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Abstract. The Kalman filter is a critical component of the reconstruc-
tion process of subatomic particle collision in high-energy physics detec-
tors. At the LHCb detector in the Large Hadron Collider this recon-
struction must be performed at an average rate of 30 million times per
second. As a consequence of the ever-increasing collision rate and upcom-
ing detector upgrades, the data rate that needs to be processed in real
time is expected to increase by a factor of 40 in the next five years. In
order to keep pace, processing and filtering software must take advantage
of latest developments in hardware technology.

In this paper we present a cross-architecture SIMD parallel algorithm
and implementation of a low-rank Kalman filter. We integrate our imple-
mentation in production code and validate the numerical results in the
context of physics reconstruction. We also compare its throughput across
modern multi- and many-core architectures.

Using our Kalman filter implementation we are able to achieve a sus-
tained throughput of 75 million particle hit reconstructions per second
on an Intel Xeon Phi Knights Landing platform, a factor 6.81 over the
current production implementation running on a two-socket Haswell sys-
tem. Additionally we show that under the constraints of our Kalman filter
formulation we efficiently use the available hardware resources.

Our implementation will allow us to better sustain the required
throughput of the detector in the coming years and scale to future hard-
ware architectures. Additionally our work enables the evaluation of other
computing platforms for future hardware upgrades.

Keywords: Kalman filter - Data-intensive parallel algorithms
Numerical methods

1 Introduction

The LHCb detector at CERN will be upgraded in 2020 [1] to acquire data at an
estimated rate of 30 MHz, requiring to process a data throughput of 40 Tbit/s.
At the same time the first stage of filtering in the Data Acquisition process, also
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known as hardware level trigger, will be discontinued in favor of a full software
trigger [2]. Consequently the throughput that the software level trigger will need
to sustain in order to maintain a steady triggering rate will dramatically increase,
due to both the increase in rate of events processed in software, and the influx
of larger events.

To be able to cope with the increased data rate, several hardware architec-
tures are currently under consideration. While the current LHCD software trigger
farm is composed solely of Intel Xeon processors, in the last few years many High
Performance Computing sites are adopting other alternative hardware architec-
tures, such as ARM 64, IBM Power X, FPGAs, or manycore architectures such as
GPGPUs or Intel Xeon Phi. This has raised the question within the High Energy
Physics community whether these architectures are also suitable for performing
the software trigger in a sustainable way. To answer this question, performance,
economical, power consumption and software maintainability aspects need to be
taken into account.

In this work we will consider the Kalman filter component used in the LHCb
software framework. The Kalman filter is a linear quadratic estimator, first intro-
duced by Kalmén in 1960 [3], that has been extensively used to estimate trajec-
tories in various systems [4,5]. In its discrete implementation [6], it consists in
a predict stage where the state of the system is projected according to a given
model, and an update stage where the state is adjusted taking into account a
measurement. In particular we consider here a filter that is low-rank.

In LHCb the Kalman filter is applied to estimate particle trajectories (¢racks)
as they travel through the particle detector [7]. Tens of millions of collisions per
second occur in the detector, each requiring tens of thousands of filter com-
putations. The Kalman filter is therefore the single largest time contributor in
the LHCD software chain, taking about 60% of the first stage software trigger
reconstruction time.

According to Amdahl’s law [8], the achievable performance gain of an algo-
rithm is bounded by its parallelizable portion. Due to the nature of the LHCb
experiment, many particles travel through the detector simultaneously and inde-
pendently. Hence, the Kalman filter is considered a petascale embarrassingly
parallel problem in this context. Here we present a hardware architecture inde-
pendent Kalman filter algorithm and implementation, Cross Kalman' extending
beyond previously presented results [9].

In contrast to the work by Cerati et al. [10], we do not use our Kalman
filter for track finding, but instead, we filter fully built tracks. That allows us to
take into account the number of tracks and nodes when envisioning a scheduling
strategy. Resulting in an effective use of the SIMD capabilities of the processors
under study.

We explore performance gains over the current LHCD particle reconstruction
software [11], and compare the speedup obtained over a variety of architectures.
Additionally, we validate our implementation and integrate it back in the LHCb
reconstruction framework, observing a performance gain on existing hardware.

! https://gitlab.cern.ch/dcampora/cross_kalman.
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2 Cross Kalman

In LHCb track reconstruction a particle trajectory consists of signal nodes orig-
inating from detector signals. Additionally, virtual reference nodes are placed
in large trajectory sections that have no detector signals. As opposed to signal
nodes, reference nodes trigger a prediction with no update in the Kalman fil-
ter. Reference nodes improve trajectory prediction, at the cost of introducing
additional complexity in the algorithm.

For a given particle trajectory, the Kalman filter is applied twice: First, a fit
in the forward direction, positive in the Z axis, is followed by a fit in the backward
direction, processing the nodes in reverse order. Afterwards, a smoothed state
is calculated averaging both states. This introduces a dependency between the
stages with little room for parallelization. However, a particle collision generates
many independent particles that can be reconstructed at the same time, allowing
us to envision a horizontally parallel scheme.

e Reference node

Signal node
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z

Fig. 1. Schematic of two particles (blue) traversing LHCb subdetectors. A particle
collision is indicated by the two red arrows meeting in the center of the Vertexr Locator
subdetector. Particles produced from the collision traverse tracking subdetectors; here
the Vertex Locator, TT and T1, T2 and T3 stations are depicted. A magnet bends
the trajectory of produced particles according to their momentum and charge. (Color
figure online)

For either direction, the first encountered signal node does not have any pre-
ceding signal data. Reference parameters according to their position are gener-
ated and fed onto those nodes, and the prediction is applied to these parameters.
Figure 1 shows two particles traversing the LHCb detector with various nodes.
When performing the forward fit, the top particle carries out three predictions
from reference parameters before doing the first update. From that point on,
all states are predicted from previous states, however only signal nodes trigger
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an update. The particle at the bottom performs a single prediction from refer-
ence parameters, given the first node is a signal node. Finally, when doing the
backward fit, a similar procedure follows: The bottom particle requires three
predictions before the first update while the top particle requires one.

Furthermore, given a node, the resulting state is calculated as the average
between its forward updated state and its backward predicted state. However,
if the node has no preceding signal node in one of the directions, the smoother
copies the updated state of the other direction.

Given this problem formulation, we describe the design of our algorithm
in the following parts: the control flow, the data structures and an efficient
implementation for performing the math computations.

2.1 Control Flow

Since the control path of processing a particle trajectory diverges depending on
the nature of its nodes, we have divided each particle trajectory in three stages:
pre, main and post. pre is the forward trajectory from the first node until a
signal node is encountered, inclusive. Similarly, post is the backward trajectory
from the last node until a signal node is encountered, inclusive. Finally, main
includes the remaining nodes. The forward fit processing logic differs between
pre and main, while for the backward fit processing logic differs between post
and main.

In order to fully exploit the capabilities of SIMD architectures, we employ a
static scheduler that assigns node calculations to SIMD lanes. Since the execution
of nodes from different particles is independent, we execute them in a horizontally
parallel scheme. In order to minimize branches and guarantee instruction locality,
we generate three such schedulers, one for each stage.

The amount of nodes processable at a time depends directly on the SIMD
width of the processor. Hence our scheduler accepts a configurable vector width.
It is also able to detect at compile time the supported vector width of the
platform. There are no restrictions on the width of the lane, allowing this design
to also target manycore architectures, where wider vector units are available.

More formally, given m particle trajectories with n; nodes each and k proces-
sors, we want to assign nodes to processors minimizing the number of compute
iterations. This problem is a variant of the number partitioning problem Npp
[12], which is known to be NP-complete. Our scheduling algorithm orders the
trajectories in descending order of nodes, and assigns nodes to processors fol-
lowing a Decreasing-Time Algorithm (DTA).

The same scheduler can be used for the forward fit, the backward fit, and the
smoother. The forward and backward dependencies between node calculations
are naturally resolved by traversing the scheduler in the respective direction. All
tracks are processed on each stage prior to processing the next one. The smoother
pre and post stages are processed after completion of the backward fit.
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In our implementation we place particular emphasis on avoiding as much as
possible memory copy operations and exploiting memory locality. We reuse data
structures throughout the scheduler iterations replacing only necessary data por-
tions when required to do so. Additionally, the data structures must be aligned
and refer relatively to the same nodes in order for the smoother to be able to
produce an average state from the previously calculated forward and backward
states. Using our scheduler this requirement is trivially met.

2.2 Data Structures

The algorithm’s main data structure is composed of three parts. A hardware-
specific data backend stores data contiguously and aligned to the required SIMD
width, and provides chunks of requested data agnostic to their contents. In order
to avoid a performance impact of memory allocations of big chunks of contiguous
space, data backends are created on demand and can store a configurable number
of elements. Iterators point to the data backends and are configured with a
structure size. We provide forward and reverse iterators in order to traverse the
data as required.

We use Arrays of Structures of Arrays (AOSOA) as data views over the
data backends. This kind of data structures benefit from locality when accessing
any of their elements, and have been shown to work well with SIMD processors
[13]. Further locality is preserved by storing these structures next to each other
contiguously.

2.3 Efficient Vector Implementation

We have implemented the core routines of the fit and smoother algorithms using
manual vectorization with the help of vector intrinsics libraries. An iterative fine-
grained optimization has been carried out, testing several formulations, unrolling
loops, inlining functions, changing compiler options and reordering code. Also, we
have implemented the arithmetic backend with several libraries in our synthetic
benchmark Cross Kalman Mathtest?, namely the vectorization libraries VCL
[14], UMESIMD [15], and the language extensions OpenCL and CUDA. Our
implementations can efficiently target any sort of SIMD paradigm. Furthermore,
a scalar implementation is provided as fall back. It allows to process single tracks,
and it can run on architectures not supporting vectorization.

3 Results

We ran the experiments in this section under the conditions shown in Table 1.
Figure 2 shows the cross-architecture speedup. The leftmost bar shows the
performance of the scalar implementation of the fit, obtained from the tim-
ings reported by the framework. Our Cross Kalman implementation outper-
forms the scalar implementation on the same hardware platform by a factor

2 https://gitlab.cern.ch/dcampora/cross_kalman_mathtest.
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Table 1. Run conditions.

The program was compiled with gcc 6.2.0, with options -02 -march=native

Turbo Boost was on, where applicable

KNL was using quadrant and flat memory mode, and pinned against the
MCDRAM

One process was spawned per Non-Uniform Memory Access (NUMA) domain,
with as many TBB threads as logical cores in domain and pinned to its memory

Ran 500000 events, each event is a Threading Building Blocks (TBB) task
Used Monte Carlo events from the LHCb Upgrade

Results are validated against expected result from original algorithm

Results were obtained using double precision

The figure of merit is the average throughput #fits/time

of 3.03x. ThunderX shows the poorest performance of the architectures under
study. Even though a speedup of 1.75x over the scalar implementation on E5-
2630 v3 is observed, this is only due to optimizations in the software. When
both architectures run Cross Kalman, the E5-2630 v3 outperforms ThunderX
by 1.73x. This is likely due to a comparatively lower peak DRAM bandwidth
and peak floating point performance on ThunderX. The peak value is observed
on a quad-socket high-end Intel Haswell system. This is, however, also the most
expensive of the tested systems. It is interesting to note that Intel Xeon Phi out-
performs our dual-socket Broadwell system, rendering it the most competitive
from a price/throughput standpoint.

11.20

Speedup (times)

Fig. 2. Performance of Cross Kalman against the scalar implementation of the fit across
several architectures.
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A throughput scalability plot for all architectures is shown in Fig.3a. The
processor that shows less performance degradation up to using all of its cores
is ThunderX. On the IBM Power8 architecture we are able to scale linearly
while no Simultaneous MultiThreads (SMTs) are being used. Using 2 SMTSs per
processor, a performance improvement of 32% is observed. Moving from 2 to
4, a further 15% is gained, while moving from 4 to 8 no performance benefit is
observed. On the Intel architectures we observe an almost linear scaling until we
reach the limit of physical cores. The Intel Xeon Phi processor shows a 27% gain
from using 2 HyperThreads, and a further 9% from using 4. We do not obtain
any gain from HyperThreads on other Intel processors, which we attribute to
the higher bandwidth of MCDRAM on Intel Xeon Phi.
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Fig. 3. (a) Throughput of Cross Kalman across various architectures. For each archi-
tecture, an increasing number of processors is enabled. Additional SMTs are only used
on high core counts. (b) Parallel efficiency against active processors. The PowerNV
processors shows no performance degradation using all its physical cores. In contrast,
Xeon Phi shows a parallel efficiency of 85% (64 processors), ThunderX 68% (96 pro-
cessors), E5-2630 v3 43% (16 processors), E7-8890 v3 40% (72 processors) and E5-2683
v4 45% (32 processors).

Figure 3b shows a parallel efficiency graph. All Xeon processors diverge from
perfect scaling before the other processors under study. Xeon Phi and ThunderX
show performance gains using all of their available processors, with a speedup of
74.98x and 64.88x respectively. For PowerNV, its optimal configuration is reached
when configured with 96 processors (24.44x), where the performance flattens out.
As expected on all tested hardware platforms, parallel efficiency is significantly
degraded when using SMT. PowerNV shows a parallel efficiency of 1.0 until it
starts using additional SMTs. We observe a similarly abrupt decrease in parallel
efficiency in Xeon Phi when using additional HT's. The Xeon processors efficiency
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drop even without HTs. With all their physical cores active, we see 40-45% effi-
ciency, which could be due to the memory requirements of the application.

Figure 4 shows the throughput of the fit and smoother as the vector width
is increased. In order to obtain the results of these figures, we used our syn-
thetic benchmark, that allows us to execute the bulk of the computation of the
application in a portable and generic way. The tests were compiled against the
UMESIMD library. The scalar performance of the application is very poor in this
setting, because scalar data is emulated in the UMESIMD library by a vector
of width one. The smoother application scales slightly better than the fit, which
we believe is due to its higher arithmetic intensity. We observe the same scaling
for single and double precision, as is depicted by the two gray scaling lines being
very close to each other. Single precision produces a deviation from the expected
results in 1% of the experiments.
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Fig. 4. Throughput of program as vector width increases, for single and double preci-
sion, under Intel Xeon Phi 7210. Left: fit throughput. Right: smoother throughput. We
observe a scaled throughput for 128-bit vectors between single precision (width 4) and
double precision (width 2). The smoother scales better than the fit for wider vector
units, due to its higher arithmetic intensity.

Figure 5 shows a Roofline plot [16] for the fit and smoother processes. We ran for
the Roofline benchmarks both the fit and smoother with 10 000 000 experiments. A
high number of experiments is required in order to avoid data being cached from its
generation to its execution, which would affect the arithmetic intensity of the appli-
cation. This effect does not carry over to the full Cross Kalman code. The arith-
metic intensity of the fit process is at about 0.5 FLOP /Byte, while the smoother
is arithmetically more intensive at around 0.8 FLOP /Byte. Both fit and smoother
performances are in the arithmetic-intensity regime limited by memory bandwidth
and not peak floating point performance. However, our measurements show that
we currently do not attain peak performance.
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Fig. 5. Roofline model of Broadwell E5-2683v4 and Xeon Phi 7210 platforms. The
performance of Cross Kalman Mathtest for the fit and smoother is shown for both
platforms.

4 Validation

We have developed a module that implements the Cross Kalman filter inside the
LHCb execution chain, named TrackVectorFitter (TVF). This module is already
available to LHCb users and serves as the foundation for the numerical results
described in this section. We have validated the physics performance of TVF
against the original implementation under the current LHCb run conditions,
and also under the foreseen conditions of the upgrade.

The LHCb experiment uses Monte Carlo simulation to generate validation
data sets. Particle collisions and their interaction with the detector are simu-
lated. This simulation generates a data set that can be processed by the LHCb
reconstruction software. Finally the reconstructed particles are compared to the
Monte Carlo generated ground truth.

Track reconstruction validation is done using three metrics [17]. The recon-
struction efficiency compares the reconstructed tracks to the expected tracks
reported by the Monte Carlo truth. The clone rate reports how many track
equivalent track pairs were found. The ghost rate reports how many tracks were
reconstructed with nodes belonging to different particles or noise. Finally, tracks
are categorized by their physical properties and category statistics are compared
to statistics from the ground truth.

Comparing the Cross Kalman implementation TVF to the original track filter
TMF we observe an identical reconstruction efficiency, clone rate and ghost rate
under all tested scenarios. While the reconstruction of the track itself does not
depend on the fit, the final track x2 is used in the different categories as a track
quality cutoff. Hence, the identical reconstruction efficiency between the two
algorithms validates TVF for its physical properties.
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We have checked the performance of TVF against TMF under various sce-
narios. Table 2 shows comparative execution times for LHCb nightly tests. These
tests are representative of the conditions under which the LHCb reconstruction
runs in the production environment.

Table 2. LHCb test times in seconds, run in various conditions. All tests are run on a
single core of an Intel Xeon E5-2650 v3. All timings refer to the algorithm TrackBest-
TrackCreator, configured with different filter settings. TMF is the original filter imple-
mentation. Internally, it executes a vertically vectorized code optimized for AVX on
this setup. TVF refers to our implementation, compiled with either the SSE2 exten-
sion (default setting for x86.64) or AVX2+FMA. The owverall reconstruction speedup
refers to the entire reconstruction time of the test, compared between TMF and TVF
AVX2+FMA.

Test name TMF (AVX)|TVF SSE2| TVF AVX2+FMA | Overall reconstruction speedup
Magup2016 13.518 12.817 11.504 1.09x
Baseline-upgrade | 93.713 93.839 91.014 1.03x
Sim08 8.307 8.134 7.986 1.02x

We observe a varying performance depending on the test under execution.
Magup2016 shows gains of up to 9% in the overall reconstruction time, whereas
baseline-upgrade and sim08 gains in TVF do not seem to impact much the
overall performance. In the case of baseline-upgrade, we believe this is due to
the configuration of such test. It uses a full geometry setting in its current form,
which dominates the time distribution of the fit. We expect its performance to
improve in the future.

5 Conclusions and Outlook

In this work we have presented Cross Kalman, an algorithm that is able to effi-
ciently perform low-rank Kalman filters. Cross Kalman is particularly optimized
for the LHCb particle tracking use case, but the presented algorithms and data
structures can be applied to other situations where a large number of low-rank
Kalman filters are used. Using this algorithm we were able to obtain up to 3x
speedup over the previous scalar solution on the same hardware platform. Our
implementation is flexible enough to accommodate for any kind of SIMD archi-
tecture and we have tested it a wide array of architectures. The choice of the
Decreasing-Time Algorithm as a scheduling algorithm should be revisited, and
we intend to explore other heuristics in the future. Our data structures allow us to
efficiently perform the Kalman filter and smoother of many independent particles
in parallel. Given the specific nature of our problem instances, it may be possible
to reuse data structures across different particle trajectories, and further decrease
the memory footprint of our application. In addition, we have showed that sin-
gle precision performance scales similarly to its double precision counterpart.
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An in-depth analysis of the precision requirements and numerical stability of the
algorithm, taking into account also the possibility of alternative mathematical
formulations, should be carried out. We expect that moving to single-precision
and thus doubling the arithmetic intensity of our algorithms will significantly
improve performance. Our software is validated and has been integrated in the
LHCDb codebase under the name TrackVectorFitter, making the overall recon-
struction up to 9% faster for certain datasets.

We have verified that our implementation is able to scale to full hardware
nodes and is able to adapt to the architectures under study. As expected enabling
SMT does not yield further performance improvements with the notable excep-
tion of Intel Xeon Phi, which could be due to its higher memory throughput.
However, other algorithms used in the LHCb software framework need to be
adapted to make the most out of manycore architecture before a more definite
answer can be given to the suitability of manycore hardware platforms such as
Intel Xeon Phi for LHCDb’s software framework.

Given the arithmetical intensity of our formulation, our application utilizes
efficiently the processors under study. We intend to port our software to GPU
accelerators and further analyze our software scalability. We will continue to
track the performance of modern hardware architectures and adapt our software
to it, and observe the evolution of the different platforms.
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