L (2002) Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35:5990–5998

    Article  CAS  Google Scholar 

  101. Yoo YJ, Um IC (2013) Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Aust Rheol J 25(2):67–75

    Article  Google Scholar 

  102. Silva SMC, Pinto FV, Antunes FE, Miguel MG, Sousa JJS, Pais AACC (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interf Sci 327:333–340

    Article  CAS  Google Scholar 

  103. Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484

    Article  CAS  Google Scholar 

  104. Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super- macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830

    Article  PubMed  CAS  Google Scholar 

  105. Setoyama M, Yamamoto K, Kadokawa J-i (2014) Preparation of cellulose/xanthan gum composite films and hydrogels using ionic liquid. J Polym Environ 22(3):298–303

    Article  CAS  Google Scholar 

  106. Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273

    Article  CAS  Google Scholar 

  107. Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23:38–48

    Article  CAS  Google Scholar 

  108. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  109. Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473

    Article  CAS  Google Scholar 

  110. Xiao M, Hu J, Zhang L (2014) Synthesis and swelling behavior of biodegradable cellulose-based hydrogels. Adv Mater Res 1033–1034:352–356

    Article  Google Scholar 

  111. Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64

    Article  PubMed  CAS  Google Scholar 

  112. Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242

    Article  CAS  Google Scholar 

  113. Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1023

    Article  PubMed  CAS  Google Scholar 

  114. Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530

    Article  CAS  Google Scholar 

  115. Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:435073, 6 pages

    Article  CAS  Google Scholar 

  116. Coma V, Sebti I, Pardon P, Pichavant FH, Deschamps A (2003) Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydr Polym 51:265–271

    Article  CAS  Google Scholar 

  117. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460

    Article  CAS  Google Scholar 

  118. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95:421–427

    Article  PubMed  CAS  Google Scholar 

  119. Ibrahim SM, Salmawi KME (2013) Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J Polym Environ 21:520–527

    Article  CAS  Google Scholar 

  120. El-Naggar AA (2016) Radiation synthesis of superabsorbent hydrogels based on carboxymethylcellulose/sodium alginate for absorbent of heavy metal ions from waste water. J Thermoplast Compos Mat 29(1):16–27

    Article  CAS  Google Scholar 

  121. Raafat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Inst Methods Phys Res B 283:71–76

    Article  CAS  Google Scholar 

  122. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:46. https://doi.org/10.1186/s13065-017-0273-5

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr Polym 166:300–308

    Article  PubMed  CAS  Google Scholar 

  124. Bao Y, Ma J, Sun Y (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595

    Article  CAS  Google Scholar 

  125. Gao J, Yang Q, Ran F, Ma G, Lei Z (2016) Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays. Appl Clay Sci 132–133:739–747

    Article  CAS  Google Scholar 

  126. Mukerabigw JF, Le S, Fan L, Wang H, Luo S, Ma X, Qin J, Huang X, Cao Y (2016) Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv 6:31607–31618

    Article  CAS  Google Scholar 

  127. Wang Z, Ning A, Xie P, Gao G, Xie L, Li X, Song A (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56

    Article  PubMed  CAS  Google Scholar 

  128. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. Rev Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  129. Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44(3):185–193

    Article  PubMed  CAS  Google Scholar 

  130. Ahmed I, Lin H, Zou L, Brody AL, Li Z, Qazi IM, Pavase TR, Lv L (2017) A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 82:163–178

    Article  CAS  Google Scholar 

  131. Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH (2016) Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int 83:60–73

    Article  CAS  Google Scholar 

  132. Fernández A, Soriano E, López-Carballo G, Picouet P, Lloret E, Gavara R, Hernández-Muñoz P (2009) Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Res Int 42:1105–1112

    Article  CAS  Google Scholar 

  133. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  CAS  Google Scholar 

  134. Llorens A, Lloret E, Picouet PA, Fernandez A (2012) Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int J Food Microbiol 158:113–119

    Article  PubMed  CAS  Google Scholar 

  135. Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils in bioactive edible coatings. Food Eng Rev 3:1–16

    Article  CAS  Google Scholar 

  136. Sung S-Y, Sin LT, Tee T-T, Bee S-T, Rahmat AR (2014) Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innov Food Sci Emerg Technol 26:406–414

    Article  CAS  Google Scholar 

  137. Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124:91–97

    Article  PubMed  CAS  Google Scholar 

  138. Gouvêa DM, Mendonça RCS, Lopez MES, Batalha LS (2016) Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT–Food Sci Technol 67:159–166

    Article  CAS  Google Scholar 

  139. Rosca C, Popa MI, Lisa G, Chitanu GC (2005) Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan–carboxymethylcellulose complex. Carbohydr Polym 62:35–41

    Article  CAS  Google Scholar 

  140. Abdel-Galil A, Ali HE, Atta A, Balboul MR (2014) Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Rad Res Appl Sci 7:36–43

    CAS  Google Scholar 

  141. Mudoi P, Bharali P, Konwar BK (2013) Study on the effect of pH, temperature and aeration on the cellular growth and xanthan production by Xanthomonas campestris using waste residual molasses. J Bioprocess Biotech 3:135

    Google Scholar 

  142. Ortega-Toro R, Jiménez A, Talens P, Chiral A (2014) Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr Polym 109: 155–165

    Article  PubMed  CAS  Google Scholar 

  143. Reda SY (2011) Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Food Sci Technol (Campinas), Ciênc Technol Aliment 31(2):475–480

    Article  Google Scholar 

  144. Ciesielski W, Tomasik P (2008) Metal complexes of xanthan gum. EJPAU 11(2):25

    Google Scholar 

  145. Aswathy RG, Sivakumar B, Brahatheeswaran D, Raveendran S, Ukai T, Fukuda T, Yoshida Y, Maekawa T, Sakthikumar DN (2102) Multifunctional biocompatible fluorescent carboxymethyl cellulose nanoparticles. J Biomater Nanobiotechnol 3:254–261

    Article  CAS  Google Scholar 

  146. Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. Stoica-Guzun gratefully acknowledges the financial support of the European Commission through the European Regional Development Fund and of the Romanian state budget, under the grant agreement 155/25.11.2016 (Project POC P-37-449, acronym ASPiRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anicuta Stoica-Guzun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stroescu, M., Isopencu, G., Busuioc, C., Stoica-Guzun, A. (2018). Antimicrobial Food Pads Containing Bacterial Cellulose and Polysaccharides. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics