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Abstract. Cloud Functions, often called Function-as-a-Service (FaaS),
pioneered by AWS Lambda, are an increasingly popular method of run-
ning distributed applications. As in other cloud offerings, cloud func-
tions are heterogeneous, due to different underlying hardware, runtime
systems, as well as resource management and billing models. In this
paper, we focus on performance evaluation of cloud functions, taking
into account heterogeneity aspects. We developed a cloud function bench-
marking framework, consisting of one suite based on Serverless Frame-
work, and one based on HyperFlow. We deployed the CPU-intensive
benchmarks: Mersenne Twister and Linpack, and evaluated all the major
cloud function providers: AWS Lambda, Azure Functions, Google Cloud
Functions and IBM OpenWhisk. We make our results available online
and continuously updated. We report on the initial results of the perfor-
mance evaluation and we discuss the discovered insights on the resource
allocation policies.
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1 Introduction

Cloud Functions, pioneered by AWS Lambda, are becoming an increasingly pop-
ular method of running distributed applications. They form a new paradigm,
often called Function-as-a-Service (FaaS) or serverless computing. Cloud func-
tions allow the developers to deploy their code in the form of a function to the
cloud provider, and the infrastructure is responsible for the execution, resource
provisioning and automatic scaling of the runtime environment. Resource usage
is usually metered with millisecond accuracy and the billing is per every 100 ms
of CPU time used. Cloud functions are typically executed in a Node.js environ-
ment, but they also allow running custom binary code, which gives an opportu-
nity for using them not only for Web or event-driven applications, but also for
some compute-intensive tasks, as presented in our earlier work [5].

As in other cloud offerings, cloud functions are heterogeneous in nature, due
to various underlying hardware, different underlying runtime systems, as well as
resource management and billing models. For example, most providers use Linux
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as a hosting OS, but Azure functions run on Windows. This heterogeneity is in
principle hidden from the developer by using the common Node.js environment,
which is platform-independent, but again various providers have different ver-
sions of Node (as of May 2017: for AWS Lambda – Node 6.10, for Google Cloud
Functions – Node 6.9.1, for IBM Bluemix – Node 6.9.1, for Azure – 6.5.0.). More-
over, even though there is a common “function” abstraction for all the providers,
there is no single standard API.

In this paper, we focus on performance evaluation of cloud functions and
we show how we faced various heterogeneity challenges. We have developed a
framework for performance evaluation of cloud functions and applied it to all
the major cloud function providers: AWS Lambda, Azure Functions, Google
Cloud Functions (GCF) and IBM OpenWhisk. Moreover, we used our existing
scientific workflow engine HyperFlow [1] which has been recently extended to
support cloud functions [5] to run parallel workflow benchmarks. We report on
the initial results of the performance evaluation and we discuss the discovered
insights on the resource allocation policies.

The paper is organized as follows. Section 2 discusses the related work on
cloud benchmarking. In Sect. 3, we outline our framework, while in Sect. 4, we
give the details of the experiment setup. Section 5 presents and discusses the
results, while Sect. 6 gives a summary and outlines the future work.

2 Related Work

Cloud performance evaluation, including heterogeneous infrastructures has been
subject of previous research. An excellent example is in [2], where multiple clouds
are compared from the perspective of many-task computing applications. Sev-
eral hypotheses regarding performance of public clouds are discussed in a com-
prehensive study presented in [3]. More recent studies focus e.g. on burstable
[4] instances, which are cheaper than regular instances but have varying per-
formance and reliability characteristics. Performance of alternative cloud solu-
tions such as Platform-as-a-Service (PaaS) has also been analyzed. E.g. [6,8]
focused on Google App Engine from the perspective of CPU-intensive scientific
applications.

A detailed performance and cost comparison of traditional clouds with
microservices and the AWS Lambda serverless architecture is presented in [10],
using an enterprise application. Similarly, in [11] the authors discuss the advan-
tages of using cloud services and AWS Lambda for systems that require higher
resilience. An interesting discussion of serverless paradigm is given in [7], where
the case studies are blogging and media management application. An example
of price and performance of cloud functions is provided also in [9], describing
Snafu, a new implementation of FaaS model, which can be deployed in a Docker
cluster on AWS. Its performance and cost is compared with AWS Lambda using
a recursive Fibonacci cloud function benchmark.

Up to our knowledge, heterogeneous cloud functions have not been compre-
hensively studied yet, which motivates this research.
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Fig. 1. Architecure of the cloud functions benchmarking framework based on Serverless
Framework

3 Benchmarking Framework for Cloud Functions

For benchmarking cloud function providers, we used two frameworks. The first
one is our new suite, designed specifically for this research, based on Serverless
Framework. The second one uses our HyperFlow workflow engine [1,5].

3.1 Suite Based on Serverless Framework

The objective of this benchmarking suite is to execute and gather performance
results of heterogeneous cloud function benchmarks over a long period of time.
The suite has to run as a permanent service and execute selected benchmarks
periodically. The results are then stored and available for examination. Our goal
was to automate functions deployment as much as possible to improve results
reproducibility. The architecture of the suite is shown in Fig. 1.

In order to deploy our benchmark suite we have used the Serverless Frame-
work1. It provides a uniform way of setting up cloud functions deployment and
supports, at the time of writing, AWS Lambda, IBM OpenWhisk and Azure
Functions natively and Google Cloud Functions through an official plugin. In
order to streamline our data taking process, we automated code deployment
even further by setting up project on Travis continuous integration (CI), so that
the code is automatically deployed on each cloud whenever we push new code to
the Git repository. This also simplified security credentials management, since
we do not need to distribute deployment credentials for each provider.

To address the heterogeneity of runtime environments underlying cloud func-
tions, we have created dedicated wrappers for native binary that was executed
by the function. We have used Docker to build binaries compatible with target
environments. For Linux based environments, we use amazonlinux image to build
a static binary that is compatible with AWS Lambda, Google Cloud Functions
and IBM OpenWhisk. Azure Functions run in a Windows-based environment,
thus it requires a separate binary. We used Dockcross2 project that provides a
suite of Docker images with cross-compilers, which includes a Windows target.

1 https://serverless.com.
2 https://github.com/dockcross/dockcross.

https://serverless.com
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The Serverless Framework is able to deploy functions with all the necessary
companion services (e.g. HTTP endpoint). However, we still had to adapt our
code slightly for each provider, since the required API is different. For instance,
AWS Lambda requires a callback when a function result is ready, while IBM
OpenWhisk requires to return a Promise for asynchronous functions. The cloud
platforms also differ in how $PATH and current working directory are handled.

The benchmarks results are sent to the InfluxDB time series database. We
have also setup Grafana for convenient access to benchmark results. We imple-
mented our suite in Elixir and Node.js. The source code is available on GitHub3.

3.2 Suite Based on HyperFlow

For running parallel benchmarking experiments we adapted HyperFlow [1] work-
flow engine. HyperFlow was earlier integrated with GCF [5], and for this work
it was extended to support AWS Lambda. HyperFlow is a lightweight workflow
engine based on Node.js and it can orchestrate complex large-scale scientific
workflows, including directed acyclic graphs (DAG).

For the purpose of running the benchmarks, we used a set of pre-generated
DAGs of the fork-join pattern: the first task is a fork task which does not perform
any job, it is followed by N identical parallel children of benchmark tasks running
the actual computation, which in turn are followed by a single join task which
plays the role of a final synchronization barrier. Such graphs are typical for
scientific workflows, which often include such parallel stages (bag of tasks), and
moreover are convenient for execution of multiple benchmark runs in parallel.

In the case of HyperFlow, the cloud function running on the provider side is
a JavaScript wrapper (HyperFlow executor), which runs the actual benchmark,
measures the time and sends the results to the cloud storage, such as S3 or Cloud
Storage, depending on the cloud provider.

4 Experiment Setup

We configured our frameworks with two types of CPU-intensive benchmarks,
one focused on integer and the other on floating-point performance.

4.1 Configuration of the Serverless Benchmarking Suite

In this experiment we used a random number generator, as an example of an
integer-based CPU-intensive benchmark. Such generators are key in many sci-
entific appliations, such as Monte Carlo methods, which are good potential can-
didates for running as cloud functions.

Specifically, the cloud function is a JavaScript wrapper around the binary
benchmark, which is a program written in C. We used a popular Mersenne
Twister (MT19937) random number generator algorithm. The benchmark runs

3 https://github.com/kfigiela/cloud-functions.

https://github.com/kfigiela/cloud-functions
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approximately 16.7 milion iterations of the algorithm using a fixed seed number
during each run and provides reproducible load.

We measure the execution time tb of the binary benchmark from within the
JavaScript wrapper that is running on serverless infrastructure, and the total
request processing time tr on the client side. We decided to deploy our client
outside the clouds that were subject to examination. The client was deployed
on a bare-metal ARM machine hosted in Scaleway cloud in Paris datacenter.
The benchmark was executed for each provider every 5 min. We took multiple
measurements for different memory sizes available: for AWS Lambda – 128,
256, 512, 1024, 1536 MB, for Google Cloud Functions – 128, 256, 512, 1024,
2048 MB, for IBM OpenWhisk – 128, 256, 512 MB. Azure Functions do not
provide a choice on function size and the memory is allocated dynamically. The
measurements: binary execution time tb and request processing time tr were sent
to InfluxDB by the client. Since the API Gateway used in conjunction with AWS
Lambda restricts request processing time to 30 s, we were not able to measure tr
for 128 MB Lambdas. Although the requests timeout on the API Gateway, the
function completes execution. In this case, the function reports tb time directly
to InfluxDB.

On AWS Lambda functions were deployed in eu-west-1 region, on GCF func-
tions were deployed in us-central1 region, on IBM OpenWhisk functions were
deployed in US South region and on Azure function was deployed in US West
region. Such setup results from the fact that not all of the providers offer cloud
functions in all their regions yet.

We started collecting data on April 18, 2017, and the data used in this paper
include the values collected till May 11, 2017.

4.2 Configuration of HyperFlow Suite

As a benchmark we used the HPL Linpack4, which is probably the most popular
CPU-intensive benchmark focusing on the floating point performance. It solves
a dense linear system of equations in double precision and returns the results in
GFlops. To deploy the Linpack on multiple cloud functions, we used the binary
distribution from Intel MKL5, version mklb p 2017.3, which has binaries for
Linux and Windows.

As benchmark workflows we generated a set of fork-join DAGs, with paral-
lelism N = [10, 20, ..., 100], thus it allowed us to run up to 100 Linpack tasks
in parallel. Please note that in this setup all the Linpack benchmarks run inde-
pendently, since cloud functions cannot communicate with each other, so this
configuration differs from the typical Linpack runs in HPC centers which use
MPI. Our goal is to measure the performance of individual cloud functions and
the potential overheads interference between parallel executions.

The Linpack was configured to run using the problem size (number of equa-
tions) of s ∈ {1000, 1500, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 15000}.

4 http://www.netlib.org/benchmark/hpl/.
5 https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite.

http://www.netlib.org/benchmark/hpl/
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Not all of these sizes are possible to run on functions with smaller memory, e.g.
4000 × 4000× 8 Bytes = 128 MB, so the benchmark stops when it cannot allocate
enough memory, reporting the best performance pf achieved (in GFlops).

We run the Linpack workflows for each N on all the possible memory sizes
available on GCF (128, 256, 512, 1024, 2048 MB) and on AWS Lambda on sizes
from 128 to 1536 with increments of 64 MB.

On AWS Lambda functions were deployed in eu-west-1 region, on GCF func-
tions were deployed in us-central1 region.

5 Performance Evaluation Results

Our benchmarks from the serverless suite run permanently and the original unfil-
tered data as well as current values are available publicly on our website6. They
include also selected summary statistics and basic histograms. The data can be
exported in CSV format, and we included the data in the GitHub repository.

Selected results are presented in the following Subsects. 5.1 and 5.2, while
the results of the Linpack runs using HyperFlow are given in Sect. 5.3.

5.1 Integer Performance Evaluation

The results of the integer benchmarks using Mersenne Twister random generator
are presented in Fig. 2. They are shown as histograms, grouped by providers and
function size. They give us interesting observations about the resource allocation
policies of cloud providers.

Firstly, the performance of AWS Lambda is fairly consistent, and agrees with
the documentation which states that the CPU allocation is proportional to the
function size (memory). On the other hand, Google cloud functions execution
time have multimodal distributions with higher dispersion. For example, for the
256 MB function, the execution time is most often around 27 s, but there is
another peak around 20 s, coinciding with the faster 512 MB function. Similarly,
the distribution for the slowest 128 MB function has multiple peaks, overlapping
with faster functions and reaching even the performance of the fastest 2048 MB
function. This suggests that GCF does not enforce strictly the performance lim-
its, and opportunistically invokes smaller functions using the faster resources.

Regarding IBM Bluemix, the performance does not depend on the function
size, and the distribution is quite narrow, as in the case of AWS. On the other
hand, the performance of Azure has much wider distribution, and the average
execution times are relatively slower. This can be attributed to different hard-
ware, but also to the underlying operating system (Windows) and virtualization.

5.2 Overheads Evaluation

By measuring the binary execution time tb inside the functions as well as
the request processing time tr (as seen from the client), we can also obtain
6 http://cloud-functions.icsr.agh.edu.pl.

http://cloud-functions.icsr.agh.edu.pl
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Fig. 2. Histograms of integer-based MT random number generator benchmark execu-
tion time vs. cloud function size. In the case of Azure memory is allocated dynamically.
(Color figure online)

a rough estimate on total overhead to = tr − tb. The overhead includes: net-
work latency, platform routing and scheduling overheads. Endpoints exposed by
cloud providers are secured with HTTPS protocol. We warmed up the connection
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Fig. 3. Distribution of to overheads for cloud function providers.

before performing each measurement, so that we were able to exclude the TLS
handshake from tr. Unfortunately, we could not measure the network latency to
the clouds as AWS and Google provide access to functions via CDN infrastruc-
ture. The average round trip latency (ping) to OpenWhisk was 117 ms and 155
ms to Azure (Fig. 3).

Histograms of to are presented in Fig. 2. One may observe that overhead is
stable with a few outliers. However, for Bluemix one may see that there are two
peaks in the distribution.

Furthermore, we measured tr for requests targeting an invalid endpoint. This
gives a hint on network latency under the assumption that invalid requests are
terminated in an efficient way. The average results were consistent with typical
network latency: for AWS Lambda – 43 ms, for Google Cloud Functions – 150
ms, for IBM Bluemix – 130 ms. However, for Azure the latency measured that
way was 439 ms which is significantly larger than the network ping time.
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5.3 Floating-Point Performance Evaluation

Results of the Linpack runs are shown in Fig. 4, as a scatter-plots where density
of circles represents the number of data points. AWS data consists of over 12,000
points, and GCF of over 2,600 points. We show also histograms of subsets of these
data.

In the case of AWS, we observe that the maximum performance grows linearly
with the function size. There is, however, a significant portion of tasks that
achieved lower performance. With the growing memory, we can see that the
execution times form two clusters, one growing linearly over 30 GFlops, and one
saturating around 20 GFlops.

In the case of GCF, we observe that the performance of tasks is clustered dif-
ferently. The performance of one group of tasks grows linearly with memory. On
the other hand, there is a large group of tasks, which achieve the top performance
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of 15 GFlops regardless of the function size. Interestingly, we observed that the
smallest functions of 128 MB always achieved the best performance of about 14
GFlops.

To illustrate the multimodal nature of performance distribution curves of
GCF, we show the results as histograms in Fig. 4 for selected memory siezes.
As in the case of integer-based performance tests, the AWS Lambda show much
more consistent results, while for GCF the performance points are clustered.

5.4 Discussion of Results

The most interesting observation is regarding the scheduling policies of cloud
providers, as observed in both MT and Linpack experiments. Both GCF and
AWS claim that the CPU share for cloud functions is proportional to the memory
allocated. In the case of AWS we observe a fairly linear performance growth
with the memory size, both for the lower bound and the upper bound of the plot
in Fig. 4. In the case of GCF, we observe that the lower bound grows linearly,
while the upper bound is almost constant. This means that Google infrastructure
often allocates more resources than the required minimum. This means that their
policy allows smaller functions (in terms of RAM) to run on faster resources.
This behavior is likely caused by optimization of resource usage via reuse of
already spawned faster instances, which is more economical that spinning up
new smaller instances. Interestingly, for Azure and IBM we have not observed
any correlation between the function size and performance.

Another observation is the relative performance of cloud function providers.
AWS achieves higher scores in Linpack (over 30 GFlops) whereas GCF tops at
17 GFlops. Interestingly, from the Linpack execution logs we observed that the
CPU frequency at AWS is 3.2 GHz, which suggests Xeon E5-2670 (Ivy Bridge)
family of processors, while at GCF it is 2.1 GHz which means Intel Xeon E5 v4
(Broadwell). Such difference in hardware definitely influences the performance.
These Linpack results are confirmed by the MT benchmark. Since we have not
run Linpack on Azure and IBM yet, we cannot report on their floating point
performance, but the MT results also suggest the differences in hardware.

Although we did not perform such detailed statistical tests as in [3], our
observations confirm that there is not significant dependency of the time of day
or day of week on the cloud providers performance. The existing fluctuations
tend to have random characteristics, but it will be subject to further studies
once we collect more data.

6 Summary and Future Work

In this paper, we presented our approach to performance evaluation of cloud
functions. We described our performance evaluation framework, consisting of
two suites, one using the Serverless Framework, and the one based on Hyper-
Flow. We gave the technical details on how we address the heterogeneity of the
environment, and we described our automated data taking pipeline. We made
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our experimental primary data available publicly to the community and we set
up the data taking as a continuous process.

The presented results of evaluation using Mersenne Twister and Linpack
benchmarks show the heterogeneity of cloud function providers, and the relation
between the cloud function size and performance. We also revealed the interest-
ing observations on how Amazon and Google differently interpret the resource
allocation policies. These observations can be summarized that AWS Lambda
functions execution performance is proportional to the memory allocated, but
sometimes sightly slower, while for Google Cloud Functions the performance is
proportional to the memory allocated, but often much faster.

Since this paper presents the early results of this endeavor, there is much
room for future work. It includes the integration of HyperFlow with our server-
less benchmarking suite, measurement of influence of parallelism, delays and
warm-up times on the performance, possible analysis of trends as we continue to
gather more data, as well as cost-efficiency analysis and implications for resource
management.
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