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Abstract. Peripheral Nerve Blocking (PNB) is a technique commonly
used to perform regional anesthesia. The success of PNB procedures
lies of the accurate location of the target nerve. The ultrasound images
(UI) have frequently been used aiming to locate nerve structures in the
context of PNB procedures. This type of images allows a direct visu-
alization of the target nerve, and the anatomical structures around it.
Notwithstanding, the nerve segmentation in UI by an anesthesiologist is
not straightforward since these images are affected by several artifacts;
hence, the accuracy of nerve segmentation depends on the anesthesiol-
ogist expertise. In this sense, we face a scenario where we have manual
multiple nerve segmentations performed by several anesthesiologists with
different levels of expertise. In this paper, we propose a nerve segmenta-
tion approach based on supervised learning. For the classification step, we
compare two schemes based on the concepts “Learning from crowds” aim-
ing to code the information of multiple manual segmentations. Attained
results show that our approach finds a suitable UI approximation by
ensuring the identification of discriminative nerve patterns according to
the opinions given by multiple specialists.

1 Introduction

Recently, regional anesthesia has become an attractive alternative for general
anesthesia in the context of medical surgeries, mainly because it improves post-
operative mobility and reduces morbidity and mortality [1]. Regional anesthesia
comprises the administration of an anesthetic substance in the area surround-
ing a nerve structure to block the transmission of nociceptive information (this
procedure is known as Peripheral Nerve Blocking, PNB) [2]. In this regard, the
success of regional anesthesia depends on the accurate location of the target
nerve [3]. The use of ultrasound images (UI) has gained considerable interest
to locate nerve structures in PNB procedures [1]. This method allows a direct
visualization of the target nerve and the anatomical structures around it [4].
Notwithstanding, the localization of nerve structures in ultrasound images is a
challenging task for the specialists (in this case anesthesiologists) due to these
kind of images are affected by several artifacts such as attenuation, acoustic
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shadows, and speckle noise [5]. Thus, the accurate delimitation of a given target
depends on the operator (anesthesiologist) experience [6].

The above problem can be minimized using automatic nerve-segmentation
systems, which are intended to assist the anesthesiologist with the aim of locat-
ing nerve structures in PNB procedures. Nevertheless, to build a system with
these specifications, it is necessary to access to the actual label, that is, we need
ultrasound images indicating which regions correspond to a nerve (usually, this
process is performed by an anesthesiologist) [1,6]. In practice, the above is con-
sidered as a problem since it is not possible for the specialists to accurately
identify nerve structures in an ultrasound image, considering that the speckle
noise and the artifacts difficult the delimitation of anatomical structures [7]. In
this sense, the obtained labels do not correspond to the Ground Truth but a
subjective interpretation (possibly noisy) given by the specialist based on his
experience and his training. For the automatic segmentation of nerve structures,
without the knowledge of the Ground Truth, a set of noisy annotations (manual
segmentation) from various specialists could be used. In this case, it is necessary
to use the manual segmentation provided by multiple experts with the aim of
building a segmentation model that allows to measure the performance of the
annotators based on the parametrization of the ultrasound images to deal with
the subjectivity presented in the labeled regions.

In the presence of multiple annotators, the labels from several experts have
been used in different ways with the aim of building automatic systems for nerve
segmentation. For example, in [6], the authors consider as the gold standard
the annotations from one specialist. On the other hand, in [1] the authors use
the Majority voting from the annotations as the ground truth. However, these
approaches have some problems, for instance, if we only use the labels from one
of the annotators, the segmentations results would be biased by the expertise of
the annotators. Similarly, in the Majority Voting approach, it is considered that
all the annotators are equally reliable, which is not common in real scenarios
[8]. Another way to deal with the problem of not having the gold standard
is to use a recent trend in machine learning named “Learning from multiple
annotators”. The area of learning with multiple annotators is relatively new;
its aim is to perform supervised learning task when the gold standard is not
available, and we just have access to multiple annotations provided by several
experts or annotators. This area has been applied to problems such as, regression
[9], classification [10], and sequence labeling [11].

In this paper, we present a method for the automatic segmentation of nerve
structures depicted in ultrasound images considering the scenario where the
ground truth is not available. In particular, we use two classification schemes
with multiple annotators aiming to combine the manual segmentation from dif-
ferent experts to reveal discriminant patterns associated with the nerve struc-
tures. One of them is based on Logistic Regression, where the annotator perfor-
mance depends only on the true label and is measured in terms of sensitivity
and specificity [12]. The second scheme is a model based on Logistic Regression,
where it is assumed that the annotator performance depends on both, the true
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label and the instance that the annotator is labeling [13]. We hypothesize that
by using classifications schemes considering that consider the non-availability of
the ground truth, it is possible to reduce the subjectivity present in the labeled
regions. There are a few works that consider the information of several annota-
tors to build nerve-segmentation systems [1,6]. However, these works use basic
schemes to deal with this information (majority voting or an approach where
only the information from one annotator is considered), these approaches are not
suitable since they consider that the experts have the same level of expertise.
In this sense, the main contribution of our work lies in to develop an automatic
nerve-segmentation system, which captures the segmentation expertise from dif-
ferent specialist considering a non-homogeneity in the performance of experts.
The obtained results show that our approach finds a suitable UI approxima-
tion by ensuring the identification of discriminative nerve patterns according
to the opinions given by multiple specialists. Indeed, our proposal outperforms
state-of-the-art approaches that carry out nerve segmentation in terms of a Dice
coefficient assessment.

2 Materials and Methods

2.1 Multi-annotator Classifications Schemes

For the training of a typical classification problem (i.e. a classification
scheme without considering multiple annotators) we dispose a training set
D = {(xi, ti)}Ni=1, with N samples, where xi is an instance known as the
D−dimensional feature vector and ti is the label associated to xi, which is
assumed as the “ground truth”. However, in this work, we take into account
the case where the ground-truth is not available for the training, and in con-
trast, we only have access to an amount of labels (possibly noisy) provided by
R experts o annotators [12]. In this regard, the training set in the context of
multiple annotators is D = {(xi,yi)}Ni=1, where yi = y1

i , . . . , y
R
i are the anno-

tations for the i-th sample given by the R annotators. In this work, we use two
classification schemes with multiple annotators to deal with the problem of auto-
matic segmentation of nerve structures. The following is a brief description of
these methods, where they establish a random variable z = [z1, . . . , zN ], which
represents the unknown ground-truth for the i-th sample.

Logistic regression with multiple annotators (LFC). We follow the
multi-annotator classification model proposed in [12]. The annotator perfor-
mance is measured in terms of sensitivity αr and specificity βr, where αr =
p (yr = 1|z = 1) , βr = p (yr = 0|z = 0) . Hence, we use the training dataset to
construct a multiple-annotator classification based on logistic regression [14].
In this sense, given the samples and the annotations, we need to estimate the
parameters associated with the performance of each annotator α =

[
α1, . . . , αR

]
,
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β =
[
β1, . . . , βR

]
, and the parameters associated with the classifier w. For esti-

mating these parameters, we employ an Expectation-Maximization (EM) algo-
rithm. The likelihood function is given as

p (D |θ) =
N∏

i=1

[
pi

R∏

r=1

(αr)(y
r
i ) (1 − αr)(1−yr

i ) + (1 − pi)
R∏

r=1

(βr)(1−yr
i ) (1 − βr)(y

r
i )

]
,

where θ = {α,β,w}, and pi is computed by means of a “Logistic Regression”
function [14]. The EM algorithm is performed from the following steps:

E-step: The conditional expectation of the log-likelihood yields

E[ln(p(D , z|θ))] =
N∑

i=1

E[zi] ln(aipi) + (1 − E[zi]) ln (bi(1 − pi)) ,

where ai =
R∏

r=1

(αr)(y
r
i ) (1 − αr)(1−yr

i ), bi =
R∏

r=1

(βr)(1−yr
i ) (1 − βr)(y

r
i ), and E[zi]

is the estimated ground truth which follows E[zi] = μi =
aipi

aipi + bi(1 − pi)
.

M-step: Given the estimated gold standard μi and the training data, we esti-
mate the parameters θ by maximizing the conditional expectation of the log-
likelihood computed in the E-step. The annotators performance parameters are
updated using

αr =
∑N

i=1 μiy
r
i∑N

i=1 μi

, βr =
∑N

i=1 (1 − μi) (1 − yr
i )∑N

i=1 (1 − μi)
.

Finally, the parameters related with the logistic regression classifier, can be cal-
culated by using similar equations to the single annotator context, where the
true labels are changed for soft labels given by μi. See [14].

Modeling annotator expertise: Learning when everybody knows about
something (MAE). We follow the multi-annotator classification schemes pro-
posed in [13]. This model is an extension of the proposed model in [12]. Unlike
the model LFC, the model MAE consider that the label given by the annotator
r depends on the unknown true label zi and the instance xi that he is labeling,
in this sense

p (yr
i |xi, zi) = (1 − ηr(xi))

|yr
i −zi| ηr(xi)1−|yr

i −zi|,

where ηr(xi) follows a Logistic regression model ηr(xi) =
(
1 + exp

(−λ�
r xi

))−1.
Given the dataset, we need to estimate the parameters associated with the per-
formance of each annotator Λ = [λ1, . . . ,λR] and the parameters associated with
the classifier w based on “Logistic Regression” [14]. For estimating these param-
eters, we employ an Expectation-Maximization (EM) algorithm. The likelihood
function is given as

p (D |φ) =

N∏

i=1

[
pi

R∏

r=1

(1− ηr(xi))
1−yr

i ηr(xi)
yr
i + (1− pi)

R∏

r=1

(1− ηr(xi))
yr
i ηr(xi)

1−yr
i

]
,
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where φ = {Λ,w}, and pi is computed by means of a “Logistic Regression”
function [14]. The EM algorithm is performed from the following steps:

E-step: The conditional expectation of the log-likelihood is defined as

E[ln(p(D , z|φ))] =
N∑

i=1

E[zi] ln(cipi) + (1 − E[zi]) ln (di(1 − pi)) ,

where ci =
R∏

r=1

(1 − ηr(xi))
1−yr

i ηr(xi)y
r
i , and di =

R∏

r=1

(1 − ηr(xi))
yr
i ηr(xi)1−yr

i ,

and E[zi] is the estimated ground truth which follows E[zi] = μi =
cipi

cipi + di(1 − pi)
.

M-step: Given the estimated gold standard μi and the training data, we esti-
mate the parameters φ by maximizing The conditional expectation of the log-
likelihood computed in the E-step. To compute the parameters λ related to the
model, we use gradient-based methods. Next we provided the first order derivate
w.r.t. λ

∂E[ln(p(D ,Z|θ))]
∂λr

=
N∑

i=1

(−1)y
r
i (1 − 2μi) ηr(xi) (1 − ηr(xi))xi

Finally, the parameters related with the logistic regression classifier can be cal-
culated by using similar equations to the single annotator context, where the
true labels are changed for soft labels given by μi. See [14].

3 Results and Discussions

Ultrasound imaging dataset: To validate the nerve segmentation approach
based on classification with multiple annotators, we use a dataset named UI-
UTP, which consists of recordings of ultrasound images from patients who under-
went regional anesthesia using the Peripheral nerve blocking procedure. This
dataset is composed of 48 ultrasound images from the ulnar nerve (21 images)
and median nerve (27 images). Each ultrasound image was collected using a
Sonosite Nano-Maxx device (the resolution of each image is 640×480 pixels).
Each image in the dataset was labeled by three specialists in anesthesiology to
indicate the location of the nerve structures.

Segmentation Scheme training and testing: A leave-one-out validation
scheme is employed to compute the system performance regarding the nerve
segmentation in the context of multiple annotators. The nerve segmentation
considering multiple experts comprises the following stages: First, we use Graph
Cuts Segmentation [15] to define a region of interest (ROI) in which the nerve
region is probably located. Then, a median filter is applied over the ROIs to
reduce the speckle noise effect while enhancing the UI quality. Then, each fil-
tered image is divided into different regions by using SLIC-superpixel [16], and
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each of these superpixel is parametrized from the non-linear Wavelet transform
(for details, see [6]). Now, in this work, the segmentation problem is considered as
a binary classification, where each parametrized superpixel is classified as nerve
or background. However, as we have previously pointed out, it is not possible
to obtain the ground truth (i.e. the labels indicating which superpixel is a nerve
region and what it is not) since in this case, the labels correspond to a subjec-
tive assessment given by an anesthesiologist. According to the above, we use two
schemes for binary classification in the context of multiple annotators, one of
them is a model based on Logistic Regression, where the annotator performance
depends on the true label and is measured in terms of sensitivity and specificity
[12] (LFC). The second scheme is a model based on Logistic Regression, where
it is assumed that the annotator performance depends on both, the true label
and the instance that the annotator is labeling [13] (MAE). Finally, we use a
methodology based on morphological operators aiming to improve the segmenta-
tions results (see [6]). The system performance is measured in terms of the Dice
coefficient (DC) that quantifies the overlap between the UI segmented based
on the proposed segmentation approach and the label given by the specialists.
In addition, we consider two common approaches to deal classification prob-
lems with multiple annotators, the first approach is to use and scheme based on
Logistic Regression, where the labels from each one of the annotators are consid-
ered as gold standard (LR-EX1, LR-EX2, LR-EX3); the second methodology
is based on Logistic Regression, where we consider as true labels the majority
voting from the annotations (LR-MV).

Obtained results: To visually compare the attained nerve identification in the
context of multiple experts, Fig. 1 exposes some segmentation results regarding
each multi-annotator classification approach. Overall, all classification methods
allow to identify relevant patterns to segment nerves from the UI. Nevertheless,
due to the absence of the true label, typical classifications methods (LR-EX1,
LR-EX2, LR-EX3, and LR-MV) fail in the complete identification of nerves
by generating false negatives (i.e., classify as background nerve regions). The
above is a significant issue since the anesthesiologist needs an accurate delim-
itation of the nerve structure aiming to define the point where the anesthetic
should be spread. Unlike these classification methods, our approach based on
multiple annotators (specifically MAE) reduces the number of false negatives
considerably in the segmented image offering a better identification of the nerve
structure. Table 1 shows the results of the morphological validation in terms of
the DC for the leave-one-out validation scheme. We perform a statistical signif-
icance analysis based on the equal mean test for the segmentation approaches
considered in this work. This test allows to determine which method provides a
higher performance in terms of the Dice coefficient. From the results exposed,
the segmentation scheme based on multiple annotators (specifically the multi-
ple annotators model proposed in [13]) outperforms state-of-the-art approaches
which are based on typical supervised learning schemes (i.e. supervised learn-
ing approaches without considering multiple annotators). These results can be
explained in the sense that the multiple annotators schemes are based on the
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Fig. 1. Segmentation results for an ulnar nerve. On the top from left to right, we show
the original image and the labels provided by the three experts. On the second row from
left to right, we expose the segmentation results provided by LR-EX1, LR-EX2, and
LR-EX3. Finally, on the bottom from left to right we show the segmentation results
for LR-MV, LFC, and MAE.

Table 1. Nerve segmentation validation in terms of the Dice coefficient.

Dice coefficient
μ ± σ

LR-Ex1 0.6380 ± 0.0035

LR-Ex2 0.6536 ± 0.0043

LR-Ex3 0.6304 ± 0.0042

LR-MV 0.6414 ± 0.0052

LFC [12] 0.6446 ± 0.0011

MAE [13] 0.6557 ± 0.0015

fact that the gold standard is not available for the training stage, where the true
label is estimated from the manual segmentations provided by different experts
in anesthesiology. In contrast, segmentation approaches based on typical super-
vised learning assume as a gold standard the manual segmentations from one
of the annotators, which implies that the classifier predictions will be biased
according to annotator expertise.

4 Conclusion

In this paper, we discuss a first attempt for the design of nerve-segmentation sys-
tems based on classification with multiple annotators. In this sense, we perform
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the nerve identification by considering the case where the ground truth is not
available. In fact, this consideration is not far from reality since the nerve iden-
tification in UI depends on the specialist expertise. So, we use multi-annotator
classification schemes to estimate the unavailable true label and the classifier
parameters jointly. We tested our strategy in a real-world nerve segmentation
dataset captured by “The Automatics Research Group-Universidad Tecnológica
de Pereira,” which holds UI images of ulnar and median nerves. The experimen-
tal results showed that the segmentation methodology based on the information
from different experts outperforms state-of-the-art alternatives for nerve seg-
mentation in terms of the Dice coefficients. Hence, the proposed method have
a better interpretation of the patterns associated with the nerves by combining
the manual segmentation given by multiple anesthesiologists. As future work,
authors plan to use more robust multi-annotators classification schemes (for
example approaches based on deep-learning) to improve further the quality of
the nerve segmentation.
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