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Abstract. Deep Convolutional Neural Networks (DCNN) are the state-
of-the-art in face recognition. In this paper, we study different represen-
tations obtained from a pre-trained DCNN, in order to determine the
best way in which they can be used in different tasks. In particular, we
evaluate the use of intermediate representations independently or com-
bined with a Fisher Vector approach, or with a Bilinear model. From our
study, we found that convolutional features may be more suitable than
the features obtained from the last fully connected layers for different
applications.

Keywords: Convolutional neural networks · Deep learning
Face recognition · Transfer learning

1 Introduction

Face recognition is one of the core problems in computer vision and it has been
an active research topic in the last decades [14]. Most of existing methods have
shown to work well on images or videos that are collected in controlled scenarios,
but their performance often degrades significantly when there are large variations
in pose, illumination, expression, aging, cosmetics, and occlusion, among others.
To deal with this problem, different works have focused on learning invariant
and discriminative representations from face images and videos [12].

In the last years, deep Convolutional Neural Networks (CNN) have demon-
strated impressive performances on face recognition and are the state-of-the-
art on this an other computer vision tasks [11,13]. CNNs are deep networks
designed from the beginning to work with the large amounts of parameters that
are fed into a network by an image, which exploit the structure and peculiari-
ties of the input in order to learn discriminative features. To achieve this, they
adopt a structure of alternating layers that achieves a reduction in characteristics
(weights, parameters and features), and also decreases training times.

CNNs are hard to train because they have many hyperparameters (e.g. learn-
ing rate, momentum, different types of regularization, activation functions) and
the layers of the networks can vary in type, number and width. The best net-
work for a given problem is some combination of all those hyperparameters, so
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researchers have to go through a vast space of possible combinations to find
the best one. To perform all these combinations, great computational capacity
is needed. However, once the model is learned, it can be used for other tasks
without any further network training. This is beneficial for users who do not
have the computer or data resources needed for training.

When using a pre-trained network, the standard choice is to compute the
image descriptors at the end of the CNN. In this work, we aim at analyzing
the behaviour of different representations obtained from a pre-trained network,
in order to determine the most effective way in which the discriminative power
of deep learning can be achieved without any training effort, and in different
tasks. The adaptation of a trained method for a similar problem is called transfer
learning, and the standard approach for CNN features is to retrain a new network
starting from the first layers and weights learned by the trained network. Here
we avoid retraining and analyze some of the different posibilities that exist for
using an already trained network.

2 Using a Pre-trained Network for Face Recognition

There are different CNNs models publicly available in the literature. In this
work, we choose the VGG-Face [11], because it is one of the most widely used
for face recognition with outstanding results on several datasets, even very near
to the best performing ones from commercial systems.

The VGG-Face network [11] has 11 blocks. The first eight blocks contain con-
volutional layers, while the last three blocks fully connected layers. The input to
the network is a face image of size 224 × 224 with the average face image (com-
puted from the training set) subtracted; and the output of the last convolutional
layer, before the linear class predictor and the softmax layers is a 4096 vector
descriptor. For every test image, ten 224 × 224 patches are obtained, by using
the center and four corners, and applying horizontal flip to them. To enable
multi-scale testing, the face image is first scaled to three different sizes of 256,
384 and 512 pixels, and the cropping procedure is repeated for each of them (see
Fig. 1). In total 30 feature vectors are obtained which are averaged for obtaining
the final face descriptor. This kind of net descriptor has been used in previous
face recognition studies [8]. Besides, we propose to use other representations by
using features extracted from not-fully connected blocks. They can be used like
a tensor or a vector if we calculate the average from each descriptor in the tensor
(see Fig. 1). We are going to refer to these descriptors as cube descriptor and
average pooling descriptors respectively. A tensor can be read in different ways,
but we use it as in [2], then a tensor is composed by several descriptors with
size: 1 × number of filters in the convolutional layer.

Apart from using a net descriptor directly, they can be used in combination
with other methods. Here we will explore the use of Fisher Vector encoded
convolutional features (FV-DCNN) [2] and Bilinear Models [3].
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Fig. 1. Schematic view of the VGG-Face representations. The scales and crops of the
face images used as input for the network are shown in the left and the convolutional
blocks that were used for obtaining the intermediate descriptors are enlarged showing
their dimensions.

2.1 FV-DCNN

The Fisher Vector (FV) method [12] has shown competitive performance on
unconstrained face recognition. The original FV representation is obtained by
densely computing local descriptors (e.g., SIFT), at different scales, which are
aggregated into a high-dimensional vector by assuming a parametric generative
model for the data and stacking the derivatives of its log-likelihood with respect
to all its parameters. Usually, a Gaussian Mixture Model (GMM) with parame-
ters θ = {π1, μ1, σ1, ..., πk, μk, σk} denoting the weight, mean vector and diagonal
covariances of the K mixture components, is assumed as generative model. Let
S = {s1, s2, ..., sN} ∈ R

Q be a set of local descriptors. The FV representation of
S based on the GMM is given by F =
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where αk(sn) is the soft assignment of sn to component k. Finally, the FV is
further improved by applying power normalization followed by l2 normalization.

Recently, it was proposed in [2] to encode deep convolutional features with
FV approach for unconstrained face verification. Based on this work, we extract
the CNN descriptors from the last convolutional block of the VGG-Face network
as described previously and encode them by applying FV. In order to meet the
assumption of diagonal covariances for GMM, all descriptors are decorrelated by
using PCA before feeding into FV encoding.
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2.2 Bilinear Model

Another proposal in the literature for the use of trained networks is the bilin-
ear model, initially proposed for image classification [7] and later used for face
recognition [3]. Bilinear combination of two or more feature extractors allows
considering extra information from pairwise interactions between initial features,
which can contribute to increase discriminative ability in classification. This kind
of mixing model combines the advantages of previous approaches for fine-grained
recognition tasks, such as part-based and texture based models [7].

A bilinear model is defined in [7] as a quadruple B = (fA, fB , P, C). Here fA
and fB are feature functions, P is a pooling function and C is a classification
function. A feature function is a mapping f : L × I → Rc×D that takes an image
I and a location l and outputs a feature of size c × D. A bilinear combination,
for I and l is given by bilinear(l, I, fA, fB) = fA(l, I)T ∗ fB(l, I). In this work
we are going to combine three feature functions: A pre-trained CNN VGG-
Face truncated at the end of convolutional blocks (as is proposed in [3] for face
recognition), and the same descriptors but projected with PCA and FV methods.

3 Using a Pre-trained Network for Heterogeneous Face
Recognition

An interesting application where the use of pre-trained models might be ben-
eficial is for heterogeneous face recognition. It encompasses several modalities,
and also in this case, state-of-the-art performance is achieved by deep learning
approaches [6,10] with complex networks and training strategies. Our intuition
is that the information contained in the pre-trained model can be useful to tackle
these problems without having to retrain it or use a transfer learning approach.

In our research we take face-sketch recognition as a case of study, but we
believe the same can be applied for different heterogeneous problems. Recently,
a transfer learning approach was proposed in [9] for this task, in which a deep
believe network is re-trained with sketch-image pairs, using as the initial weights,
the ones provided by the trained model. Instead, we may use less computation-
ally expensive approach on top of the deep features, by carefully selecting the
appropriate information to be extracted from the trained model. We start from
the convolutional features obtained from the network as discussed in the previous
section, and improve them by metric learning which is very fast to train.

Metric Learning: The main goal of metric learning is to learn the weights
related to a Mahalanobis distance of the form: (x − y)tM(x − y), where the
matrix M is positive-semidefinite, while x and y are objects from a dataset.
This is learned in such a way that the discriminative information for the prob-
lem is emphasized. The main idea is to converge to weights that bring objects
belonging to the same class closer while pulling objects from different classes
apart. These weights can be incorporated directly into the vectorial representa-
tions and the Euclidean distance can be computed on top of them. Here we use
Linear Discriminant Analysis (LDA) [1], which can be seen as a type of metric
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learning method which learns a projection such that it maximizes the between
or inter-class scatter over the within or intra-class scatter. This is solved using
a closed-form expression based on a generalized eigenproblem.

4 Experimental Analysis

4.1 Performance Evaluation for Face Recognition

In order to evaluate and compare the different descriptors, we conducted exper-
iments on the Labeled Face in the Wild (LFW) database [5]. It contains 13233
face images from 5749 people taken from Yahoo! News, with different variations
in pose, scale, clothing, expression, focus, resolution among others. Since we aim
at not training the network, we use the closed set protocol, where the dataset is
divided in ten splits, with 300 genuines and 300 impostor comparisons for each
of them. We used the aligned version of the images (LFW-a). The Euclidean
distance and Cosine similarity were used as distance measures. We test the dif-
ferent descriptors that were described in Sect. 2. In particular we evaluate the
original net descriptor from the 11th block of the network (b11) and the two
different descriptors obtained from the third convolutional layer of the 8th block
(b8): the concatenated cube descriptor (conc) and the average pooling descrip-
tor (avg). We also test the FV-DCNN representation and the different bilinear
combinations. In all cases we evaluate also the benefits of applying Principal
Components Analysis (PCA) and L2 vector normalization.

Table 1 presents the obtained Equal Error Rates (EER) and the False Rejec-
tion Rate for a fixed False Acceptance Rate of 0.1% (FRR@0.1). The best results
for every configuration is highlighted in bold. It can be seen that the original net
descriptor (b11-norm) using Euclidean distance achieves an EER of 4.70% and
all the different configurations evaluated outperform this result. This suggests
that when using a pre-trained network for a given task, intermediate representa-
tions might achieve better results. It is also interesting to note that usually the
feature vectors obtained from CNN networks are normalized and using interme-
diate representations we obtained better results without normalization. Besides,
by applying PCA and using for classification vectors of only 20 or even 10 dimen-
sions, results are equal to or better than the results found when using represen-
tations of higher dimensionalities. By using more complex representations such
as FV-DCNN and Bilinear models good results are obtained but not better than
simple intermediate representations from the network. As it was suggested in
[7], for this combined configurations new training is needed.

4.2 Performance Evaluation for Face Sketch Recognition

From the analysis presented in the previous section, we consider that the average
pooling descriptor from the third convolutional layer in block 8 (b8-avg) provides
the best compromise between accuracy and efficiency; therefore we will use it
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Table 1. EER (%) and FRR@0.1 (%) for different descriptors in LFW database.

Representation Dim Euclidean Cosine

EER FRR EER FRR

VGG-FACE

b11 4096 15.3 54.2 5.10 27.7

b11-norm 4096 4.70 25.7 4.60 25.7

b11-PCA20 20 9.40 53.7 6.70 44.5

b11-PCA20-norm 20 6.30 43.1 59.3 44.2

b8-conc 7× 7× 512 0.80 8.00 4.30 43.4

b8-conc-norm 7× 7× 512 4.40 35.5 4.70 64.5

b8-PCA30 30× 49 0.80 7.80 1.30 19.3

b8-PCA30-norm 30× 49 4.10 34.7 4.10 36.7

(b8-PCA30)-conc-PCA20 20 0.80 7.80 4.00 30.0

(b8-PCA30-norm)-conc-PCA20 20 3.80 33.8 2.80 29.3

b8-avg 512 0.80 7.80 4.30 46.5

b8-avg-norm 512 4.20 35.1 4.20 56.4

b8-avg-PCA10 10 0.90 7.40 4.30 35.0

b8-avg-PCA10-norm 10 0.70 9.30 3.70 34.5

FV-DCNN

fv-dcnn 3840 2.20 30.4 14.3 20.0

fv-dcnn-norm 3840 3.60 34.7 41.7 46.2

fv-dcnn-PCA30 30 1.20 18.9 1.30 19.3

fv-dcnn-norm-PCA30 30 63.8 100 64.8 100

BILINEAR

bl-(b8)+(b8) 512×512 3.30 61.2 4.30 39.9

bl-(b8-norm)+(b8-norm) 512× 512 4.20 35.1 4.20 70.5

bl-(b8-PCA20)+(b8-PCA20) 20× 20 1.60 26.8 4.00 28.7

bl-(b8-PCA20-norm)+(b8-PCA20-norm) 20× 20 5.70 39.4 2.80 29.2

bl-(fv-dcnn-PCA30)+(b8-PCA20) 30×20 1.80 23.7 1.20 19.6

bl-(fv-dcnn-norm-PCA30)+(b8-PCA20-
norm)

30× 20 4.30 34.3 2.90 30.7

for the experiments on face sketch recognition. Our goal here is to study the
performance of these descriptors in a different problem for which the network
was not trained for.

For the face sketch recognition evaluation we used the PRIP Viewed Software-
Generated Composite (PRIP-VSGC) [4] dataset (see Fig. 2), which was created
from photographs from 123 subjects from the AR database and three composites
created for each subject using FACES (American and Asian users) and Identi-Kit
softwares. Both mug-shots and sketches were normalized to the size required by
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Fig. 2. Images from the PRIP-VSGC database.

Table 2. Recognition rate (%) at Rank-10 in PRIP-VSGC for sketch vs. image

Representation Asian American Identi-Kit

Mittal [9] 48.10 56.00 52.08

b8-avg 43.90 61.78 17.88

b8-avg+LDA 46.34 67.47 17.88

b8-c2-avg 27.64 51.21 13.00

b8-c2-avg+LDA 51.21 64.22 26.82

b7-c2-avg 21.95 33.33 16.26

b7-c2-avg+LDA 52.84 63.41 42.27

the VGG-Face network. With the aim of comparison, we used the experimental
protocol in [9], which takes as gallery the 123 subjects mugshots and as probe the
sketches. Since in this case the image modality is very different from the original
training of the network, we also evaluate previous layers representations, i.e.:
the second layer from the same 8th block (b8-c2-avg) and the second layer from
the 7th block (b7-c2-avg). The obtained results for each descriptor with and
without metric learning are depicted in Table 2. It can be seen in Table 2 that in
general the performance is improved by using lower layers, except for the Amer-
ican users, in which the sketches are more similar to the original images. Due
to this higher resemblance to real photos, this can be expected, since for higher
layers the network is more specialized. When using lower layers, the improve-
ment is particularly larger for the Identi-Kit software, where the sketches are
more different from real face images, they seem more like a drawing. Therefore,
the lower layers which are less specialized for face images than the upper layers,
are able to represent better the different face modalities. In general it is cor-
roborated that the use of a metric learning is of particular importance since it
is able of emphasize the discriminative information from the descriptors. The
results are comparable with the ones obtained in [9], where a more specialized
approach specifically trained for face sketch recognition was used. Besides, it
is highly convenient that the intrinsic dimensionality achieved by the selected
convolutional features is very low, and therefore the final representations can be
very compact with a low memory footprint.
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5 Conclusions

In this paper we study different approaches to exploit the information pro-
vided by a pre-trained convolutional network as well as its application for other
domains with some similarities to the one for which the network was trained
for. From our analysis, we found that the best performing features from the
network were obtained with an average pooling descriptor from the last con-
volutional block. This representation is more compact and by applying PCA a
very low dimensional representation can be obtained maintaining a high dis-
criminative power. This can be useful for specific applications such as large scale
face recognition. Besides, we found that by using intermediate representations
vector normalization does not provide good results. In the case of heteroge-
neous face recognition we found that the pre-trained network performs similar
to state-of-the-art approaches, after learning a metric for the specific problem
with the provided features. We also found that lower blocks are better for prob-
lems where the imaging modality is more different from the one used for training
the network. The explanation for this is that in top blocks the network is more
specialized for the problem that it was trained for.
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