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Abstract. Visual odometry (VO) has been extensively studied in the
last decade. Despite a variety of implementation details, the proposed
approaches share the same principle - a minimisation of a carefully chosen
energy function. In this paper we review four commonly adopted energy
models including perspective, epipolar, rigid, and photometric align-
ments, and propose a novel VO technique that unifies multiple objec-
tives for outlier rejection and egomotion estimation to outperform mono-
objective egomotion estimation. The experiments show an improvement
above 50% is achievable by trading off 15% additional computational
cost.

1 Introduction

Visual odometry (VO) uses an image sequence for calculating continuously ego-
motion of the camera. VO has been actively studied in the fields of computer
vision, photogrammetry, or robotics. Egomotion estimation can be approached in
a variety of ways. When dense depth data is available (e.g. from a ToF camera),
the inter-frame pose can be derived by means of the alignment of 3D-to-3D struc-
ture correspondences. If the sensor also provides intensity images (e.g. an RGB-D
camera), the pose can be estimated by minimising the photometric error when
applied to perspectively warping the images. It is a more general case where
3D coordinates of sparse pixels are known only in the previous frame, where
their locations need to be tracked in the next frame. Given such 3D-to-2D corre-
spondences, egomotion is estimated by minimisation of the geodesic reprojection
error.

In this paper we provide a review on adopted energy models of state-of-the-art
VO methods. Based on these models, we propose a novel VO implementation
that collaboratively uses multiple energy models to achieve more robust and
accurate egomotion estimation. The rest of this paper is organised as follows.
Section 2 gives a brief review on the recent development of VO techniques. In
Sect. 3 we formulate VO as an energy minimisation problem. Section4 walks
through the energy models used by the state-of-the-art methods, based on which
a unified framework is proposed in Sect. 5. Experimental results and discussions
are given in Sect. 6, while Sect. 7 concludes this paper.
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2 Literature Review

In the last two decades, the development of VO has led to a separation into two
different paths, namely appearance-based or feature-based techniques [1].

Appearance-based VO makes direct use of image intensities to minimise the
photometric error between the perspective warping of a referenced frame and
the image of a target frame. Early direct methods are influenced by optical flow
estimation or structure-from-motion (StM) techniques from the photogrammetry
community [3,4]. After decades of oblivion, the direct methods have quickly
become popular in the last few years, thanks to the advance of GPU computing
and breakthroughs in the sparse visual simultaneous localisation and mapping
(V-SLAM) domain [5,7-11].

In 2007 the first symbolic implementation of sparse direct VO is presented
in the context of augmented reality [5], based on work published in 2001 [4]. In
2011 Davison et al. demonstrated a regularised photometric error function using
the gradients of depth maps and intensity images to achieve accurate dense
matching over multiple short-baseline movements [7]. For finding the optimal
motion that minimises the regularised matching cost, the authors proposed a
forward-compositional cost function.

A similar inverse compositional formulation is used in [8] during the iterative
Gaussian minimisation over a photometric energy function derived from a num-
ber of 4 x 4 perspectively warped patches around the tracked key points. In [9]
the error covariance is taken into account to build normalised photometric error
terms. The uncertainty of each tracked key point is propagated by a Jacobian-
based approximation, and continuously maintained following an update model
that makes joint use of a dense depth map and its variance map. In the authors’
follow-up work [10,11], the image gradient as well as the camera’s photometric
calibration are taken into account to revise the uncertainty estimation model for
the photometric energy function.

Feature-based techniques, on the other side, keep tracking a set of distinctive
scene points and derive the camera’s egomotion from the correspondences estab-
lished by descriptor matching. Approaches in this category have been dominating
the development of VO since its early success on Mars [12]. The implementation
on the Mars rovers uses a weighted 3D rigid point alignment model to optimise
the estimation of rover’s egomotion. In difference to the direct methods, feature
correspondences are established in feature space.

In [13], robust outlier rejection is used to remove noisy correspondences.
In [14], the observations of each tracked feature are integrated over time to yield
more accurate state estimation. The technique is later generalised by [15]. A
more recent work [16] demonstrates the feasibility of real-time feature extraction,
matching, and pose estimation using oriented FAST key points and rotated
BRIEF descriptors. The success of all these methods lies in the minimisation of
the geodesic distances between observed feature locations and their predictions.

Few recent work attempts to fill in the gap between appearance-based and
feature-based VO or V-SLAM. For example, Forster et al. deployed a reprojection
minimisation technique, which is commonly used in feature-based VO, to refine
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the pose estimated from direct photometric alignment [8]. Another example is
the bi-objective energy model used in [10] that takes into account not only a
photometric error but also geodesic displacement. Such a trend has inspired this
work to study the use of multiple objectives for egomotion estimation.

3 Visual Odometry

Historically, the estimation of a camera’s egomotion relies on the tracking of some
long-term key points, which are projections of distinctive scene points known
as landmarks, and the minimisation of the deviation between their predicted
locations and actual observations.

3.1 Theory

Let P = (X,Y,Z) be the 3D coordinates of a landmark. Following the pinhole
camera model, its projection (z,y) in the image plane is given by

x fr 0 ¢y 0 )}f i,(
y|~0fe0)]|,|=mxol, (1)
1 0010 1 1

where the upper triangular matrix K is the camera matriz modelled by the
intrinsic parameters of the camera including focal lengths f, and f,, and the
image centre or principal point (cg, ¢y). By ~ we denote projective equality (i.e.
equality up to a scale).

As the camera moves, a new coordinate system is instantiated. The egomotion
of the camera can then be modelled by a Euclidean transformation T € SE(3),
from the previous frame to the new coordinate system, which consists of a rota-
tion R € SO(3) and a translation component t € R?. If the landmark P remains
stationary, its projection into the new camera position can be predicted by

x’ X

y | ~K(Rt) Y (2)
Z
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The estimation of an unknown transformation (Rt), given a set of 3D-to-2D
correspondences (X,Y, Z) < (2',y'), is known as the perspective-from-n-points
(PnP) problem [18]. Such a problem has been extensively studied in the context
of SfM or VO.

The implementation of visual odometry, however, is not limited to the use of
3D-t0-2D point-to-point correspondences. For example, when dense depth data
is available, one may alternatively use 3D-to-3D correspondences and replace
Eq. (2) by arigid alignment objective (see Sect. 4) to model the error of a motion
hypothesis. In the monocular case, on the other hand, due to a lack of 3D data,
a set of 2D-to-2D epipolar constraints is commonly used as the objective.
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Pre-processing Egomotion estimation
Image undistortion, stereo rectification,

feature extraction, etc. Energy minimisation

Establishment of correspondence

Feature descriptor matching,
batch-based correspondence search, etc.

Post-motion structure recovery

Triangulation, temporal stereo matching

Outlierrejection ‘ State update

Random sampling consensus | Bundle adjustment, Kalman filters, etc.

Fig. 1. General visual odometry model, with each stage annotated by related topics

Figure 1 shows the stages of a generalised visual odometry methodology in an
abstract way, independent of the type of correspondences used. In such a general
model, the egomotion estimation stage can be conceptualised as a general energy
minimisation process.

3.2 Energy Minimisation Problem

As an energy minimisation problem, a residual function ¢(x,y;§) € R is defined
for each established correspondence x «» y to solve for egomotion. Note that
x and y can be any entities of interest, and the residual is parametrised by
twist coordinates ¢ € R® which is the Lie-algebra entity minimally representing
a Euclidean transform T = expys)(§) € SE(3). Note that two twists { and
& can be composited by the multiplication of their corresponding Euclidean
transformation matrices

£ ot =logggs) (eXpse(3)(5/) " OXPse(3) (5)) ®)

where o is the pose concatenation operator.

Individual residuals are further summarised as a scalar to be minimised.
This is often done in the sum-of-squares form to achieve mazimum-likelihood
estimation (MLE) when the error distribution of residuals is believed to follow
a Gaussian. Let &(£) = (¢o, ¢1, .-, Pm—1) be an m-vector function instantiated
from m correspondences; the optimal estimate of egomotion is found to be

¢ = arg min(||(8)|[3:) (4)
£ERS

where ||-||% is the squared Mahalanobis distance defined by 3, an m x m positive
definite matrix denoting the error covariance over all the correspondences.
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When the correspondences are believed to be established independently (as
in most of the cases), 3 is simplified as a diagonal matrix. Equation (4) can then
be rewritten as

. 2
¢ = arg min(3 " wi i (51, yi: O)1%) (5)
EERS i
where w; is the inverse of the i-th diagonal entry in 3. An optimal estimate &,
that minimises the weighted sum-of-squares, can be approached iteratively by

Ehp1 = Ay 0 &, (6)
with the update computed using the Levenberg-Marquardt algorithm [19]:
Agy = (H + X diag(H)) ' JT0(8s) (7)

where A € R is the damping variable, and H = JTWJ is the Hessian matrix
approximated by the weight matrix W = diag(wg, w1, ..., w;—1) and the Jacobian

Op;
9§

of @ at &. The variable A is adaptively adjusted to control the optimisation
toward a Gauss-Newton-like process (when ¢ is far from a local minimum), or
a gradient-descent-like process (when ¢ is closer to a local minimum.) All the
energy functions considered in this work are minimised in this manner, with the
Jacobian matrix numerically computed by first-order finite differentiations.

Jij = 5 (&) (8)

4 Energy Models in Visual Odometry

In this section we review three geodesic models and one photometric energy
model, widely chosen in the literature.

4.1 Epipolar Alignment

Given an image point (z,y) in the current frame and (R, t) for the motion of
the camera, the corresponding epipolar line can be obtained in the next frame
identifying the search domain for the corresponding image point (z’,3’). Such
a 2D-to-2D point correspondence (z,y) < (2’,y’) is useful for evaluating the
correctness of a motion hypothesis.

Let (R,f) be a hypothesis, and (z,y) < (2’,y") be the projections of a static
scene point. The back-projected rays through these image points have to be
co-planar, leading to the well-known epipolar constraint

TK T[], RK 'x =0 9)

where [t], is the skew-symmetric matrix form of vector t, K is the camera
. T . . N
matrix, and x = (x,y,1) are homogeneous coordinates of an image point in

vector form.

X
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In practice, the equality of Eq. (9) never holds, as a result of numerical compu-
tations, errors in correspondences, and the inaccuracy of the motion hypothesis.
For the last factor, from a set of correspondences x; <> x; one may obtain the
residual terms A .

i (xi, x}; ) = xj Fx; (10)
where F = K~ T [‘E] XRK’l is the fundamental matrix encoding the given epipo-

lar geometry, and (ﬁ, f) is the motion hypothesis converted from é .

The algebraic distances, however, are found biased as the image points far
away from the epipole tend to be over-penalised. A geometrically meaningful
modelling is to measure the shortest distance

x'TFx
5(x'\1) = g (11)
VIE+1E
between x’ and the corresponding epipolar line 1 = Fx = (lg,11,l2)", for a
general correspondence x < x’ and fundamental matrix F. As the observation
x’ also introduces an epipolar constraint on x, we have that

Ix'TFx|

Vo + 1T

where I’ = FTx’ denotes the epipolar line in the first view.
By applying symmetric measurements on the point-epipolar line distances,
the energy function defined by Eq. (10) is now revised as follows:

@i(Xi,X2§fA) = 52(X27FX2') + 52(’% FTXi) (13)

5(x,1) = (12)

This yields geometric errors in pixel locations.

A noise-tolerant variant is to treat the correspondence x « x’ as a deviation
from the ground truth x < %X’. When the differences ||x — %|| and [|x’ — X/||
are believed to be small, the sum of squared mutual geometric distances can be
approximated by

(X/T FX)2

02 (%, 1) + 0*(%,1) =
SRARRCS B+B+15+07

(14)

where I = Fx and ' = FTx’ are perfect epipolar lines [20]. This first-order
approximation to the geometric error is known as the Sampson distance [20].
When such a metric is adopted for evaluating egomotion, Eq. (13) is formulated
as follows:

N {TF ; 2
%(Xiaxli;f)zz = - ()2(’ {(_r) e ————
(Fx;)g + (Fx;)7 + (F'x})g + (F'x})]

%

(15)

As the computation of these epipolar errors only uses 2D correspondences, the
energy model can be useful when 3D structures of a scene are not known (i.e. in
case of monocular VO). A minimum linear solver, known as the five-point method,
is credited to Nistér [21]. The absolute scale of t, however, is not possible to be
recovered without any reference in the 3D space.
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4.2 Perspective Alignment

If the 3D location of a tracked feature is known in the current frame, and its 2D
location is found in the next frame, then it is more reliable to use reprojection
residuals [17]

N N ~ 112
pilgi X €) =[x - mc(Rgi + 1) (16)

i

where g; = (X;,Y;, Z;) " is the current 3D location of the feature, x, = (z;,v;) "
are the feature’s image coordinates in the next frame, and mx : R® — R? is
the projection function that maps a 3D point into the 2D image coordinates
using the camera matrix K; 3; is the 2 x 2 error covariance matrix of the i-
th correspondence. When the backward correspondences g} < x; are known,
Eq. (16) can be modelled in inverse mapping form as follows:

vi(gi

e (® -B)[ "

The geodesic reprojection error has been a widely adopted energy model in
camera resectioning, including calibration, pose estimation, and bundle adjust-
ment. Its closed-form linear solution has been extensively studied in the domain
of perspective-from-n-points (PnP) problems. A popular solver is owed to an
efficient algorithm worked out by Lepetit et al. [18]. A linear solution is usu-
ally iteratively refined using a derivative-based minimiser (e.g. a Gauss-Newton
algorithm). It has been shown that the perspective alignment can be further
regularised using the epipolar alignment to reduce the impact of noisy 3D
measurements [22].

4.3 Rigid Alignment

If a dense depth map is available and the establishment of 3D point correspon-
dences is straightforward, then a rigid alignment can also be used to measure
the fitness of a motion hypothesis.
Given a set of 3D-t0-3D correspondences g; < g}, where g; = (X;,Y;, Zl-)T
and g} = (X!, Y/, Z!)T. The energy model is defined by
. . 112
vi(gi 8is R.t) = ||lgi — (Rgi +t)H (18)

i

where X; denotes the 3 x 3 error covariance matrix.

The formulation can be ill-behaved for far points if the 3D coordinates are
derived from a disparity map, due to the non-linearity of disparity-to-depth
conversion. It is therefore critical to model the covariance matrix properly. If 3D
coordinates are obtained by using a two-view triangulation function 7 : R? x
R? — R3, then the covariance matrix can be modelled as

»=1J, <EO le> J7 (19)
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where 3y and ¥ are the 2 X 2 error covariance matrices of image points x =
(z,)" and X’ = (2',9') ", respectively, and J, is the 3 x 4 Jacobian matrix

Jr =[S0 x) Fxx) Bolxx) 85 (xx)] (20)

with respect to correspondence x « x’, used to triangulate g = (X,Y, Z)" [12].

Unlike the previous two alignment models, the rigid model has closed-form
solutions that are guaranteed to minimise Eq. (18). A popular choice is based
on the quaternion parametrization and singular value decomposition (SVD), as
shown by Horn [23].

4.4 Photometric Alignment

If image correspondences x < x’' are not available at all, one may perform
direct photometric matching using a motion hypothesis. In this case, a matching
residual is defined over intensity images I and I’ as follows:

pilxi i €) = 1(x;) — I'lm (R + )] (21)

assuming that the 3D coordinates g; = (X;,Y;, Z;) of image point x = (z,y) are
known. This is also known as correspondence-free egomotion estimation, and it is
pervasively used by direct VO techniques. Equation (21) can be extended to use
a block of pixels instead of single pixel intensities; in this case the subtraction
needs be replaced by a proper metric, e.g. the sum of absolute differences (SAD).

The evaluation of Eq. (21) is computationally expensive compared to all the
aforementioned geodesic criteria. It invokes a rigid transformation, a perspective
transformation, and two image sub-sampling procedures. As the minimum of
photometric errors can only be approached iteratively, such an expensive cost
function will need to be invoked repeatedly for constructing numerically the
Jacobian matrix. To ease the incurred burden, many direct methods adopt an
inverse compositional form of the residual term [8]

o689 = I mc(4T ) | - 1 [me(Tue 8)| 2

where AT = exp(A¢€) and Ty = exp(&x). Along with the inverse form of

Cep1 = AL, o &k (23)
the Jacobian of @ can be written in the chained form
dp oI or oT

(8 6k) = o=

0AE - 0x (24)

X=X; 8g g=gi 85 £=0 &i
which is independent of the current motion hypothesis .

The first term of Eq. (24) is the gradient of base image I at key point x;,
which requires only one-time evaluation at the beginning of the minimisation
procedure; the second and third term can be calculated symbolically, and the
last term is constant, for each tracked key point.
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5 Multi-objective Visual Odometry

In this section we describe a feature-based VO approach that uses multiple
objectives to achieve egomotion estimation.

5.1 Feature Tracking

Given image I of new Frame k, a set of features is detected. Let Fj be the
feature set, and v(x) be the vector representation of a feature x € Fj. The
tracking is performed by finding that feature y’ € Fj_; that minimises the
distance 5(V(X)—V(X’)), where the similarity metric 0 can either be the Hamming
distance if v gives a binary string, or the Lo-norm in any other case.

We also carry out a symmetry check by performing backward feature match-
ing. Any feature Y’ is rejected that is not mapped to the original matcher y.
In addition to this check, ambiguity matches are also removed by checking the
ratio of distances between (x,x’) and (x,x”) where x” € Fi_; is the second
best match of x.

5.2 Construction of a Data Term

The tracked features (, x’) are then used to construct multiple sets of correspon-
dences. Let pg(x) be the image coordinates of a feature observed in Frame k. The
2D-t0-2D correspondences pr_1(x) < pr(x), where px(x) = pr(X’) is set to the
matched feature’s location, are used to build the epipolar constraints, denoted
by Mgpr. Let gir(x) be the recursively filtered 3D coordinates of feature y in
Frame k. The correspondences gi—1(x) < pr(x) are used to build the projection

constraints, denoted by Mzoz.

We also use the intensity-3D-intensity correspondences Ij_1[pp—1(x)] <
Gi-1(x) < Ix[pe(x)] to instantiate a set of photometric constraints, denoted
by Mpuoro. Finally, if the measure gi(x) of a feature’s 3D coordinates in the
new Frame k is available (either from a disparity map, a LiDAR scan, or any
other sources), we construct a set of 3D-t0-3D constraints gx—1(x) < gr(X), and
have it denoted by Mgrigmp. We also make use of constraints gi(x) < pr—1(X)
to build backward reprojection constraints Mgz,

5.3 Outlier Rejection

All the constructed mappings Mgpr, Mfﬁn MR—PE, MgRicp, and MpuaoTo
are collaboratively used in a RANSAC process to remove outliers. First, at the
estimation stage a minimum set of correspondences is randomly drawn from one
of the five mappings. From the samples, an initial motion hypothesis £ is solved
by the closed-form solver associated with the chosen mapping. At the verification
stage, the hypothesis is applied to each class.

By means of the appropriate energy model, introduced in Sect.4, the data
terms are evaluated and the inliers are found as the correspondences achieving



Multi-objective Visual Odometry 71

an error below a pre-defined class-specific threshold. If the population of inliers,
summed over all the classes, achieves a record high, the hypothesis is taken as
the best model. Such a process goes until a stopping criterion is met.

The closed-form solver and associated energy model for each class are sum-
marised in Table 1. Note that the Mgp; class is excluded at the estimation stage,
as the translation of estimated motion & does not have an absolute unit, pro-
hibiting it from being used to evaluate data terms in other classes. The MppoTo
class is also excluded because there is no closed-form solver for the photometric
alignment problem.

Table 1. Summary of data terms (read “Int.-to-int.” as “Intensity-to-intensity”)

Mepr Mess Mg | Mricip | MpHOTO
Alignment Epipolar Perspective proj. | Rigid Photometric
Correspondence 2D-to-2D 3D-to-2D 3D-to-3D | Int.-to-int.
Closed-form solution Five-point [21] | EPnP [18] SVD [23] | N/A
Closed-form data needed | 5 6 4 N/A
Energy function PEPI PRPE PriGID | PPHOTO

5.4 Unified Energy Models

The best-fit model € from the RANSAC process serves as the initial guess at the
non-linear optimisation stage over the integrated energy model

?(¢) = Prpe(§) + Pep1(§) + PrI1GID(E) + PPHOTO(E) (25)

with each sub-objective instantiated from the inliers of the corresponding classes.
Note that the combination does not use per-class weightings as the residuals are
already normalised by the estimated error covariance, as discussed in Sect. 4.
Function @ is minimised using the iterative process described in Sect. 3.2.

6 Experiments

We selected a road scene from the KITTI benchmark suite [24] for evaluating
the unified model. The vehicle had travelled 350 m in 188 frames. The VO imple-
mentation computes depth maps using OpenCV’s SGBM functions and tracks
SUREF features through the image sequence. The images from the right camera
are only used for disparity generation. The depth of a tracked feature is contin-
uously integrated using a recursive Bayesian filter. No additional optimisation
technique (e.g. bundle adjustment, lost feature recovery, or similar) has been
deployed.

To test how each energy model affects the VO process, we tried all the possible
combinations by enabling a subset of data terms among Mgpr, ./\/liﬁ, MRiciD

and Mpyoro, for each test. Note that the forward-projection term MRTE is
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Table 2. Egomotion estimation drifts (%) of different energy model combinations. Let-
ters B, P, R, and E, respectively, indicate the use of backward projection (Mlﬁ)7 photo-
metric (MpuoTo), rigid (Mrigip), and epipolar (Mgpr) alignment models. Maximum

and minimum value in each column are in bold.

Model | Best | Worst | Mean | Std. | Model | Best | Worst | Mean | Std.
xxxx [4.97 |5.54 |5.21 |0.27 Bxxx |5.14 /599 |541 |0.34
xPxx |2.26 [2.76 252 |0.21 |BPxx |1.99 |2.50 |2.23 |0.21
xxRx [4.65 |5.09 |4.88 |0.15 BxRx |5.10 6.00 |5.58 |0.37
xPRx [1.84 /239 |2.18 |0.26 BPRx |1.96 2.56 |2.16 |0.26
xxxE |2.27 |2.31 2.28 ]0.01 BxxE |2.21 |2.29 |2.24 0.03
xPxE |2.24 |2.71 247 |0.17 |BPxE |2.17 |2.48 |2.31 |0.11
xxRE [2.29 |2.38 |2.34 |0.03 BxRE |2.18 |2.31 2.24 10.05
xPRE |2.41 |2.59 |2.50 |0.08 BPRE |2.21 240 [2.33 |0.08

always used as it is required to properly bootstrap the RANSAC process. This
results in sixteen configurations. Due to the randomness introduced into the
outlier-rejection stage, we carried out five trials for each configuration. Table 2
summarises motion drifts from eighty estimated trajectories.

In most cases, using additional energy model(s) significantly reduces the drift
in estimated egomotion. Exceptions are observed in the cases of xxRx, Bxxx, and
BxRx.

When the rigid alignment is solely imposed (xxRx), the drift only slightly
reduces by 0.35%. A result, worse than the forward-projection-only baseline con-
figuration (xxxx), is found in BxRx where it is simultaneously applied with the
back-projection alignment model. A similar result is observed when the back-
ward projection is used (Bxxx). The loss of accuracy can be due to the use of
feature depths obtained in frame ¢t 4+ 1, where the recursive Bayesian filter has
not been applied, as the egomotion from ¢ to t + 1 is not yet estimated (see Fig. 1).

Interestingly the results show that, when the epipolar term is used with the
forward projection model (xxxE), the VO process yields highly robust estimates
with a very low standard deviation (0.01%). Such finding corresponds to the
authors’ previous work [22].

We further compared the baseline model with the best case, worst case, and
the case using all energy models. Accumulated drifts are plotted in Fig. 2. In the
best case the accuracy is improved by 58.3%, while by imposing all four energy
models, this option achieves an improvement by 54.8%.

We also profiled the run-time of each test case. The processing time for each
frame are 230 ms and 200 ms for the best case and the baseline implementation,
respectively. This time measurement indicates that the introduction of additional
energy terms only incurs 13% more computational cost, while an improvement
of above 50% in terms of accuracy is attainable.
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Accumulated Drift (%)

Fig. 2. Drift analysis of the best (BPRx), worst (BxRx), all-enabled (BPRE), and the
baseline model (xxxx)

7 Conclusions

We reviewed four energy models, pervasively used in the context of VO, and
formulated a unified model. Based on the model, our implementation deploys
a multi-class RANSAC strategy to remove outliers with a proven enhanced
robustness. Real-world experimental results show that, by taking into account
multiple objectives, egomotion estimation is significantly improved over the tra-
ditional forward-projection model, at an affordable minor increase in computa-
tional costs.

In future work we test the proposed multi-modal VO technique in a wider
range of road scenes. It is also interesting to study the interference between
alignment models for the phenomena that the all-enabled combination does not
achieve the best performance in the tested sequence.

References

1. Scaramuzza, D., Fraundorfer, F.: Visual odometry: part I - the first 30 years and
fundamentals. IEEE Robot. Autom. Mag. 18, 80-92 (2011)

2. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars
exploration rovers. J. Field Robot. 24(3), 169-186 (2007)

3. Irani, M., Anandan, P.: All about direct methods. In: Proceedings of ICCV Work-
shop Vision Algorithms: Theory Practice, pp. 267-277 (1999)

4. Baker, S., Mathews, 1.: Equivalence and efficiency of image alignment algorithms.
In: Proceedings of International Conference on Computer Vision Pattern Recogni-
tion, vol. 1, pp. 1090-1097 (2001)

5. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
Proceedings of International Symposium on Mixed Augmented Reality, pp. 1-10
(2007)

6. Davison, A., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera
SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1052-1067 (2007)

7. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping in
real-time. In: Proceedings of IEEE International Conference on Computer Vision,
pp- 2320-2327 (2011)



74

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

H.-J. Chien et al.

Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual
odometry. In: Proceedings of IEEE International Conference on Robotics Automa-
tion, pp. 1522 (2014)

Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular
camera. In: Proceedings of IEEE International Conference on Computer Vision,
pp. 1449-1456 (2013)

Engel, J., Schops, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834-849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2_54

Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. (99) (2017)

Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars
exploration rovers. J. Field Robot. Special Issue Space Robot. Part I 24, 169-186
(2007)

Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image
sequences with RANSAC-based outlier rejection scheme. In: Proceedings of IEEE
Intelligent Vehicles Symposium, pp. 486-492 (2010)

Badino, H., Yamamoto, A., Kanade, T.: Visual odometry by multi-frame feature
integration. In: Proceedings of International ICCV Workshop Computer Vision
Autonomous Driving (2013)

Chien, H.-J., Geng, H., Chen, C.-Y., Klette, R.: Multi-frame feature integration
for multi-camera visual odometry. In: Braunl, T., McCane, B., Rivera, M., Yu, X.
(eds.) PSIVT 2015. LNCS, vol. 9431, pp. 27-37. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29451-3_3

Mur-Artal, R., Tardos, J.: ORB-SLAM2: an open-source SLAM system for monoc-
ular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475 (2016)

Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of Inter-
national Conference on Computer Vision Pattern Recognition, pp. 652-659 (2004)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the
PnP problem. Int. J. Comput. Vis. 81, 155-166 (2009)

Levenberg, K.A.: Method for the solution of certain non-linear problems in least
squares. Q. Appl. Math. 2, 164-168 (1944)

Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004)

Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans.
Pattern Anal. Mach. Intell. 26(6), 756-777 (2004)

Chien, H.-J., Klette, R.: Regularised energy model for robust monocular egomotion
estimation. In: Proceedings of International Joint Conference on Computer Vision
Imaging Computer Graphics: Theory Applications, vol. 6, pp. 361-368 (2017)
Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J.
Opt. Soc. Am. A 4, 629-642 (1987)

Geiger, A., Lenz, P.; Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Robot. Res. 32(11), 1231-1237 (2013)


https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-29451-3_3
https://doi.org/10.1007/978-3-319-29451-3_3
http://arxiv.org/abs/1610.06475

	Multi-objective Visual Odometry
	1 Introduction
	2 Literature Review
	3 Visual Odometry
	3.1 Theory
	3.2 Energy Minimisation Problem

	4 Energy Models in Visual Odometry
	4.1 Epipolar Alignment
	4.2 Perspective Alignment
	4.3 Rigid Alignment
	4.4 Photometric Alignment

	5 Multi-objective Visual Odometry
	5.1 Feature Tracking
	5.2 Construction of a Data Term
	5.3 Outlier Rejection
	5.4 Unified Energy Models

	6 Experiments
	7 Conclusions
	References




