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Abstract. This paper presents a multi-label annotation method that
uses a semantic embedding strategy based on kernel matrix factorization.
The proposed method called Semi-supervised Online Kernel Semantic
Embedding (SS-OKSE) learns to predict the labels of a document by
building a semantic representation of the document features that takes
into account the labels, when available. A remarkable characteristic of the
algorithm is that it is based on a kernel formulation that allows to model
non-linear relationships. The SS-OKSE method was evaluated under a
semi-supervised learning setup for a multi-label annotation task, over
two text document datasets and was compared against several supervised
and semi-supervised methods. Experimental results show that SS-OKSE
exhibits a significant improvement, showing that a better modeling can
be achieved with an adequate selection/construction of a kernel input
representation.
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1 Introduction

The automatic multi-label annotation problem presents several applications in
areas as diverse as text and music categorization and classification, semantic
labeling of images and videos, medical diagnosis, and functional genomics, among
others [11]. Several methods transform the problem of multi-label learning to a
conventional classification problem (i.e., a set of binary classification problems
solved independently). Unfortunately this kind of approaches present two prin-
cipal drawbacks, first, usually they do not scale well when the number of labels
and/or instances increase, and second, these approaches do not have into account
the possible strong correlations between the labels. Another important issue is
that these approaches require a significant amount of labeled data to achieve a
reasonable generalization performance. In multi-label learning, this issue is more
evident than in single-class classification since manually assigning multiple labels
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is more time-demanding than assigning unique global labels. A possible strategy
to deal with a large number of labels and the lack of annotated instances is
to find a compact representation of them by using, for instance, a dimension-
ality reduction method. This approach is followed by multi-label latent space
embedding methods, which have recently shown competitive results. There are
several strategies to construct the latent semantic space, and most of them pro-
posed supervised and semi-supervised extensions. The important thing about
this kind of methods, is that this compact semantic representation also can be
modeled by the discriminative structure of not only labeled but also unlabeled
data. In this paper, we present a method for multi-label annotation based on
semantic embedding that finds a common semantic space based on the kernel
feature representation of an instance and its corresponding labels that model
a mapping between the feature representation and the annotation labels. The
proposed method has three important characteristics: (1) the method is formu-
lated as a semi-supervised learning algorithm that learns to construct a common
semantic representation not only from labeled instances but also from unlabeled
ones, (2) despite being based on kernels, the method scales well to deal with large
datasets thanks to a budget restriction which allows tackling one of the main
problems of kernel-based methods, that is the scalability in terms of number
of training instances, and (3) the method is formulated as an on-line learning
algorithm, based on stochastic gradient descent, which allows it to deal with
large collections of data, achieving a significant reduction in memory require-
ments and computational load. Additionally, the latter characteristic allows the
efficient implementation of the method in dataflow GPU frameworks such as
Theano and TensorFlow, which are used for efficient training and simulation of
deep neural networks.

The rest of this paper is organized as follows: Sect. 2 discusses the related
work; Sect. 3 formally introduce the details of the proposed multi-label annota-
tion method; Sect. 4 presents the experimental evaluation; and, finally, Sect. 5
presents some concluding remarks.

2 Multi-label Annotation Based on Semantic Embedding
Methods

The existing methods for multi-label classification problems can be grouped into
two main categories [11]: (1) problem transformation methods, which transform
the multi-label classification problem into several single-label classification or
regression problems and (2) algorithm adaptation methods, which extend spe-
cific learning algorithm in order to handle multi-label data directly. In the group
of algorithm adaptation methods, we can find several adaptations to classical
discriminative methods. For instance, Andrews et al. [1] proposed two exten-
sions for Support Vector Machine (SVM) for multi-instance learning methods
the miSVM and MISVM. miSVM treats instance labels as unobserved variables
and maximizes the margin on instances. MISVM, in contrast, define a new con-
cept of bag margin maximization that maximizes the difference between indi-
vidual patterns. Unfortunately, these methods present two main problems: first,
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Fig. 1. Conceptual model and the actual implementation of SS-OKSE.

Kernel-based methods usually do not scale well due to the high computational
complexity caused by the kernel matrix that grows quadratically with the num-
ber of training instances, and second, these methods cannot be extended for a
semi-supervised learning and require ground-truth labels for all training docu-
ments. Topic models can overcome the second problem by modeling a compact
semantic representation that can be modeled only by the discriminative structure
of the data. Classical semantic embedding models are usually unsupervised, but
several extensions to add supervision have been proposed, for instance, several
matrix factorization based methods have been extended to improve the semantic
representation by taking advantage of label information [2,7]. Under the same
approach, several probabilistic topic models have been extended. For instance,
many works have extended the classical Latent Dirichlet Allocation (LDA) [4] to
add supervised and semi-supervised information, such as Semi-supervised LDA
[8], Maximum Entropy Discrimination Latent Dirichlet Allocation (MedLDA)
[12], Partially Labeled LDA (PLLDA) and more recently the Semi-supervised
Multi-label Topic Model (MLTM) [9]. Probabilistic topic models like LDA have
the advantage of incorporating prior knowledge to guide the topic modeling pro-
cess to improve both the quality of the resulting topics and of the topic labeling,
but unfortunately are very computational demanding, making them prohibited
for large scale problems.

In this paper we propose the Semi-supervised Online Kernel Semantic
Embedding (SS-OKSE) method that is formulated for large scale problems by
tackling two main issues: first, the method presents a budget restriction that
reduces the computational complexity caused by the kernel matrix, and second,
the proposed method is formulated as an on-line learning algorithm which allows
it to deal with large collections of data.
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3 Semi-supervised Online Kernel Matrix Factorization
for Multi-label Annotation

In this paper we propose a multi-label latent space embedding method that
constructs an intermediate semantic space modeled by the input representa-
tion projected in a feature space generated by a kernel function, this strat-
egy can be seen as a matrix factorization problem in the kernel feature space
(Φ (X) � FΦH), where X ∈ R

n×l describes the entire collection composed by l
elements represented by n−dimensional vectors, FΦ ∈ R

n×r is the basis matrix
and H ∈ R

r×l is the encoding matrix that represents all the input instances in a
low r−dimensional space. Unfortunately, the calculation of this factorization is
infeasible due to FΦ depends explicitly on the mapping function φ(·) (a mapping
to a very highly dimensional space or even to an infinite-dimensional space).
Therefore, instead of calculating directly FΦ, we impose the restriction that the
column vectors of FΦ lie within the space of Φ (X), this is, FΦ is composed of
linear combinations of the X points in the feature space (FΦ =Φ (X) W̃x).

Φ (X) � Φ (X) W̃xH, Φ (X) � Φ (B) W̃xH (1)

This restriction avoid the necessity of evaluating the data in the feature
space, additionally, only a reduced number b � l of representative instances
are used to construct the basis matrix (we construct a budget kernel matrix
B ∈ R

b×l instead of the full kernel matrix X ∈ R
l×l) This mitigates the high

computational cost of constructing the huge kernel matrix. In this paper, we
propose not to construct an explicit representation in the semantic space but
learn a mapping from the feature representation to this semantic space, and
again, using only the b representative points to model the restricted kernel feature
space (H = Wxφ (B)T

φ (X) = WxK (B,X)). In this manner, the model learns
two transformations what allows to project the original data representation to
the lower-dimensional semantic space and at the same time to reconstruct from
this semantic representation the original data in the feature space.

Φ (X) ≈ Φ (B) W̃xWxK (B,X) (2)

Additionally to the original feature representation, we want the semantic
representation to also lie the label representation Y ∈ R

m×k, where m is the
total number of possible labels and k a reduced number of annotated instances
(i.e., k � l), as follows:

Y ≈ σ
(
W̃yH

)
= σ

(
W̃yWxK (B,X)

)
(3)

where Wy ∈ R
m×r is another transformation matrix that projects from the

semantic representation to the label space, and finally, an additional non-linear
function σ is used to add more flexibility to the model. Putting all these restric-
tion together, the final model can be represented as is shown in Fig. 1a.
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Loss function. The final loss function to be minimized forces the feature recon-
struction by defining a squared minimum error and learns the binary label recon-
struction by imposing a binary cross entropy function:

min
Wx,W̃x,Wy

Ji

(
Wx, W̃x,Wy

)
=

α

2

∥∥∥Φ (xi) − Φ (B) W̃xWxK (B, xi)
∥∥∥
2

F

+β

k∑
i=0

log
(
1 + exp

(
−y · W̃yWxK (B, xi)

))

+
λ1

2
‖Wx‖2F +

λ2

2

∥∥∥W̃x

∥∥∥
2

F
+

λ3

2

∥∥∥W̃y

∥∥∥
2

F
(4)

where α and β control the relative importance of reconstructing the feature and
label representation, respectively, and λ1,2,3 control the relative importance of
the regularization terms, which penalize large values for the Frobenius norm
of the transformation matrices. Unfortunately, solve this problem directly is
infeasible due to the function φ(·) performs a mapping to a highly-dimensional
space or even to an infinite-dimensional space, but, the first term of the loss
function can be rewritten in terms of kernel matrices and employ the kernel
trick [6].

α

2

∥
∥
∥Φ (xi) − Φ (B) W̃xWxK (B, xi)

∥
∥
∥

2

F
=

α

2

(

K (xi, xi) − 2K (xi, B) W̃xWxK (B, xi) +

K (B, xi)
T WT

x W̃T
x K (B, B) W̃xWxK (B, xi)

)

Finally, we can make a change of variables a redefine the first term of the
loss function (α

2

(
1 − 2zT

i z̃i + z̃T
i K(B,B)z̃i

)
) and the structure (Fig. 1b), so that

can be easily implemented in some deep learning framework.

Prediction. Once the parameters have been learned (coding and decoding
matrices), we can use the model to predict the label representation ỹ from the
feature representation x of a new unlabeled document by forward propagating
it through the network.

Implementation details. The proposed method was implemented in the Keras
[5] Framework, a high-level neural networks API written in Python and capable
of running on top of either TensorFlow or Theano [10] libraries. The optimization
is performed by stochastic gradient descent (SGD) with the RMSProp optimizer.

4 Experiments and Results

In this section, the proposed SS-OKSE algorithm will be evaluated in a multi-
label annotation task under a semi-supervised setup. In order to compare our
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algorithm, we use the same experimental setup proposed by Soleimani and Miller
[9], where the performance of our method is compared against several supervised
(PLLDA, miSVM and MISVM) and semi-supervised (ssLDA, and MLTM) meth-
ods in two different datasets of text documents:

Delicious. This dataset is composed of tagged web pages from the social book-
marking site delicious.com [13]. We adopt the subset proposed in [9] where
the top 20 common tags are used as a class labels, constructing a subset por-
tioned in 8350 documents for training and 4000 documents for testing. The
documents are represented in a bag-of-word representation composed by a
codebook of 8500 unique words obtained after applying Porter stemming and
stopword removal.

Ohsumed. This collection contains medical abstracts from the MeSH categories
of the year 1991 [13]. The specific task in this dataset is to categorizing 23
cardiovascular diseases categories. It is composed by 11122 training and 5388
test documents. Almost half of the documents have more than one label.

Experimental setup. For a fair comparison for all methods, where in some
of them a suitable selection of the threshold is not trivial, the ROC AUC (Area
Under the Curve) is used as the evaluation metric. Micro-ROC and Macro-ROC
AUC are reported separately. In Micro-ROC, TPR and FPR are computed glob-
ally. In Macro-ROC, the ROC AUC is computed for each class across all docu-
ments and then the average is taken over all classes. While Micro-ROC may be
dominated the bigger classes, Macro-ROC gives equal weight to all classes and
better reveals performance on rare classes. For each dataset, a (1 − p) fraction
is randomly selected from the training documents and their labels are removed.
Then, for semi-supervised models, both labeled and unlabeled documents are
used for training. But, for the purely supervised methods, only the remain-
ing labeled documents are used for training. The annotation experiment is per-
formed for different label proportions p ∈ 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 0.9 (five
experiments are executed and the average is reported).

Determining the hyperparameters. Our model has 7 hyperparameters (α,
β, λ1, λ2, λ3, b, r). To properly determine the values of these hyperparame-
ters, we randomly extract 20% of instances from the training set to validate
the performance under a random (uniform) exploration in 30 different hyper-
parameter configurations trained with the remained 80% of training instances.
The best configuration was chosen to be evaluated with the test partition. (this
strategy have shown similar results than grid search while requires much fewer
computation resources [3]).

Multi-label annotation performance. Figure 2a presents the performance
in ROC AUC in the Delicious dataset for different proportions of labeled doc-
uments. As we can see, the proposed SS-OKSE using a linear kernel presents
competitive results against the other semi-supervised algorithms, and using a

http://delicious.com/
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histogram intersection (hi) kernel presents the best performance showing that
a suitable kernel can help to model a good semantic space where non-labeled
instances can be exploited. This becomes evident by achieving a performance
very close to the maximum possible just with only 10% of labeled instances.
Another important result is that this performance is obtained only with a bud-
get composed by 500 instances randomly selected, this is only about the 6% of
the training instances. Figure 2b presents the same previous experiment for the
Delicious dataset. In Micro-ROC our method presents competitive results but
the results in Macro-ROC suggest that the classes with the highest number of
instances are dominating the learning. Still, it is important to emphasize that
this result is obtained by using a budget of 2500 instances randomly selected
(22% of the training instances) (Table 1).

Time-consuming and complexity. The main advantage of the SS-OKSE
method is its highly scalable formulation. Table 2 shows the comparison between
the proposed method and the state-of-the-art topic model method (we use the
implementation supplied by the authors [9]). In both datasets SS-OKSE obtains
remarkable speedups in comparison with MLTM under the same conditions
(same computer with CPU device on a single core), but also thanks to its imple-
mentation, SS-OKSE is capable of running transparently in GPU devices achiev-
ing even more dramatic speedups, showing the ability of the proposed method
to work on large scale datasets.

Fig. 2. Performance comparison in multi-label annotation.
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Table 1. N: number of unique words, m: number of classes, l: number of instances,
cardinality: average number of labels per instance.

Training set Test set

Name n m l Cardinality l Cardinality

Delicious 8520 20 8251 2.89 3983 2.91

Ohsumed 13117 23 11122 1.65 5388 1.64

Table 2. Training time comparison (in minutes). For CPU device, only one core is
using. Experiment running in a Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz with
16 cores, 64 GB RAM and an Nvidia Titan X.

Delicious Ohsumed

MLTM SS-OKSE MLTM SS-OKSE

CPU CPU Speedup GPU Speedup CPU CPU Speedup GPU Speedup

961.3 43.5 22.1 5.1 186.9 1026 160.3 8.3 24.7 41.5

5 Conclusions

We have presented the SS-OKSE, a novel semi-supervised kernel semantic
embedding method that uses a budget restriction to tackle the memory issue
and computation time associated to kernel methods. The main advantage of
using a budget in our method is that it allows us to save memory, since it is not
necessary to store the complete kernel matrix, but a significantly smaller matrix
defined by a budget keeping low computational requirements in large-scale prob-
lems. SS-OKSE is able to take advantage of annotated data to model a semantic
low-dimensional space that preserves the separability of the original classes, and
additionally, has the ability to exploit unlabeled instances for modeling the man-
ifold structure of the data and use it to improve its performance in multi-label
annotation tasks. The results confirm that the ability of the proposed method
for modeling non-linearities can over-improve the performance in the multi-label
annotation task.
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