Skip to main content

Data, Methods, and Applications of Traffic Source Prediction

  • Chapter
  • First Online:
Transportation Analytics in the Era of Big Data

Part of the book series: Complex Networks and Dynamic Systems ((CNDS,volume 4))

Abstract

Traffic source prediction provides a new way of mitigating traffic congestion. Since the initial discovery that the major usage of road segments can be traced to surprisingly few driver sources, studies of traffic source prediction have recently experienced rapid development. With more high-resolution traffic data available, dynamical driver sources and passenger sources have been proposed, and the method of targeting traffic sources highly related to congestion has triggered a number of applications ranging from travel demand control to vehicle routing guidance and infrastructure upgrades. Here, we present a comprehensive review of the data, methods, and applications of traffic source prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Wang, T. Hunter, A.M. Bayen, K. Schechtner, M.C. González, Understanding road usage patterns in urban areas. Sci. Rep. 2(12), 1001 (2012)

    Article  Google Scholar 

  2. J. Wang, D. Wei, K. He, H. Gong, P. Wang, Encapsulating urban traffic rhythms into road networks. Sci. Rep. 4(7488), 4141 (2014)

    Google Scholar 

  3. J. Wang, Y. Li, J. Liu, K. He, P. Wang, Vulnerability analysis and passenger source prediction in urban rail transit networks. PLoS One 8(11), e80178 (2013)

    Article  Google Scholar 

  4. K. He, Z. Xu, P. Wang, L. Deng, Congestion avoidance routing based on large-scale social signals. IEEE Trans. Intell. Transp. Syst. 17, 1–14 (2016)

    Article  Google Scholar 

  5. J. Wang, Q. Tan, P. Wang, Analysis of surging passenger flow in urban rail transit network. J. Railw. Sci. Eng. 12(1), 196–202 (2015)

    Google Scholar 

  6. K. He, Z. Xu, P. Wang, A hybrid routing model for mitigating congestion in networks. Phys. A Stat. Mech. Appl. 431, 1–17 (2015)

    Article  Google Scholar 

  7. K. He, J. Wang, L. Deng, P. Wang, in Congestion Avoidance Routing in Urban Rail Transit Networks. IEEE, International Conference on Intelligent Transportation Systems (IEEE, 2015), pp. 200–205

    Google Scholar 

  8. M.C. González, C.A. Hidalgo, A.L. Barabási, Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  9. C. Song, Z. Qu, N. Blumm, A.L. Barabási, Limits of predictability in human mobility. Science 327(5968), 1018 (2010)

    Article  Google Scholar 

  10. P. Deville, C. Linard, S. Martin, M. Gilbert, F.R. Stevens, A.E. Gaughan, et al., Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. U. S. A. 111(45), 15888 (2014)

    Article  Google Scholar 

  11. K.A.S.A. Khateeb, J.A.Y. Johari, W.F.A. Khateeb, Dynamic traffic light sequence algorithm using rfid. J. Comput. Sci. 4(7), 517–524 (2008)

    Article  Google Scholar 

  12. L. Yang, Detection of real-time event in intelligent traffic system based on rfid. Adv. Mater. Res. 926-930, 1314–1317 (2014)

    Article  Google Scholar 

  13. W. Wen, An intelligent traffic management expert system with RFID technology. Expert Syst. Appl. 37(4), 3024–3035 (2010)

    Article  Google Scholar 

  14. Y. Wei, M.C. Chen, Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Pt. C Emerg. Technol. 21(1), 148–162 (2012)

    Article  Google Scholar 

  15. L. Sun, D.H. Lee, A. Erath, X. Huang, in Using Smart Card Data to Extract Passenger’s Spatio-Temporal Density and Train’s Trajectory of MRT System. ACM SIGKDD International Workshop on Urban Computing ACM SIGKDD International Workshop on Urban Computing, vol 4 (ACM, 2012), pp.142–148)

    Google Scholar 

  16. M.S. Iqbal, C.F. Choudhury, P. Wang, M.C. González, Development of origin–destination matrices using mobile phone call data. Transp. Res. Pt. C Emerg. Technol. 40(1), 63–74 (2014)

    Article  Google Scholar 

  17. H. Gong, L. Sun, P. Wang, Using mobile phone data to estimate trip distribution of urban mega traffic analysis zones: a case study in San Francisco. Urban Transp. China 14(1), 37–42 (2016)

    Google Scholar 

  18. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  Google Scholar 

  19. M. Chen, A.S. Alfa, A network design algorithm using a stochastic incremental traffic assignment approach. Transp. Sci. 25(3), 215–224 (1991)

    Article  Google Scholar 

  20. M. Frank, P. Wolfe, An algorithm for quadratic programming. Nav. Res. Logist. 3(1-2), 95–110 (1956)

    Article  Google Scholar 

  21. S. Çolak, A. Lima, M.C. González, Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016)

    Article  Google Scholar 

  22. G. Li, S.D.S. Reis, A.A. Moreira, S. Havlin, H.E. Stanley, J.S. Andrade Jr., Towards design principles for optimal transport networks. Phys. Rev. Lett. 104(1), 018701 (2010)

    Article  Google Scholar 

  23. P. Crucitti, V. Latora, S. Porta, Centrality measures in spatial networks of urban streets. Phys. Rev. E 73(3), 036125 (2006)

    Article  Google Scholar 

  24. Y. Tong, L. Lu, Z. Zhang, Y. He, W. Lu, Vulnerability of long-distance bridges and tunnels in urban roadway networks. J. Eng. Sci. Technol. Rev. 10(1), 123–130 (2017)

    Google Scholar 

  25. B. Yang, W. Guo, B. Chen, G. Yang, J. Zhang, Estimating mobile traffic demand using Twitter. IEEE Wireless Commun. Lett. 5(4), 380–383 (2016)

    Article  Google Scholar 

  26. G. Karoń, Travel Demand and Transportation Supply Modelling for Agglomeration without Transportation Model, in International Conference on Transport Systems Telematics, (Springer, Berlin, 2013), pp. 284–293

    Google Scholar 

  27. X. Hu, Y.C. Chiu, J. Shelton, Development of a behaviorally induced system optimal travel demand management system. J. Intell. Transp. Syst. 21(1), 12–25 (2017)

    Article  Google Scholar 

  28. J. Wang, Q. Gu, J. Wu, G. Liu, Z. Xiong, in Traffic Speed Prediction and Congestion Source Exploration: A Deep Learning Method. Data Mining (ICDM), 2016 IEEE 16th International Conference on (IEEE, 2016), pp. 499–508

    Google Scholar 

  29. H. Gong, C. Wang, Y. Qu, K. He, P. Wang, in Locating Traffic Information Sources in Urban Areas. Cota International Conference of Transportation Professionals. (2016), pp. 141–151

    Google Scholar 

  30. J.L. Toole, S. Colak, B. Sturt, L.P. Alexander, A. Evsukoff, M.C. González, The path most traveled: travel demand estimation using big data resources. Transp. Res. Pt. C Emerg.Technol. 58, 162–177 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C., Wang, P. (2019). Data, Methods, and Applications of Traffic Source Prediction. In: Ukkusuri, S., Yang, C. (eds) Transportation Analytics in the Era of Big Data. Complex Networks and Dynamic Systems, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-75862-6_5

Download citation

Publish with us

Policies and ethics