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Abstract. Heterogeneous platforms provide a promising solution for
high-performance and energy-efficient computing applications. This paper pre-
sents our research on usage of heterogeneous platform for a floating-point
intensive kernel. We first introduce the floating-point intensive kernel from the
geographical information system. Then we analyze the FPGA designs generated
by the Intel FPGA SDK for OpenCL, and evaluate the kernel performance and
the floating-point error rate of the FPGA designs. Finally, we compare the
performance and energy efficiency of the kernel implementations on the Arria 10
FPGA, Intel’s Xeon Phi Knights Landing CPU, and NVIDIA’s Kepler GPU.
Our evaluation shows the energy efficiency of the single-precision kernel on the
FPGA is 1.35X better than on the CPU and the GPU, while the energy efficiency
of the double-precision kernel on the FPGA is 1.36X and 1.72X less than the
CPU and GPU, respectively.
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1 Introduction

Compared to central processing units (CPUs) and graphics processing units (GPUs),
field programmable gate arrays (FPGAs) have major advantages in reconfigurability
and performance achieved per watt. This development flow has been augmented with
high-level synthesis (HLS) flow that can convert programs written in a high-level
programming language to Hardware Description Language (HDL) [1]. Using
high-level programming languages such as C, C++, and OpenCL for FPGA-based
development could allow regular software developers, who have little FPGA knowl-
edge, to take advantage of the FPGA-based application acceleration.

OpenCL is an open-source standard for data-parallel heterogeneous computing,
which supports CPUs, GPUs, FPGAs, and other accelerators. OpenCL specifies
functionality that vendors need to implement for their hardware features and pro-
gramming interfaces. In addition, OpenCL makes it easier for a portable design across
multiple hardware platforms and allows developers to optimize the functions for a
specific architecture.

The Intel FPGA SDK for OpenCL supports their Cyclone-, Stratix-, and
Arria-series FPGA platforms [2–4]. Xilinx offers a complete SDAccel development
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environment for OpenCL-based application acceleration on their Kintex-series and
Virtex-7 FPGA products [5].

Recent publications [6–9] on optimizing OpenCL applications on FPGAs show that
there are few detailed analyses of the mapping of various floating-point operations to
FPGAs for a floating-point intensive kernel. The analysis and evaluation of mapping
floating-point operations described in a high-level programming language to hardware
are important because a user can optimize a design that enables the compiler to reduce
FPGA resource usage and increase performance.

To this end, this paper presents our research on the evaluation of a floating-point
intensive kernel compiled with the Intel FPGA SDK for OpenCL employing the
Nallatech 385A FPGA board. The analyses of this kernel reveal how the compiler
optimizes the single- and double-precision kernels and maps each floating-point
arithmetic operation in the kernel to the corresponding hardware floating-point
operator.

The kernel is representative of other floating-point intensive kernels. As far as the
authors know, it has not been evaluated previously on the FPGA-based computing
platform. In this paper, we first introduce the kernel identified in a geographical
information system (GIS) and analyze the FPGA designs generated by the compiler.
Then we measure the kernel execution time and the floating-point error rate of the
FPGA implementations. Finally, we compare the performance and energy efficiency of
the kernels on the Arria 10 FPGA, the Intel Xeon Phi Knights Landing CPU, and the
NVIDIA’s K80 GPU.

2 Background

As a brief overview of the OpenCL programming model, an OpenCL application
consists of host and kernel programs. Its host program is written in standard C/C++ that
runs on most modern microprocessors. The host allocates data arrays in the global
memory that will be read by the kernel. When the data are ready for the kernel, the host
launches the kernel that will be executed on the FPGA device(s). A kernel typically
executes computation by reading data from global memory as specified by the host,
processing it, and then writing the results back into global memory. When the results
are ready, they can be read by the host for validation and post-processing.

Intel and Xilinx websites provide OpenCL literature on implementation, low-level
optimization, and programming interfaces for their hardware features. In many cases,
an optimized kernel with loop unrolling, vectorization, and compute-unit duplication
can achieve better performance on FPGAs, but the resource usage of the resulting
implementations limits the degree of task and data parallelism. In addition, the modules
in the low-level kernel system architecture – including the memory access interface,
local memory usage, work-group dispatch, and the interconnection network – affect
kernel performance.
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3 Related Work

Underwood showed that the use of FPGAs is promising for running applications with
floating-point addition, multiplication and division [10]. Since then, FPGAs have been
gradually decreasing the gap to GPUs and many-core CPUs for particular applications
in terms of peak performance, power consumption, and sustained performance. [11].

In [12], the authors showed that the performance of the double-precision
floating-point matrix multiplication on FPGAs has a 3.48X improvement over that
of the processor, while the power per GFLOP of the FPGA is 7.64X lower than that of
the processor. In addition, the FPGA slices of the 64-bit floating-point addition unit and
multiplication unit is on average 2.5X and 3.1X more than those of the 32-bit
floating-point units, respectively. Due to the FPGA size constraint, the authors only
studied the floating-point add and multiply units.

In [13], the authors presented application characteristics to FPGA, CPU, and GPU
platform mapping using three applications. For their future work, they suggested a
direct comparison between CUDA and a high-level language for FPGAs.

In [6], the authors demonstrated that the OpenCL-based FPGA implementation of a
fractal encoding kernel is 3X and 114X faster than a GPU and a multi-core CPU,
respectively, while consuming 12% and 19% of the power, respectively. They com-
pared the results on Altera Stratix IV 530 and Stratix V A7 FPGAs with a NVIDIA
Fermi C2075, a 40 nm GPU; and an Intel Xeon W3690 host processor, a 32 nm CPU.
Our FPGA results on the Arria 10 GX1150 are compared against the NVIDIA K80, a
28 nm GPU; and an Intel Xeon Phi Knights Landing 7210, a 14 nm CPU. This takes
into account technological advances in the hardware platforms.

In [9], the authors implemented the Monte Carlo simulations option pricing with
three HLS tools from Altera, Xilinx, and Maxeler, and compared the results among
FPGA, CPU, and GPU accelerator platforms. Their results showed that the HLS tools
are suited to accelerating parallel-friendly algorithms. The study, however, didn’t
analyze how floating-point operators in the kernel are implemented on each FPGA
board.

The OpenCL kernels in the CHO benchmark [14] contain implementations of
IEEE-standard double-precision floating-point operations using 64-bit integers, but
none of the kernels have floating-point computations. For a subset of the
OpenCL-based Rodinia benchmark suite, the authors achieved 3.4X greater energy
efficiency using a Stratix V FPGA in comparison to a NVIDIA K20c GPU [8]. Due to
the compiler and board support package issues for their Arria-10 FPGA board at the
time, the results may not reflect the best performance for each kernel.

A key to efficient FPGA implementation for complicated floating-point operations
is to use multiplier-based algorithms to leverage the large amount of hardened DSP
resources integrated into the FPGA devices [15]. For example, Arria 10 FPGAs—
Intel’s first FPGAs that natively support single-precision floating-point computation
using dedicated hardened circuitry—delivers 3.8X increased performance and 3.6X
better energy efficiency than the Stratix V results for the SGEMM kernel [16].

When implementing real-word large floating-point functions on an FPGA, a gen-
eral rule of thumb is that the clock speed of a design implementation would degrade as

666 Z. Jin et al.



Fig. 1. Pseudocodes for the geodesic distance kernel.
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FPGA resource utilization rises above 70–80%. This high-resource utilization often
requires more effort spent on placement, routing, and timing optimization. Intel FPGA
SDK for OpenCL version 16.0.2 Pro Prime, for example, fails to generate FPGA
implementations for two kernels in the CHO benchmark due to routing congestion [17].
In addition, floating-point results generally do not strictly match across different
heterogeneous computing platforms. For example, Leeser et al. give an example of the
numerical accuracy difference in the sequential and parallel versions of a floating-point
intensive program [18] when analyzing the behavior of an OpenCL floating-point
benchmark on different heterogeneous architectures.

4 OpenCL Kernel Implementation

4.1 Kernel Description

The geodesic distance kernel calculates the distance between two geographic coordi-
nates on the earth’s surface. Earth’s shape is modelled as an ellipsoid. The shortest
distance between two points along the surface of an ellipsoid is along the geodesic. The
methods for computing the geodesic distance are available in GIS, software libraries,
standalone utilities, and online tools [19]. The OpenCL kernel is based on the
open-source implementation [20] of the solution to the inverse geodesic problem [21].

Figure 1 presents the pseudocodes for the kernel. Each coordinate of a point is
represented as latitude and longitude in degrees. The default type of the coordinate is
double-precision floating-point type. The kernel is composed of three building blocks
(BB0, BB1 and BB2) annotated in Fig. 1, and is floating-point intensive with more
than 100 floating-point arithmetic operations.

4.2 Analyses of Kernel Implementations

The Intel FPGA SDK for OpenCL compiler generates three block modules in Ver-
ilog HDL corresponding to the three building blocks in the kernel. Table 1 shows the
number of double-precision floating-point operator instances in the Verilog HDL codes
generated by the compiler without any floating-point optimization options enabled.
From the arithmetic expressions in the BB0, the compiler instantiates four divide
operators (dp_div), two square root operators (dp_sqrt) and two combined sine and
cosine operators (dp_sincos) in the HDL library of the Intel FPGA SDK for OpenCL.
There are only 12 multiplications in the BB0, but the number of instantiated multipliers
(dp_mul) is 13. The generated Verilog HDL code reveals that the compiler performs a
global optimization to include the multiplication “su1 * cu2” from the BB1, as “su1”,
“cu2”, and their product have no dependency with other variables in the BB1.

For the BB1, the compiler produces the expected number of operators for sincos,
atan2, and sqrt operations. The compiler, however, instantiates 18 multipliers, less than
the number of multiplications in the expressions. The compiler optimizes away the
multiplications in “cz * 2.0” and “−3.0 * c2a”. For the divide operations, the compiler
instantiates two dividers and converts the “divide by 16.0” operation to an adjustment
to the exponent of the result.
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For the BB2, the compiler attempts to optimize away the “multiply by constant”
operations and is able to factor out the common product “x * x” in the block.
Therefore, the compiler instantiates 13 multiply operators. For the divide operations,
the compiler does not optimize away the “x/6.0”, as “x/6” is not precisely equivalent to
“x * 1/6.0”. Therefore, three dividers are instantiated.

Overall, the compiler instantiates 44 multiply, nine divide, three sincos, one atan2,
and four square root operators. It does not instantiate other floating-point operators
from the HDL IP library. Instead, they are directly implemented using combinational
and sequential logics. While the compiler supports the optimization option of replacing
a * b + c with a multiply-and-add (MAD) operator, a double-precision MAD operator
is not available in the IP library.

The Intel FPGA OpenCL programming guide [22] describes how users can reduce
the amount of floating-point hardware resources with the “–fpc” option of the compiler
command. The option removes floating-point rounding options and conversions
whenever possible.

Table 2 shows the number of double-precision floating-point operators of each type
instantiated by the compiler when using the optimization option. The option removes
intermediary roundings and conversions when possible and changes the rounding
modes to round towards zero for multiply and add operations. Compared to the results
in Table 1, the option directs the compiler to instantiate 44 54 � 54-bit integer mul-
tiply operators because mantissa multiplication requires a 54 � 54-bit hardware
multiplier.

While another floating-point optimization option, “–fp_relaxed”, can lead to more
efficient hardware resource usage by relaxing the order of arithmetic floating-point
operations, the FPGA resource usage report does not show resource reduction for the
kernel.

For the single-precision floating-point kernel, Table 3 shows the number of oper-
ators of each type instantiated by the compiler without any floating-point optimization
options enabled. The compiler instantiates multiply (sp_mul), add (sp_add), subtract
(sp_sub), and compare (sp_cmp) operators from the IP library. The compiler optimizes
the multiply and add operations with multadd (a * b + c) and dot2 (a * b + c * d)
operators. Compared to the double-precision implementations, the compiler can gen-
erate high-performance hardened floating-point implementations by taking advantage

Table 2. Number of double-precision floating-
point operators instantiated by the compiler using
option “–fpc”

Operator BB0 BB1 BB2 Total

dp_div 4 2 3 9

dp_sincos 2 1 0 3
dp_atan2 0 1 0 1

dp_sqrt 2 1 1 4
int_mul 13 18 13 44

Table 1. Number of double-precision floating-
point operators instantiated by the compiler without
using floating-point optimization

Operator BB0 BB1 BB2 Total

dp_mul 13 18 13 44

dp_div 4 2 3 9
dp_sincos 2 1 0 3

dp_atan2 0 1 0 1
dp_sqrt 2 1 1 4
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of the native floating-point operators offered by Arria 10 FPGA devices [23]. The
compiler, however, does not discover additional multiply and add operations using the
“-cl-mad-enable” optimization flag. When the optimization option “–fpc” or “–
fp-relaxed” is enabled for the single-precision floating-point kernel, the compiler may
ignore the option and generate the same Verilog HDL codes.

5 Experimental Results

5.1 Experimental Setup

We chose the Intel Xeon Phi Knights Landing (KNL) 7210 processor with 64 cores and
four threads per core as the target CPU, with high-bandwidth on-package memory in
cache mode. The program is compiled using an Intel C compiler, version 2018 Beta,
with the “-O3” option, OpenMP, and AVX-512 SIMD instruction enabled. Its system
thermal design power is 215 W, and its idle CPU package power is approximately
60 W [24].

We chose the NVIDIA K80 with 2,496 cores as the target GPU. Its peak perfor-
mance is 2.8 TFLOPS for double-precision, and 0.95 TFLOPS for single-precision.
The GPU’s power limit is 149 W with an idle power of 74.15 W with persistence mode
enabled. The program is compiled with CUDA Toolkit 7.5.

We used the Intel’s FPGA SDK for OpenCL version 16.0.2 Pro Prime to compile
the OpenCL kernels into the hardware configuration files. The target FPGA board is a
Nallatech 385A, a PCIe-based FPGA accelerator card that features an Arria 10
GX1150 FPGA device, PCIe x8 Generation 3 host interface, and two banks of 4 GB
DDR3 memory. The theoretical peak floating-point performance of the Arria10 chip is
1.5 TFLOPS, and the theoretical peak memory bandwidth is approximately 34 GB/s.
The FPGA board’s idle power is 27.3 W.

The input test data are retrieved from Maxmind’s world cities database [25] that
includes city, region, country, latitude, and longitude. In our experiment, we extracted
221 cities with unique locations around the world. We chose four cities (Mumbai,

Table 3. Number of single-precision floating-point operators instantiated by the compiler.

Operator BB0 BB1 BB2 Total

sp_mul 13 16 13 42
sp_add 1 4 6 11
sp_sub 1 4 4 9
sp_multadd 2 6 3 11
sp_div 4 2 3 9
sp_sincos 2 1 0 3
sp_dot2 0 1 0 1
sp_atan2 0 1 0 1
sp_sqrt 2 1 1 4
sp_cmp 0 2 0 2
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Sydney, Federal District Mexico, and London) from which the kernel computed dis-
tances to each of the 221 cities.

5.2 Resource Usage, Performance, and Power

Tables 4 and 5 show the FPGA resource usage of double- and single-precision
implementations of the kernel respectively. Replication of the compute unit is repre-
sented as “cuX”, where X indicates the replication times. The maximum frequency
(Fmax) of the double-precision kernels is approximately 230 MHz. Since each com-
pute unit requires 515 DSPs, and there are a total of 1,518 DSPs on the target device,
only two duplicate kernels (cu2) can be implemented. The approximate 30% logic
utilization for each kernel also constrains the number of duplicate kernels. Compared to
the double-precision floating-point kernel, the single-precision version can accommo-
date nine duplicate compute units (cu9), as shown in Table 5. However, the Fmax
decreases from 280 MHz to 212 MHz, as the number of compute units increase from
one to nine.

The kernel execution time is a performance metric that measures the execution time
of a kernel on an FPGA device. Figure 2 shows that the kernel execution time of a
single double-precision compute unit is 198.9 ms and 196.9 ms for cu1 (without –fpc)
and cu1(–fpc), respectively. For two compute units, the kernel execution time depends
on the local work size. When the local work size ranges from 24 to 220, the kernel
execution time reaches the minimum values of 100.5 ms and 103.5 ms, respectively.

For one single-precision compute unit (cu1), as shown in Fig. 3, the execution time
of the kernel is 75 ms, 62% less than the execution time of the double-precision kernel.
For multiple compute units, the kernel execution time also depends on the local work
size. The kernel execution time reaches the minimum values of 21.1 ms for cu4 when
the local work size is 214, and 13 ms for cu9 when the local work size is 28.

The FPGA power consumption results of the double- and single-precision
floating-point kernel are shown in Figs. 4 and 5, respectively. When there is one
compute unit, the power is 35.6 W and 34.7 W for the double-precision floating-point
kernel and its resource-optimized version, respectively. The power of one
single-precision floating-point kernel is only 30.7 W. The power increases to the

Table 4. Resource usage and maximum frequency
of the double-precision kernel implementations.

cu1 cu1 (fpc) cu2 cu2 (fpc)

Logic
utilization

36% 28% 61% 45%

Memory bits 14% 14% 22% 21%
RAM blocks 25% 25% 44% 38%
#DSPs 515 515 1030 1030
Fmax (MHz) 230 233 227 221

Table 5. Resource usage and maximum
frequency of the single-precision kernel
implementations.

cu1 cu4 cu9

Logic
utilization

15% 28% 49%

Memory bits 8% 12% 17%
RAM blocks 18% 35% 63%
#DSPs 160 640 1440
Fmax (MHz) 280 255 212
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maximum 44 W for two double-precision compute units and a maximum of 41.7 W for
nine single-precision compute units. While reducing the FPGA resource usage can
effectively reduce the power, the results show that power consumption is also related to
local work size for multiple compute units.

6 Comparison of CPU, GPU, and FPGA Results

In our experiment, the execution time of the kernel averages over 256 iterations.
The CPU power is measured with an in-house energy trace utility, the GPU power is
measured with the NVIDIA Management Library, and the FPGA power is measured

Fig. 2. Kernel execution time of the double-
precision implementations. The local work
size in the x axis indicates 2local work size.

Fig. 3. Kernel execution time of the single-
precision implementations. The local work size
in the x axis indicates 2local work size.

Fig. 4. Power consumption of the double-
precision kernel implementations. The local
work size in the x axis indicates 2local work size.

Fig. 5. Power consumption of the single-
precision kernel implementations. The local
work size in the x axis indicates 2local work size.
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with Nallatech’s board support package. For the GPU implementations, we use stan-
dard math functions instead of floating-point intrinsic functions [26]. In addition, we do
not employ any floating-point optimizations provided by the CPU and GPU compilers.

As shown in Table 6, the CPU consumes the highest power (190 W), the FPGA the
lowest power (44 W). Due to the DSP and logic resource constraints on the FPGA
device, its execution time is more than 5X slower than the CPU and GPU for the
double-precision kernel, and less than 3.25X slower for the single-precision kernel. The
execution time on the GPU and CPU differ by approximately 1 ms for each kernel.

We define energy efficiency as the number of normalized distance calculations in
millions in a second per watt:

Energy efficiency ¼ n
kernel time�maximum power � 1:0E6

ð1Þ

where n is the normalized size of the input data (i.e., a pair of double-precision
coordinates equivalent to two pairs of single-precision coordinates).

As shown in Fig. 6, the GPU has the best energy efficiency (6.51) for the
double-precision kernel, while the FPGA has the best energy efficiency (15.36) for the
single-precision kernel. The energy efficiency of the single-precision kernel is better
than that of the double-precision kernel on each platform. The energy efficiency of the
single-precision kernel on the FPGA is 1.35X better than the K80 and KNL7210, while
the energy efficiency of the double-precision kernel on the FPGA is 1.36X and 1.72X
less than the CPU and GPU, respectively.

Table 6. Performance and energy efficiency of CPU, GPU and FPGA for the double-precision
(DP) and single-precision (SP) kernels.

CPUDP CPUSP GPUDP GPUSP FPGADP FPGASP

Execution time (ms) 18.3 4 17.7 5.4 100.5 13
Maximum power (W) 190 190 145.5 136.7 44 42

Fig. 6. Million distance calculations per watt for the single-precision and double-precision
kernels on the three platforms.
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7 Conclusion

We introduce the floating-point intensive geodesic distance kernel, analyze the FPGA
designs generated by the compiler, and evaluate the kernel performance, resource
usage, and error rate for the FPGA implementations. Two compute units can be
realized for the double-precision version of the kernel on the Arria 10 GX1150, while
nine can be used for the single-precision version. Single-precision floating-point
computation is suitable for the current generation of FPGA devices, based on FPGA
performance, resource usage, and energy efficiency of single- and double-precision
floating-point kernel implementations.

In the case of the geodesic distance kernel, the energy efficiency of the
single-precision kernel is 1.35X better than the GPU and CPU, while the energy
efficiency of the double-precision kernel is 1.36X and 1.72X less.

The FPGA results are promising as the upcoming 14-nm Stratix 10 GX FPGA
devices are power aware [27] and provide more DSPs, memory, and adaptive logic
resources [28]. The GX 2800 device, for example, has 933,120 ALMs, 5,760 DSPs and
11,721 M20 memory blocks, which will allow more than double the compute units to
be implemented for the kernel.
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