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Niterói, Rio de Janeiro, Brazil

Abstract. The global expansion of biometric systems promotes the
emergence of new and more robust biometric modalities. In that context,
electroencephalogram (EEG) based biometric interest has been growing
in recent years. In this study, a novel approach for EEG representation,
based on deep learning, is proposed. The method was evaluated on a
database containing 109 subjects, and all 64 EEG channels were used as
input to a Deep Convolution Neural Network. Data augmentation tech-
niques are explored to train the deep network and results showed that
the method is a promising path to represent brain signals, overcoming
baseline methods published in the literature.

1 Introduction

Humankind has urged for safety in all spheres of our society, thus, as technology
evolves in this direction, also evolves efforts to overcome security systems. In
this context, current biometric systems are in constant development, and new
forms of capture discriminant and robust traits among people are desirable.
The present work deals with the use of electroencephalogram (EEG) signals for
biometry task, since the EEG is difficult to fake or steal.

The seminal work presented in [8] showed the feasibility of using the EEG to
biometric task, and since that, many approaches using EEG have been proposed
such as in [2] where authors performed biometric verification on Physionet EEG
database. Authors concluded that the best frequency band for EEG biometric is
the gamma band (30–50 Hz), where they reported 4.4% of equal error rate (EER).
Their approach is based on phase synchronization, in which the Eigenvector
Centrality obtained from every node (subject) is the feature vector. Signals on
resting condition are considered for the analyses in two scenarios: eyes open and
eyes closed.

In [12], four different task conditions, related to signal motor movement and
imagery tasks are investigated. A novel wavelet-based feature was used to extract
EEG feature. Experiments were conducted in Physionet EEG data and a mixture
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of data, from different sessions, is used for training. Only nine electrodes are
considered and the lowest EER achieved is 4.5%.

Several machine learning and pattern recognition techniques were investi-
gated aiming to identify a person by means of EEG signals, however, to the best
of our knowledge, deep learning based methods as Convolutional Neural Net-
works (CNN) [7] have not been evaluated yet. Deep learning has been used to
represent patterns in several computer vision and patterns recognition problems,
and outstanding results have been reported [1,5].

In this work, a novel approach for EEG representation based on deep learning
is proposed. The approach is also evaluated on the Physionet database, and
data augmentation techniques are explored to train a deep convolutional neural
network. Results show that the use of CNN in EEG biometrics is a promising
path, outperforming baseline methods by lowering the EER from 4.4% to 0.19%
in the best scenario.

The remainder of this paper is organized as follows. Section 2 contains the
approach with the methodology and a description of the database used. In
Sect. 3, we show the experimental results and a discussion about it. Finally,
in Sect. 4, the conclusions are presented.

2 Approach

In this section, the Physionet EEG database is described as the proposed method,
based on the convolutional network, along with the required pre-preprocessing
steps.

2.1 Physionet EEG Database

The Physionet EEG Database [3] is a popular benchmark in the literature for
biometric with EEG and it is public available1. The records were acquired from
109 different subjects, using 64 electrodes in the region of the scalp to store
the EEG signals (see Fig. 1), each sampled at 160 Hz. The database was created
by the developers of the BCI2000 instrumentation system2 and maintained by
Physionet. There are 14 different acquisition sessions for each subject, each one
with different motor/imagery tasks considered during recording. Among those
14 sessions, there are two one-minute (60 or 61 s per record) baseline runs (one
with eyes open (EO), one with eyes closed (EC)). The others sessions are related
to four kinds of tasks of three two-minute runs.

2.2 Methodology

Data pre-preprocessing: To further investigate the feasibility of the method,
only resting state EEG data is considered. Thus, the baseline sessions - data
captured where the subject is with EO and EC - are used during experiments.
1 http://physionet.org/pn4/eegmmidb/.
2 http://www.bci2000.org.

http://physionet.org/pn4/eegmmidb/
http://www.bci2000.org
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All EEG recording signals are band-pass filtered in 3 frequency bands. The
first band covering from delta to gamma frequencies (1–50 Hz), the second band
are related to low to high beta (10–30 Hz), and the third one preserves the range
of gamma (30–50 Hz) frequency. A total of 61 s of raw wave are used for training
and test.

Data Augmentation: In order to follow a baseline method evaluation protocol,
proposed in [2], EEG data is divided into segments of 12 s window (1920 samples),
i.e., 5 segments per subject for each record. Although 5 segments per subject are
not enough data to train a deep convolutional neural network, data augmentation
technique is proposed here to overcome this issue. The rationale for the data
augmentation is to consider a large overlap between segments and therefore
multiplying the number of segments. The new augmented data is created sliding a
12 s (1920 samples) window overall record signal (9600 or 9760 samples), shifting
from 0.125 to 0.125 s, a sliding window strategy with 20 samples per step [9].
This technique yields 42696 new instances for training.

Convolutional Neural Network: The architecture of a typical convolutional
neural network is structured as a series of stacked operations, beginning with
convolutional layers, followed by activation with Rectified Linear Units (ReLu),
pooling, normalization and finally fully connected layers (FC) [7].

For this work, three CNN architectures have been investigated. One with
small receptive fields in the first convolutional layer inspired by [10] and two
others with large receptive fields on the first convolutional layers inspired by [6,
13]. Note that filters are one-dimensional and proportionally adapted to EEG raw
signal (see Fig. 2). The width and depth of the networks have been empirically
evaluated based on validation error.

Fig. 1. Positions of electrodes on scalp. Source: http://physionet.org/pn4/eegmmidb/.

http://physionet.org/pn4/eegmmidb/
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After the learning process, last three layers are removed (Softmax, Dropout,
and FC4 as seen in Table 1) and the new network output is used as a feature
vector for a 12 s EEG segment, which will be used for verification task.

In verification task, the performance of methods is expressed in terms of
Detection Error Trade-off (DET) curves, which show the trade-off between type
I error (false acceptance error - FAR) and type II error (false rejection error -
FRR). To construct the DET curve, all instances from testing dataset are com-
pared to each other, in an all-against-all scheme. Verification task can be mod-
eled as the Eq. 1, where S is the function that measures the similarity between
two feature vectors (X1 and X2) and t is a predefined threshold [4]. The value
S(X1,X2) is the similarity or matching score between the biometric measure-
ments with Euclidean distance. A person’s identity is claimed and classified
into genuine when pairs are similar and impostor, otherwise. After that genuine
(intra-class) and impostor (inter-class) distribution curves are generated from
similarities scores.

(X1,X2) ∈
{
genuine, if S(X1,X2) ≥ t

impostor, otherwise
(1)

3 Experimental Results and Discussion

Experiments were conducted on an Intel (R) Core i7-5820K CPU @ 3.30 GHz
12-core machine, 64 GB of DDR4 RAM and one GeForce GTX TITAN X GPU.
The MatConvNet library is used for the convolutional networks [11] linked to
NVIDIA CuDNN.

Data segmentation for experiments was performed following the evaluation
proposed in [2], where the window size consists of 12 s (as detailed in Sect. 2.2).

Data augmentation is used on data from EO session (training data), yielding
384 or 392 (from 60 and 61 s) segments of size 1920 samples (12 s) per subject.
For evaluation, five segments of 12 s are extracted for each subject from EC
session, i.e., no overlapping during the test (See Fig. 3).

Fig. 2. Deep learning model.
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Table 1. Architecture for EEG biometry.

Name Type Input size Number of filters Filter size/stride/pad Relu Norm

Network arch

Conv1 Conv 1× 1920 96 1× 11/1/0 Yes Yes

Pool1 Max pooling 1× 1910 N/A 1× 2/4/0 No No

Conv2 Conv 1× 478 128 1× 9/1/0 Yes Yes

Pool2 Max pooling 1× 470 N/A 1× 2/2/0 No No

Conv3 Conv 1× 235 256 1× 9/1/0 Yes Yes

Pool3 Max pooling 1× 227 N/A 1× 2/2/0 No No

FC1 Full. conn. 1× 113 4096 1× 113/1/0 Yes No

FC2 Full. conn. 1× 1 4096 1× 1/1/0 Yes No

FC3 Full. conn. 1× 1 256 1× 1/1/0 No Yes

FC4 Full. conn. 1× 1 109 1× 1/1/0 No No

Drop Dropout 1× 1 2 N/A No No

Cost Softmax N/A N/A N/A N/A N/A

During training, the input signal, represented by a 12 s length EEG time
series, is feed-forwarded through network layers. Each layer represents one or
more CNN operations: convolutional filter; pooling; stride; rectification (RELU);
normalization (L2 Norm). Convolutional stride and padding are set to one. Pool-
ing layer performs a max-pooling operation, and when there is down-sampling
(stride > 1), it happens in conjunction with pooling. The stack of layers are fol-
lowed by Fully-Connected (FC) layers and the last FC layer is for classification.
These FC layers can be seen as multi-layer-perceptron (MLP) network.

The final layer is a soft-max loss one. The FC layer with 1×1 filter size is used
for dimension reduction and rectified linear activation. The network architecture
is presented in Table 1.

For training the network, three learning rates of value L = [0.01, 0.001,
0.0001] are distributed over the epochs, mini batches are set to size 100, and
a momentum coefficient of 0.9 is considered during all training. Filter weights
are randomly initialized and stochastic gradient descent is used for optimization.
The dropout operation is placed before the last layer with 10% to minimize over-
fitting.

During the training phase, 90% of the data is reserved for training and 10%
for validation as shown in Fig. 3. The CNN are trained for over 60 epochs.

Evaluation is carried in verification mode and the metric used to report
results is Equal Error Rate (EER) which, in turn, is defined as the point where
the False Acceptance Rate (FAR) is equal to the False Rejection Rate (FRR).
FAR and FRR are generated from intra-class and inter-class pairs compari-
son. The present protocol produces 1086 genuine (intra-class) pairs and 146610
impostors (inter-class) pairs. In Fig. 4, DET curve shows the relationship between
FAR, FRR, EER by means of a threshold variation.
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Fig. 3. The distribution of ECG segments used for training and testing.

Table 2. EER obtained for the specified frequency bands.

Frequency band EER

01–50 Hz 11.2%

10–30 Hz 6.25%

30–50 Hz 0.19%

The DET curves in Fig. 4 depicts the performance for the detailed exper-
iments. The curve related to 30–50 Hz resulted in an overall performance of
0.19% EER as shown in Table 2, overcoming results published in the literature.
As shown in Fraschini et al. [2], the best frequency band for EEG biometrics is
the gamma band. The results presented here confirm the findings in [2] regarding
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Fig. 4. DET curve for proposed experiments.
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frequency band, however, the discrepancy of results with other frequency bands
was greater here. More experiments are needed to investigate whether this phe-
nomenon extends to other tasks (T1–T4) or even other databases.

Results presented in Table 3 compares the proposed method with state-of-
the-art approaches. As can be noticed, the proposed method significantly reduced
the EER. The usage of all 64 EEG channels shows the robustness of the method
since it was able to handle all electrodes, even if not all of them effectively
contribute to the identification of individuals [12].

Table 3. Comparison with related works.

Reports Features Train-Test Electrodes Subjects EER(%)

Fraschini et al. [2] Eigenvector
centrality

EO-EC 64 109 4.40

Yang et al. [12] Wavelet
coefficients

T1–T4 9 108 4.50

Proposed work CNN EO-EC 64 109 0.19

4 Conclusions

In this work, the use of CNN in an EEG-based biometric system is investigated
for the first time. When compared to the baseline methods presented in the
literature (under the Physionet EEG database), EEG data represented by the
CNN model showed a lower EER for person recognition (verification mode).

The contribution of this paper is the proposed deep CNN architecture and the
data augmentation technique, which is of paramount importance in the training
process. The sliding window strategy for generating new training samples allowed
the deep network architecture to learn efficiently even with reduced data.

Results showed that the proposed EEG-based biometric system can be a
promising method for future real-world applications since researchers are devel-
oping hardware to facilitate embedding a CNN model, such FPGA-based deep
learning acceleration and NVIDIA TX13.
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