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Abstract. Multilabel classification is a generalization of the traditional
unidimensional classification problem, the goal of multilabel classifica-
tion is to learn a function that maps instances into a set of relevant
labels. This article proposes an extension to linear discriminant analysis
in the context of multilabel classification. The new method is based on
Gram-Schmidt orthogonalization procedure. The theoretical basis and
underlying assumptions of the new model are described and the method
is experimentally evaluated on the Emotions data set for multilabel clas-
sification. The analysis of the empirical results support that this new
method is competitive and in some instances superior to the baseline.
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1 Introduction

Traditionally the classification task focuses on the estimation of a single out-
put variable. This is done through learning from a set of examples. These
instances are associated with a unique tag λi from a set of disjoint tags
L = {λ1, λ2, . . . , λn} [13]. If |L| = 2 the learning task is called a problem
of binary classification, where generally L = {λ,¬λ} indicates if an instance
belongs or not to the class indicated by the label. For the case where |L| > 2
the problem is called multiclass classification. The set of unique tags that can
be associated with an instance is also known as class variable [13].

Consider the m-dimensional input space X , with X = X1 × . . . × Xm, (Xi;
i = 1, . . . ,m), where Xi ∈ N (nominal features), ∨ ΩXi ∈ R (numeric features)
and L as the set of output tags. The learning task consists of finding a function h

h : X1 × · · · × Xm → L
(x1, . . . , xm) �→ λi ∈ L

such that h must be able to generalize correctly, in the sense of minimizing the
loss of expected prediction with respect to a specific loss function.

A natural generalization of the classical classification problem is the multi-
dimensional classification problem. In this case, the classifier is associated with
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multiple output variables. These variables can either be binary or multiclass
like in the classical problem. Depending on the a priori information that can
be obtained from these variables and the output type the following taxonomy
is used to classify these problems: multilabel, multi-dimensional or structured
output. This article focuses on the multilabel problem.

A multilabel classifier can be seen as generalization of the single-output clas-
sifier. In these classifiers the instances are associated with a set of labels L, where
L ⊂ L. However, in contrast with the traditional approach, the labels assigned
by the classifier are not mutually exclusive. Therefore, any instance in the data
set can be associated with more than one label. Historically, these classifiers were
motivated by problems in text classification and medical diagnosis.

In multilabel classification the learning task can be reformulated as finding
the function h

h : X1 × · · · × Xm → P(L)
(x1, . . . , xm) �→ L = {λr, . . . , λq} ⊆ L

where X1 × · · ·×Xm represents the input space and P(L) denotes the power set
of L (i.e. the set of all possible subsets). This function associates each example
with a set L = {λr, . . . , λq} of labels. The labels present in this subset of L are
called the relevant labels. Thus, the learning task is to find the function h such
that h minimizes the expected prediction loss for the label set [13].

An important assumption of this model is that the different class vari-
ables associated (either through manual or automatic labeling) for each of the
instances serve to improve the efficiency of the classifiers. This is because they
contain information that can be used to subdivide the space of original charac-
teristics and enhance its discriminating power ever more [14,19,20].

The problem of multilabel classification is an active area of research, recent
surveys demonstrate several challenges in multilabel classification. Some of these
include dealing with high dimensionality, the exploration of label correlations in
an efficient manner and the understanding of these correlations [6,17].

This article proposes a new method for multilabel classification based on
Linear Discriminant Analysis (LDA) [7] and Gram-Schmidt Orthogonalization
(GS) [4] procedure through QR Factorization [1]. While the idea of applying GS
in the context of LDA is not new (see for example: [2,3,18]), however none of
those works have been focused on solving the multilabel problem, instead they
deal with issues such as computational complexity and efficiency. On the other
hand, there have been various proposals of multilabel extensions for LDA [8–
10,15]. None of the papers found in the reviewed literature used an approach
similar to the one proposed in this article.

2 Proposed Method: ML-GS-LDA

The classical LDA method is based on the computation of the scatter matrices
Sw and Sb (the within class scatter matrix and the between class scatter matrix,
respectively) and the optimization of the following objective function:
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J(W ) = tr
(

WTSbW

WTSwW

)

The projection W ∗ which maximizes J(W ) is calculated through Singular Value
Decomposition (SVD) [7].

However, while this approach works for multiclass problems, it is still limited
to a single label. One possible extension dealing with multilabel classification
is through the definition of class-wise scatter matrices [15]. Another approach
centered on multilabel classification efficiency can be made through the use of two
successive QR factorization instead of conventional SVD and a clever application
of null spaces [10]. Both extensions empirically demonstrate that classification
performance can be improved by using multiple class labels together.

In this context, this article proposes a new method for multilabel classifica-
tion based on LDA. The proposed method is arguably simpler and easy to imple-
ment, though it could be slightly more expensive in terms of computational time,
basing itself on iterated LDA over different labels and Gram-Schmidt orthogo-
nalization. The method is described in Algorithm1, the details are given in the
next paragraph.

The proposed method works as follows, for all the included labels the classical
LDA projection matrix is built using the input data X and the corresponding
column from the matrix Y . These projections all have the same dimensionality
d, given by the number of eigenvectors selected, according to the parameter
Dim. In this case, since there are only two possible classes for each label, a

Algorithm 1. ML-GS-LDA
Input: X, matrix containing the data in rows; Y, matrix containing the labels associ-

ated with each data point in X; LabelOrder, a list indicating the order in which the
model must be trained (e.g. [0, 1, 2] means to predict the class using the information
from labels zero, one and two); Target, the classification target of the algorithm,
indicates the label that must be predicted; Dim, value indicating the number of
dimensions of each LDA projection.

Output: W, the projection matrix generated after successive LDA computation and
the application of the Gram-Schmidt procedure.

1: function ML-GS-LDA
2: W = null
3: for all Label in LabelOrder do
4: W’ = LDA(X, Y[Target, :], Dim)
5: if W == null then
6: W = W’
7: else
8: W = [W, W’]
9: end if

10: end for
11: return Gram-Schmidt(W)
12: end function
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value of Dim = 1 was assigned. The conditional inside the loop considers the
first iteration separately from the rest, indicating that when W is not initialized
it corresponds to the classical LDA projection matrix of the first label. The
matrices are concatenated in each iteration, forming the final matrix W of order
|A| × d · |C| where |A| is the number of attributes in the original data, d is the
dimensionality of each projection and |C| is the number of classes given by the
length of the LabelOrder parameter. Note that each of the individual projections
is orthogonal, however, the resulting matrix W is not necessarily orthogonal. So,
in order to guarantee the orthogonality (and therefore uncorrelatedness) of each
axis, the Gram-Schmidt procedure is applied to the matrix W . The resulting
matrix is returned and can be used to project the original data set onto the new
subspace.

Some observations need to be made about the underlying assumptions in the
proposed method. The first one is that orthogonality between a feature axis (in
terms of the covariance dot product) implies uncorrelatedness of those same axis
[11]. The second one is that the application of Gram-Schmidt orthogonalization
procedure on the concatenated projection basis generates an adequate projection
for this problem. And finally, the last assumption is that the generated projection
will mainly encode the information of the first label while at the same time
retaining the extra information from the auxiliary labels.

By using multiple information sources (i.e. a multilabel approach) and elim-
inating the correlation in this new subspace it is expected that there is improve-
ment in terms of classification accuracy, similar to how the use of Gram-Schmidt
in the context of classical linear regression produces some improvements in accu-
racy and uncorrelated regressors [5].

3 Methodology

To evaluate the proposed method the Emotions [12,16] data set was used. This
data set contains 593 instances with 72 numerical attributes. These attributes
represent 30 s from a musical piece fragment. The 72 attributes are obtained
through the application of different filters and transformations to each musical
fragment. Also, each instance can be associated with up to six labels correspond-
ing to different emotional states, see Table 1.

Table 1. Description of the labels contained in the Emotions data set.

Label Description #Examples

L1 Amazed-surprised 173

L2 Happy-pleased 166

L3 Relaxing-calm 264

L4 Quiet-still 148

L5 Sad-lonely 168

L6 Angry-fearful 189
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3.1 Validation

The method was evaluated using a 5-fold cross validation approach. For each
experiment PCA (Principal Component Analysis) was applied for a first stage
dimensionality reduction. Afterwards, for further dimensionality reduction either
the supervised method LDA or the proposed algorithm ML-GS-LDA were
applied. To obtain the performance for each label a Naive Bayes classifier was
used for each method. The parameters to define the best configuration for the
PCA dimension and the label ordering selection for the ML-GS-LDA algorithm
were performed using a wrapper method.

Two different approaches for ML-GS-LDA were evaluated with the purpose
of verifying the significance of the orderings of the labels on the ML-GS-LDA
algorithm and their impact on the performance of the classifier. The first one
considers combinations of the labels (i.e. the ordering does not matter) and
the second one considers permutations (i.e. the ordering matters). See line 3 of
Algorithm 1.

4 Results and Discussion

The obtained accuracy results are shown in Table 2. The analysis of these val-
ues shows a marginal increment in the classification accuracy for each label.
Also, by analyzing the labels selected for each projection some relationships and
dependencies between the different labels can be inferred.

Marginal improvements in classification accuracy can be found for all the six
labels, independently of the applied strategy (combinations or permutations).
The analysis of these results suggests that the combination of different LDA
projections, in conjunction with orthogonalization, could improve classification
accuracy in the multilabel problem.

The proposed algorithm can find dependencies and relationships between
the different labels, in the sense that the information obtained from their LDA
projection and subsequent orthogonalization allows for prediction of another
label.

Table 2. Results for the Emotions data set [13] for the PCA + LDA and PCA +
ML-GS-LDA and a Naive Bayes classifier.

Classifier Labels

L1 L2 L3 L4 L5 L6

PCA+LDA 80.95 ± 2.29

PCA: 15

73.20 ± 2.23

PCA: 30

73.68 ± 2.75

PCA: 45

88.87 ± 4.12

PCA: 35

83.31 ± 2.30

PCA: 55

79.26 ± 3.62

PCA: 20

PCA+ML+GS+LDA

combinations

82.13 ± 3.21

PCA: 20

L: (1, 5, 6)

74.38 ± 3.00

PCA: 30

L: (1, 3, 5)

76.37 ± 5.42

PCA: 20

L: (1, 2, 3, 4, 5)

90.06 ± 4.82

PCA: 35

L: (1, 4)

84.33 ± 2.80

PCA: 55

L: (2, 4, 5)

80.45 ± 4.15

PCA: 30

L: (1, 2, 4, 6)

PCA+ML+GS+LDA

permutations

82.13 ± 3.21

PCA: 20

L: (1, 5, 6)

76.24 ± 3.56

PCA: 50

L: (1, 3, 4, 2)

77.04 ± 5.27

PCA: 20

L: (1, 3, 4, 2, 6)

90.06 ± 4.02

PCA: 35

L: (5, 1, 4, 2)

84.33 ± 2.80

PCA: 55

L: (2, 4, 5)

82.64 ± 4.43

PCA: 30

L: (2, 4, 1, 6)
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A quick review of the relationships is described. However, an in-depth analysis
of these dependencies is beyond the scope of this work. The following relation-
ships were found:

– Label 1: In this case, both the combination and permutation approach have
the same optimal label ordering. According to this, L1 would be related with
L5 and L6. It is interesting to note that in both cases the target label is first
in the ordering.

– Label 2: In this case, the combination and permutation approach have dif-
ferent optimal label orderings. However, in both cases L1 and L3 are present,
while the difference between the two is the interchanging of L5 for L4 and L2,
resulting in a higher classification accuracy for the permutation approach. It
is interesting to note that the predicted label was found to give better results
when placed last in the ordering instead of being in the first position.

– Label 3: In this case, the results are similar, however L5 in the combination
approach has been replaced by L6 in the permutation approach. Also, the
ordering of L2, L3 and L4 has been changed for the permutation case. This
results in an increase in classification accuracy for this label.

– Label 4: In this case, the classification accuracy is the same for both cases,
however the label orderings are different. It is interesting to note that the label
ordering found by the combination approach is a subset of the one found by
the permutation approach. Also, while the average value is the same, by using
the permutation approach a lower variance was found.

– Label 5: In this case, both methods produce the same results. From this it
can be found that L5 is related with L2 and L4.

– Label 6: In this case, classification accuracy is higher for the permutation
case. However, the only difference between the methods is the label ordering,
since both sets use the same labels, this is interesting because it reveals the
importance of the ordering for finding the optimal classifier.

Based on the obtained results and the previous analysis, apart from the
accuracy gain discussed before the benefits from this proposal are two-fold:

– The search for the optimal label ordering provides a new way to study the
dependencies and relationships between the different labels. While this model
provides a basis for this analysis, the theoretical implications and properties of
these orderings must be further evaluated, both in terms of empirical analysis
and the mathematical properties associated with them.

– The final method is fast in comparison with other approaches, since the results
are obtained through a simple matrix multiplication and the application of
Naive Bayes. It is important to note the training phase and the search for the
optimal parametrization can require plenty of computational resources, how-
ever, this is true for all methods that require finding several hyper-parameters.

It is possible that through the application of another classifying scheme, such as
some variant of SVM better results could be obtained. However, the use of NB
has the aforementioned benefit of being more efficient in terms of computational
resources compared to SVM.
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5 Conclusions

This work has explored a novel generalization of the classical LDA method for
multilabel problems, this proposal is based on the Gram-Schmidt orthogonaliza-
tion procedure through QR factorization. The theoretical basis for this model
and its underlying assumptions have been exposed and the proposal has been
validated through experimental evaluation on the Emotions data set. The anal-
ysis of the empirical results support that this new method is competitive and in
some instances superior to the baseline.

One of the main benefits of the proposed algorithm is that it serves as an
exploration tool for label dependencies and relationships. An in-depth analysis,
both theoretical and empirical, of the relationships that this algorithm finds is
proposed as future work. Another important plus of this method is that it is
fast once the classifier has been trained. Since the resulting projection can be
obtained through the application of a simple matrix multiplication.

On the other hand, one of the key aspects of the method is the order of the
decomposition, which affects the obtained results. The election of the right order
is a challenge that must still be addressed. Also, experimental results show that
the results vary from label to label. The task of correctly exploiting these results
to provide the best global result is still pending and is considered as future
work. Comparison with other state of the art methods, such as deep learning
approaches for emotion recognition, is also considered as future work.

Finally, some limitations of the proposed method in its current form corre-
spond with the combinatorial optimization required to determine the optimal
multilabel combination. To approach this, a step-wise approach like the one
used in the process of finding the best regressors for linear regression or a greedy
strategy based on an easy to evaluate heuristic could be useful to find better
solutions, although optimality of the combinations would still be an open prob-
lem. Future work plans on dealing with the implementation of a modified version
of the algorithm that includes optimization routines and exhaustive evaluation
on multilabel data sets with different metrics.
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