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1 Computational Intelligence Research Group,
Sapientia - Hungarian Science University of Transylvania, T̂ırgu Mureş, Romania
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Abstract. Most c-means clustering models have serious difficulties
when facing clusters of different sizes and severely outlier data. The pos-
sibilistic c-means (PCM) algorithm can handle both problems to some
extent. However, its recommended initialization using a terminal parti-
tion produced by the probabilistic fuzzy c-means does not work when
severe outliers are present. This paper proposes a possibilistic c-means
clustering model that uses only two parameters independently of the
number of clusters, which is able to correctly handle the above men-
tioned obstacles. Numerical evaluation involving synthetic and standard
test data sets prove the advantages of the proposed clustering model.
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1 Introduction

The introduction of the fuzzy logic into c-means clustering opened new horizons
toward fine data partitioning, but also rose several obstacles that proved difficult
to handle simultaneously. The early probabilistic clustering models introduced
by Dunn [6] and generalized by Bezdek [4] are strongly influenced by outlier data
and uneven sized clusters. A solution to the problem of outliers was given by Dave
[5], who relaxed the probabilistic constraint by introducing an extra cluster that
attracted noisy data, but this method still creates clusters of equal diameter. The
possibilistic c-means clustering algorithm [8] addresses the uneven sized clusters
as well, but frequently creates coincident clusters [3]. Several solutions have
been proposed to enable the probabilistic clustering models to correctly handle
clusters of different weight and/or diameter (e.g. [10,11]), but these are still
sensitive to outlier data due to their probabilistic constraints. Leski [9] recently
proposed the so-called fuzzy c-ordered means algorithm, which achieved high
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robustness, but dropped the classical alternative optimization scheme of the
fuzzy c-means algorithm.

In this paper we propose a possibilistic fuzzy c-means clustering approach,
which employs an extra noise cluster whose prototype is situated at constant
distance from every input vector, and an adaptation mechanism that enables
the algorithm to handle different cluster diameters.

2 Background

The fuzzy c-means algorithm. The conventional fuzzy c-means (FCM) algo-
rithm partitions a set of object data X = {x1,x2, . . . ,xn} into a number of c
clusters based on the minimization of a quadratic objective function, defined as:

JFCM =
c∑

i=1

n∑

k=1

um
ik||xk − vi||2A =

c∑

i=1

n∑

k=1

um
ikd2ik, (1)

where vi represents the prototype or centroid of cluster i (i = 1 . . . c), uik ∈ [0, 1]
is the fuzzy membership function showing the degree to which vector xk belongs
to cluster i,m > 1 is the fuzzyfication parameter, and dik represents the distance
(any inner product norm defined by a symmetrical positive definite matrix A)
between xk and vi. FCM uses a probabilistic partition, meaning that the fuzzy
memberships assigned to any input vector xk with respect to clusters satisfy the
probability constraint

∑c
i=1 uik = 1. The minimization of the objective function

JFCM is achieved by alternately applying the optimization of JFCM over {uik}
with vi fixed, i = 1 . . . c, and the optimization of JFCM over {vi} with uik fixed,
i = 1 . . . c, k = 1 . . . n [4]. Obtaining the optimization formulas involves zero
gradient conditions of JFCM and Langrange multipliers. Iterative optimization
is applied until cluster prototypes vi (i = 1 . . . c) converge.

Relaxing the probabilistic constraint. The relaxation of the probabilis-
tic constraint was a necessity provoked by the outlier sensitivity of the FCM
algorithm. Here we need to mention two different ways the constraint was elimi-
nated. Krishnapuram and Keller [8] introduced the possibilistic c-means (PCM)
algorithm, which optimizes

JPCM =
c∑

i=1

n∑

k=1

[
tpikd2ik + (1 − tik)pηi

]
, (2)

constrained by 0 ≤ tik ≤ 1 ∀i = 1 . . . c,∀k = 1 . . . n, and 0 <
∑c

i=1 tik < c ∀k =
1 . . . n, where p > 1 represents the possibilistic exponent, and parameters ηi are
the penalty terms that control the diameter of the clusters. The iterative opti-
mization algorithm of PCM objective function is derived from the zero gradient
conditions of JPCM. In the probabilistic fuzzy partition, the degrees of member-
ship assigned to an input vector xk with respect to cluster i depends on the
distances of the given vector to all cluster prototypes: d1k, d2k, . . . , dck. On the
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other hand, in the possibilistic partition, the typicality value uik assigned to
input vector xk with respect to any cluster i depends on only one distance: dik.
PCM efficiently suppresses the effects of outlier data, at the price of frequently
producing coincident cluster prototypes. The latter is the result of the highly
independent cluster prototypes [3].

On the other hand, Dave [5] introduced a noise cluster into the FCM algo-
rithm, which by definition is situated at a constant distance d0 from any input
vector xk (k = 1 . . . n). Thus, the objective function becomes

JDave =
c∑

i=0

n∑

k=1

um
ikd2ik = JFCM +

n∑

k=1

um
0kd20, (3)

where the noise cluster is the one with index 0. The probabilistic constraint
becomes

∑c
i=0 uik = 1 ∀k = 1 . . . n, thus the degrees of membership of any

input vector with respect to the real clusters does not sum up to 1 anymore.
Outliers will be attributed with high degrees of membership towards the noise
class, making the algorithm insensitive to outlier data, without producing coin-
cident clusters. However, this approach cannot handle clusters of different size
or diameter.

Several fuzzy-possibilistic mixture partition models have been proposed to
deal with the coincident clusters of PCM (e.g. [12,13]). The most recent addi-
tive mixture model proposed by Pal et al. [13] called possibilistic-fuzzy c-means
(PFCM) clustering minimizes

JPFCM =
c∑

i=1

n∑

k=1

[aum
ik + btpik]d2ik +

c∑

i=1

ηi

n∑

k=1

(1 − tik)p, (4)

constrained by the conventional probabilistic and possibilistic conditions of FCM
and PCM, respectively. Here a and b are two tradeoff parameters that control
the strength of the possibilistic and probabilistic term in the mixed partition.
All other parameters are the same as in FCM and PCM. This clustering model
was found accurate and robust, but still sensitive to outlier data [14].

Fuzzy c-means with various cluster diameters. Komazaki and Miyamoto
[7] presents a collection of solutions how the FCM algorithm can adapt to differ-
ent cluster sizes and diameters. From the point of view of this paper, it is relevant
to mention the FCMA algorithm by Miyamoto and Kurosawa [11], which mini-
mizes

JFCMA =
c∑

i=1

n∑

k=1

α1−m
i um

ikd2ik, (5)

subject to the probabilistic constraint of the fuzzy memberships uik (i =
1 . . . c, k = 1 . . . n), and of the extra terms αi (i = 1 . . . c):

∑c
i=1 αi = 1. The

optimization algorithm of JFCMA can be derived from zero gradient conditions
using Lagrange multipliers. Each iteration updates the probabilistic member-
ships uik (i = 1 . . . c, k = 1 . . . n), the cluster prototypes vi (i = 1 . . . c), and the
cluster diameter terms αi (i = 1 . . . c) as well. The algorithm stops when cluster
prototypes stabilize.
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3 Methods

In the following, we propose a fuzzy c-means clustering model with relaxed
probabilistic constraint, which employs an extra noise cluster whose prototype
is situated at constant distance from every input vector, and an adaptation
mechanism to different cluster diameters. The proposed objective function is:

J =
c∑

i=0

n∑

k=1

α1−m
i um

ikd2ik, (6)

where dik = ||xk − vi|| (∀i = 1 . . . c,∀k = 1 . . . n), m > 1 is the fuzzy expo-
nent, and d0k = d0 ∀k = 1 . . . n with d0 predefined constant. Variables αi

(i = 1 . . . c) satisfy the probabilistic constraint
∑c

i=0 αi = 1, while fuzzy mem-
berships are also constrained to the probabilistic rule, similarly to the FCM
algorithm:

∑c
i=0 uik = 1 for any k = 1 . . . n. The minimization formulas of the

objective function given in Eq. (6) are obtained using zero gradient conditions
and Lagrange multipliers. Let us consider the functional

L = J +
n∑

k=1

λk

(
1 −

c∑

i=0

uik

)
+ λα

(
1 −

c∑

i=0

αi

)
, (7)

where λ1 . . . λn and λα are the Lagrange multipliers. The zero gradient conditions
with respect to the fuzzy memberships uik (∀i = 0 . . . c,∀k = 1 . . . n) imply

∂L
∂uik

= 0 ⇒ α1−m
i mum−1

ik d2ik = λk, (8)

and so

uik =
(

λk

m

)1/(m−1)

αid
−2/(m−1)
ik . (9)

According to the probabilistic constraint of fuzzy memberships, we have:

c∑

j=0

ujk = 1 ⇒ 1 =
(

λk

m

)1/(m−1) c∑

j=0

αjd
−2/(m−1)
jk . (10)

Equations (9) and (10) allows us to eliminate the Lagrange multiplier λk from
the formula of uik:

uik =
uik

1
=

(
λk

m

)1/(m−1)
αid

−2/(m−1)
ik

(
λk

m

)1/(m−1) c∑
j=0

αjd
−2/(m−1)
jk

=
αid

−2/(m−1)
ik

c∑
j=0

αjd
−2/(m−1)
jk

. (11)

The optimization formula for αi (i = 0 . . . c) is obtained similarly. We start
from the zero crossing of the partial derivative

∂L
∂αi

= 0 ⇒
n∑

k=1

[
α−m

i (1 − m)um
ikd2ik

]
= λα, (12)
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Algorithm 1. The proposed algorithm
Data: Input data X = {x1,x2, . . . ,xn}
Data: Number of clusters c, fuzzy exponent m, distance d0, threshold ε
Result: Possibilistic partition uik (∀i = 0 . . . c, ∀k = 1 . . . n)

Initialize v
(new)
i (i = 1 . . . c) as random input vectors that have several input

vectors in their close neighborhood, to avoid outliers
αi ← 1/(c + 1), ∀i = 0 . . . c
repeat

v
(old)
i ← v

(new)
i , ∀i = 1 . . . c

Update partition uik, (i = 0 . . . c, k = 1 . . . n), according to Eq. (11)

Obtain new cluster prototypes v
(new)
i , (i = 1 . . . c), according to Eq. (17)

Update αi values for any i = 0 . . . c, according to Eq. (16)

until
c∑

i=1

||v(new)
i − v

(old)
i || < ε;

which implies

(1 − m)α−m
i

n∑

k=1

um
ikd2ik = λα ⇒ αm

i =
(

1 − m

λα

) [
n∑

k=1

um
ikd2ik

]
, (13)

and so we get

αi =
(

1 − m

λα

)1/m
[

n∑

k=1

um
ikd2ik

]1/m

. (14)

On the other hand, the probabilistic constraint
∑c

j=0 αj = 1 implies:

c∑

j=0

αj = 1 ⇒ 1 =
(

1 − m

λα

)1/m c∑

j=0

[
n∑

k=1

um
jkd2jk

]1/m

. (15)

Equations (14) and (15) allows us to eliminate the Lagrange multiplier λα

from the formula of αi:

αi =
αi

1
=

(
1−m
λα

)1/m
[

n∑
k=1

um
ikd2ik

]1/m

(
1−m
λα

)1/m c∑
j=0

[
n∑

k=1

um
jkd2jk

]1/m
=

[
n∑

k=1

um
ikd2ik

]1/m

c∑
j=0

[
n∑

k=1

um
jkd2jk

]1/m
. (16)

The update formula of cluster prototypes vi is obtained as:

∂L
∂vi

= 0 ⇒
n∑

k=1

(−2)α1−m
i um

ik(xk − vi) = 0

⇒
n∑

k=1

um
ikxk = vi

n∑
k=1

um
ik

⇒ vi =

n∑

k=1
um

ikxk

n∑

k=1
um

ik

.

(17)
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If a defuzzyfied partition is desired, any input vector xk can be assigned to
cluster number arg max

i
{uik, i = 0 . . . c}. Vectors belonging to cluster number 0

are detected outliers. The proposed algorithm is summarized in Algorithm1.

4 Results and Discussion

The proposed method was evaluated on three different data sets, and its behavior
compared to FCM [4] and PFCM [13]. The first data set consisted of two groups
of randomly generated two-dimensional input vectors, situated inside the circle
with center at (0, 1) and radius 1.2, and the circle with center at (0,−1) and
radius 0.6, respectively. Each group contained 100 vectors. The input vectors
are exhibited in Fig. 1, together with the partitions created by the proposed
algorithms and its counter candidates. Adding an extra input vector situated at
(δ, 0) and treating δ as a parameter allowed us to evaluate the sensitivity of the
clustering to outliers. FCM and PFCM were able to provide two valid clusters
up δ = 132 and δ = 158, respectively. The proposed method was not influenced
by high values of δ, it assigned the extra vector to the third (outlier) class.

The second data set employed by the numerical evaluation of the algorithms
was the IRIS data set [1], which consist of 150 labeled feature vectors of four
dimensions, organized in three groups that contain fifty vectors each. It is a
reported fact, that conventional clustering models like FCM produce 133–134
correct decisions when classifying IRIS data. PFCM produced the best reported
accuracy with 140 correct decisions using a = b = 1,m = p = 3, and initializing
vi with terminal FCM prototypes [13]. Under less advantageous circumstances,
PFCM reportedly produced 136–137 correct decisions. Initially we normalized
the IRIS data set, and included an outlier situated at (δ, δ, δ, δ), where δ was
a variable parameter. We tested the clustering models for various values of the
algorithm parameters and outlier positions δ. Figure 2 shows the outcome of
tests. FCM produces three valid clusters in case of δ < 9, PFCM can correctly
handle the outlier for values of δ up to 12, while the proposed method can deal
with the outlier situated at any distance.

The third numerical test employed the WINE data set [2], which consist
of 178 labeled feature vectors of 13 dimensions, organized in three groups of
uneven cardinality. The WINE data set was initially normalized, and an outlier
was included at the position (δ, δ, . . . , δ), where δ represents a variable parameter.
We tested the clustering models for various values of the algorithm parameters
and outlier positions δ. Figure 3 exhibits the test results. FCM and PFCM can
produce three valid clusters in case of δ < 6, and δ < 7, respectively, while the
proposed method has no difficulty with handling correctly an outlier situated at
any distance.

Based on all numerical tests, we can assert that the proposed clustering
model is able to perform better than its counter candidates, as: (1) it creates valid
clusters according to cluster validity indexes proposed for the characterisation of
such partitions; (2) it produces more correct decisions than previous algorithms;
(3) it can correctly handle severe outlier vectors; (4) it is able to adapt the
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diameter of clusters to the input data to some considerable extent; (5) it does
not produce coincident clusters; (6) it uses a reduced number of parameters (2
instead of the c + 1 parameters of PCM). Results reported in Figs. 1, 2 and 3
were obtained using the following parameter settings: m = 2 for FCM and the
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Fig. 1. The case of two groups of same cardinality but different diameter

Fig. 2. Evaluation using the IRIS data set: (left) correct decisions out of 150 vs. δ,
(middle) CVI vs. δ, (right) final αi values of the proposed algorithm vs. δ

Fig. 3. Evaluation using the WINE data set: (left) correct decisions out of 150 vs. δ,
(middle) CVI vs. δ, (right) final αi values of the proposed algorithm vs. δ
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proposed method, m = p = 2 and a = b = 1. Possibilistic penalty terms ηi

were not established based on a terminal FCM partition, as recommended by
their authors, because in many cases the terminal FCM partition was severely
damaged by the presence of the outlier. Parameters ηi and d0 were used as
constants whose values were set empirically to favor correct and fine partitions.

5 Conclusions

This paper proposed a possibilistic c-means clustering model with a reduced
number of parameters (two instead of c + 1) that can robustly handle distant
outlier data. The advantageous properties of the algorithms were numerically
validated using synthetic and standard test data sets. A formula for an optimal
d0 distance may further enhance the robustness of the algorithm.
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