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Abstract. Overlapping community detection on social networks has
received a lot of attention nowadays and it has been recently addressed
as Multi-objective Optimization Evolutionary Algorithms. In this paper,
we introduce a new algorithm, named MOGLAOC, which is based on
the Pareto-dominance based MOEAs and combines global and local
approaches for discovering overlapping communities. The experimental
evaluation over four classical real-life networks showed that our proposal
is promising and effective for overlapping community detection in social
networks.
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1 Introduction

The analysis of complex networks has been received a lot of attention nowadays
due to its applications on several contexts which include bioinformatics, sociology
and security, among others. Several data mining techniques have been applied
in order to extract knowledge from social networks, specifically, the detection of
communities plays an important role in the analysis of these networks [1]. This
technique aims to organise the nodes of a network in groups or communities
such that nodes belonging to the same community are densely interconnected
but spare connected with the remaining nodes in the network [2].

Taking into account the NP-hard nature of the community detection prob-
lem, most reported approaches use heuristics in order to search for a set of nodes
that optimises an objective function which captures the intuition of community
[2]. Consequently, most of community detection algorithms focused on solving
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a single-objective optimization problem; however, these approaches face some
difficulties: (1) the optimization of only one function confines the solution to a
particular community structure, (2) many of them may fail due to the resolution
limit problem [3], and (3) returning one single partition may not be suitable
when the network has many potential structures. To overcome the aforemen-
tioned problems, many community detection algorithms model the problem as a
Multi-objective optimization problem, and specifically, they used Multi-objective
Optimization Evolutionary Algorithms (MOEAs) to solve it.

Unfortunately, most of reported MOEAs focused on discovering disjoint com-
munities, although according to Palla et al. in [4], most real-world networks have
overlapping community structure. To the best of our knowledge, only the MOEAs
proposed in [1,5–8] addressed the overlapping community detection problem.

The MEA CDPs algorithm [1] uses an undirected representation of the solu-
tion and the classical NSGA-II framework with the reverse operator, in order to
search for the solutions optimising three objective functions. On the other hand,
iMEA CDPs [6] uses the same representation as MEA CDPs but it uses other
objective functions. Besides, iMEA CDPs proposes to employ the NSGA-II or
the MOEA/D as the optimization framework, together with the PMX and simple
mutation operators. IMOQPSO [7] uses a center-based representation of the solu-
tion together with a combination of QPSO and HSA optimization frameworks, in
order to find a set of nodes that optimises two previously defined objective func-
tions. OMO [5] employs a representation based on adjacencies between edges of
the network together with two objective functions and the NSGA-II framework.
Finally, MCMOEA [8] detects first the set of maximal cliques of the network
and then, it builds the maximal-clique graph. Starting from this transformation,
MCMOEA uses a representation based on labels and the MOEA/D framework
in order to detect the communities optimizing two objective functions.

In this paper, we propose a new algorithm based on Pareto-dominance based
MOEAs [12] which combines global and local approaches for discovering over-
lapping communities (MOGLAOC). Our proposal starts by detecting a set of
seeds which are then used to build the overlapping communities. With this aim
we introduced in the classical Pareto-dominance based MOEAs framework an
expansion, improving and merging steps which allow our proposal to detect over-
lapping zones in the network, to improve the overlapping quality of these zones,
and to merge communities having a high overlapping. The experimental evalu-
ation of our proposal over four classical real-world social networks showed that
it is promising and effective for overlapping community detection.

The remainder of this paper is organized as follow: in Sect. 2, we introduce the
MOGLAOC algorithm. The experimental evaluation, showing the performance
of our proposed algorithm, over four real-life networks is presented in Sect. 3.
Finally, conclusions and future work are presented in Sect. 4.

2 The MOGLAOC Algorithm

Let G = 〈V,E〉 be a given network, where V is the set of vertices and E the
set of edges among the vertices. A multi-objective community detection problem
aims to search for a partition P ∗ of G such that:
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F (P ∗) = minP∈Ω (f1(P ), f2(P ), . . . , fr(P )) , (1)

where P is a partition of G,Ω is the set of feasible partitions, r is the number of
objective functions, fi is the ith objective function and min(·) is the minimum
value. With the introduction of the multiple objective functions there is usually
no absolute optimal solution, thus, the goal is to find a set of Pareto optimal
solutions [2].

A commonly used way to solve a multi-objective community detection prob-
lem is by using MOEAs. The general Pareto-dominance based MOEAs frame-
work consists on the following four steps: (a) to generate an initial population
of chromosomes (i.e., solutions to the problem at hand), taking into account
a predefined representation, (b) to apply the evolutionary operators over the
current population in order to build the next generation and to move through
the solution space, (c) to evaluate the current and new populations by using a
predefined set of objective functions, and (d) to apply a predefined heuristic for
keeping and improving the best solutions found so far. Usually, steps b, c and
d are repeated a predefined number of times or until a specific stop criterium is
fulfilled.

The contributions our proposal introduces to the Pareto-dominance based
MOEAs framework for overlapping community detection are focused on the
inclusion of an expansion, improving and merging steps, which in turn are
inserted between the above mentioned steps c and d. Following, in Sect. 2.1
we briefly describe how our proposal addresses the general steps of the MOEAs
framework and then, Sect. 2.2 describes in details the expansion, improving and
merging steps our proposal introduces.

2.1 General Steps of MOGLAOC

The main idea of our proposal is to use the steps of classic Pareto-dominance
based MOEAs framework in order to detect a set of disjoint seed clusters, where
each seed cluster represents the set of objects that a community should not share
with any other community.

In order to detect these seed clusters we use the PESA-II [9] as the optimiza-
tion mechanism. Taking this into account, we use the locus-based adjacency
graph encoding [10] for representing each chromosome of the initial population
generated at step a; the decoding of a chromosome requires the identification of
all connected components, which in turn will be our seed clusters. For generating
a chromosome the ith genotype composing the chromosome is built by randomly
selecting a neighbour of node i. The uniform two-point crossover operator [10] is
selected for crossover and for mutation, some genes are randomly selected and
substituted by other randomly selected adjacent nodes [11].

For evaluating the quality of a set of seeds clusters S we employ the intra
and inter objective functions proposed in [2], which measure the intra-link and
inter-link strength of S, respectively. These functions are defined as follows:

Intra(S) = 1 − ∑
Si∈S

|E(Si)|
m Inter(S) =

∑
Si∈S

(∑
v∈Si

|N(v)|
2·m

)2

, (2)
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where E(Si) is the number of edges inside seed Si,m is the total number of edges
in the network, and N (v) is the set of adjacent vertices of vertex v. In order to
address the step (d) we use the mechanism PESA-II includes for keeping and
improving the best seed clusters found so far.

2.2 Expansion, Improving and Merging Steps

Let S = {S1, S2, . . . , Sk} be the set of disjoint seed clusters represented by a
chromosome of the current population. Overlapping vertices are supposed to
be those vertices that belong to more than one community and in order to be
correctly located inside a community they need to have edges with vertices in
those communities. The expansion step aims to detect these vertices through a
greedy randomise local search procedure (GRASP) over each Si.

For detecting the zones containing overlapping vertices we soften the initial
criterium used for building the seeds. With this aim each seed cluster Si is pro-
cessed for determining which vertices outside the community share a significant
number of their adjacent vertices with the community; that is, the potential
overlapping vertices.

Let Si ∈ S be a seed cluster and ∂Si ⊆ Si the set of vertices of Si having
neighbours outside Si. The strength of ∂Si is denoted as Str(∂Si) and it is
computed as the ratio between the number of edges the vertices of ∂Si have
with vertices inside Si, and the number of edges the vertices of ∂Si have with
vertices inside and outside Si. The greater the value of Str(∂Si) the greater the
number of inner edges ∂Si has and consequently, the better ∂Si is. A vertex
u /∈ Si is considered a candidate to be included in Si iff u is adjacent to at least
one vertex in ∂Si and Str(∂S

′
i) − Str(∂Si) > 0, where S

′
i = Si ∪ {v}.

In order to iteratively expand a seed cluster Si, the following steps are per-
formed: (1) determining the set L of vertices which are candidate to be included
in Si, (2) applying the roulette wheel selection method over the set L, where the
probability of being selected that a vertex v ∈ L has is computed by using the
increase v produces in Str(∂Si), and (3) repeating steps 1 and 2 while L �= ∅.

Once the expansion step finished, the improving step is performed in order
to locally improve each overlapping zone detected. From our point of view, any
overlapping vertex is expected to have adjacent vertices belonging to different
communities and possibly, belonging to different overlapping zones. In this paper,
we propose to measure the overlapping quality of a vertex belonging to an over-
lapping zone by using two properties we call uniformity and simple betweenness.

Let Z be an overlapping zone detected and CZ = {C1, C2, . . . , Cm} the set
of communities that set up Z. Let v ∈ Z be an overlapping vertex. Let NCZ

(v)
be the set of adjacent vertices of v that belong to at least one community in
CZ . Let Gv = {G1

v, G2
v, . . . , Gl

v} be the set of communities or overlapping zones
containing the vertices in NCZ

(v). A property we will expect v satisfies is to have
the vertices in NCZ

(v) equally distributed over the groups of Gv. The uniformity
of v, denoted as U(v), measures how much the distribution of vertices in NCZ

(v)
deviates from the expected distribution of NCZ

(v) and it is computed as follows:
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U(v) = 1 −
∑

Gi
v∈Gv

abs

(∣
∣NCZ

(v) ∩ Gi
v

∣
∣

|NCZ
(v)| − 1

|Gv|

)

, (3)

where abs(·) is the absolute value. U(v) takes values in [0, 1] and the higher its
value the better well-balanced v is.

Let N ′
CZ

(v) be the set of adjacent vertices of v that belong to at most one
community in CZ . Another property we would expect an overlapping vertex
v ∈ Z to have is to be an intermediary between any pair of its adjacent vertices in
N ′

CZ
(v); that is, the shortest path connecting any pair of vertices u,w ∈ N ′

CZ
(v)

should be the path made of the undirected edges (u, v) and (v, w). The simple
betweenness of v, denoted as SB(v), measures how much intermediary v is and
it is computed as follows:

SB(v) =
2 · ∑|CZ−1|

i=1

∑|CZ |
j>i

(

1 − |E(Ci,Cj)|∣
∣
∣N ′

CZ
(v)∩Ci

∣
∣
∣·

∣
∣
∣N ′

CZ
(v)∩Cj

∣
∣
∣

)

|CZ | · (|CZ | − 1)
(4)

where E(Ci, Cj) =
{
(u,w) ∈ E | u,w ∈ N ′

CZ
(v) ∧ u ∈ Ci ∧ w ∈ Cj

}
is the set of

edges between vertices in N ′
CZ

(v), with one vertex in Ci and the other one in Cj .
SB(v) takes values in [0, 1] and the higher its value the best intermediary v is.

We would like to highlight that both the uniformity and simple betweenness
concepts can be straightforward generalised in order to be applied to an overlap-
ping zone. Let Uave(Z) be the initial average uniformity of the vertices belonging
to an overlapping zone Z. A vertex v ∈ Z is a candidate to be removed from
Z iff U(v) < Uave(Z). On the other hand, a vertex u ∈ N(v|CZ), v ∈ Z, is a
candidate to be added to Z iff U(u) > Uave(Z). Any addition or removal of a
candidate vertex from Z that transforms Z into Z ′ is considered as viable iff
(U(Z ′) + SB(Z ′)) − (U(Z) + SB(Z)) > 0.

Let O = {Z1, Z2, . . . , Zj} be the set of all the overlapping zones detected
after the expansion step. The heuristic proposed for improving these zones is as
follows: (1) computing the initial average uniformity of each zone Zi ∈ O, (2)
detecting the set T of viable transformations to apply over O, (3) selecting and
performing the transformation t ∈ T which produces the higher improvement in
its overlapping zone, and (4) to repeat steps 2 and 3 while T �= ∅.

Let C = {C1, C2, . . . , Ck} be the set of communities detected after the
improving step. Although it is allowable for communities to overlap, what is
most important for each community is to have a subset of vertices that makes
the community different from the remaining ones. The merging step aims to
reduce the redundancy in the detected communities, by iteratively merging those
communities having a high overlapping.

Let Ci ∈ C a community. The distinctiveness of Ci, denoted as DCi
, is

computed as the difference between the number of edges of Ci composed of
vertices belonging only to Ci, and the number of edges of Ci composed of at least
one vertex Ci shares with another community. Let Ci and Cj be two communities
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which overlap each other. Ci and Cj are candidates to be merged iff DCi
≤ 0 or

DCj
≤ 0.

The heuristics for merging communities having a high overlapping degree is
as follows: (1) detecting the set PC of pairs of communities which are candidate
to be merged, (2) applying the roulette wheel selection method over the set
PC, where the probability of selection of each pair is computed by using the
highest absolute value of the distinctiveness of the two communities forming the
pair, and (3) repeating steps 1 and 2 while PC �= ∅. The set of overlapping
communities remaining after this step is evaluated by using the intra and inter
objective functions described in Sect. 2.1, in order to keep a set of non-dominated
solutions.

3 Experimental Results

In this section, the results of several experiments testing the MOGLAOC algo-
rithm are presented. The experiments were focused on: (1) to compare the accu-
racy attained by MOGLAOC against the one attained by MEA CDP [1], IMO-
QPSO [7], iMEA CDP [6] and OMO [5] algorithms, and (2) to evaluate the
number of communities as well as the overlapping degree of these communities,
for the best solutions found by our proposal for each network.

In our experiments we use four real-life networks: the American College Foot-
ball network, the Zachary’s Karate Club network, the Bottlenose Dolphins net-
work, and the Krebs’ books on American politics network; these networks can
be downloaded from http://konect.uni-koblenz.de/networks. Table 1 shows the
characteristics of these networks.

Table 1. Overview of the networks used in our experiments

Networks # of nodes # of edges Ave. degree # communities

American Cool. Football 115 613 10.66 12

Zachary’s Karate Club 34 78 4.58 2

Bottlenose Dolphins 62 159 5.129 2

Krebs’ books 105 441 8.4 3

In the first experiment we used the NMI external evaluation measure [6]
for computing the accuracy of each algorithm. NMI takes values in [0, 1] and it
evaluates a set of communities based on how much these communities resemble a
set of communities manually labelled by experts, where 1 means identical results
and 0 completely different results. For each network, we executed MOGLAOC
thirty times and computing the NMI value attained by the best solution of the
Pareto front. Table 2 showed the average NMI value attained by each algorithm
over the networks; the average values for MEA CDP, IMOQPSO, iMEA CDP
and OMO algorithms were taken from their original articles. The “X” in Table 2
means that IMOQPSO does not report any results on the Krebs’ books network.

http://konect.uni-koblenz.de/networks
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Table 2. Best NMI average values attained by each algorithm. Highest values appears
bold-faced

Networks MEA CDP IMOQPSO iMEA CDP OMO MOGLAOC

American
Cool. Football

0.495 0.462 0.593 0.33 0.65

Zachary’s
Karate Club

0.52 0.818 0.629 0.375 0.75

Bottlenose
Dolphins

0.549 0.886 0.595 0.41 0.69

Krebs’ books 0.469 X 0.549 0.39 0.449

Ave. ranking
position

3.25 2.75 2.25 4.75 2.0

As it can be seen from Table 2, MOGLAOC attains comparable results with
those of the related algorithms. Our proposal clearly outperforms the other algo-
rithms in the American Cool. Football network which is a difficult network, while
it is second in Zachary’s Karate Club and Bottlenose Dolphins networks, out-
performed only by the IMOQPSO, which in turn it includes some operations
that make it a highly computational expensive algorithm. In the last row of
Table 2 we also showed the average ranking position attained by each algorithm
and as it can be observed, our proposal attains the best results. From the above
experiments on real-world networks, we can say that MOGLAOC is promising
and effective for overlapping community detection in complex networks.

In the second experiment, we compute the average number of communities
MOGLAOC detects when it attains its highest NMI value, as well as the over-
lapping among these communities. The results of this experiment are showed in
Table 3.

Table 3. Average number of communities and overlapping degree for the best solutions
found by MOGLAOC

Networks Ave # communities Ave. overlapping degree

American Cool. Football 9.7 1.1

Zachary’s Karate Club 2 1.108

Bottlenose Dolphins 2 1.2

Krebs’ books 3.8 1.33

As it can be seen from Table 3, our proposal detects a number of communities
which, in the average case, is close to the real number of communities existing
in the networks. Moreover, our proposal do not produce solutions having high
overlapping degree which means it is able to detect overlapping zones but it does
not profit from this overlapping for boosting its accuracy.
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4 Conclusions

In this paper, we proposed a new algorithm, named MOGLAOC, for discovering
overlapping communities through a combination of global and local optimiza-
tion approaches. MOGLAOC introduced three steps to the classical Pareto-
dominance based MOEAs framework which allow it to detect overlapping zones,
to optimise the quality of these zones and to reduce redundancy in the solutions.
Unlike previously reported algorithms, our proposal defined two properties that
should satisfy any vertex belonging to an overlapping zone.

The MOGLAOC algorithm was evaluated over four real-life networks in terms
of its accuracy and it was compared against four algorithms of the related work.
The experimental evaluation showed our proposal attains comparable results
to that of the evaluated state-of-the-art algorithms. Moreover, this evaluation
showed that MOGLAOC is promising and effective for overlapping community
detection in complex networks. Another conclusion is that MOGLAOC detects a
number of communities which is close to that existing in the networks. Besides,
our proposal produces communities having low overlapping degree.

As future work, we would like to further evaluate the MOGLAOC algorithm
over synthetical networks in order to have a better insight about its behaviour
under different conditions.
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