
A Set of Patterns for Concurrent and Parallel
Programming Teaching

Manuel I. Capel1, Antonio J. Tomeu2, and Alberto G. Salguero2(B)

1 College of Informatics and Telecommunications, University of Granada,
18017 Granada, Spain
manuelcapel@ugr.es

2 College of Engineering, University of Cádiz, 11519 Cádiz, Spain
{antonio.tomeu,alberto.salguero}@uca.es

Abstract. The use of key parallel-programming patterns has proved
to be extremely helpful for mastering difficult concurrent and parallel
programming concepts and the associated syntactical constructs. The
method suggested here consists of a substantial change of more tradi-
tional teaching and learning approaches to teach programming. Accord-
ing to our approach, students are first introduced to concurrency prob-
lems through a selected set of preliminar program code-patterns. Each
pattern also has a series of tests with selected samples to enable stu-
dents to discover the most common cases that cause problems and then
the solutions to be applied. In addition, this paper presents the results
obtained from an informal assessment realized by the students of a course
on concurrent and real-time programming that belongs to the computer
engineering (CE) degree. The obtained results show that students feel
now to be more actively involved in lectures, practical lessons, and thus
students make better use of their time and gain a better understanding of
concurrency topics that would not have been considered possible before
the proposed method was implemented at our University.
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1 Introduction

An effective teaching and learning in Concurrent and Parallel Programming
(CPP) cannot be only based on theoretical lectures on process management and
their concurrency, but on how to program with specific syntactical constructs
included in concurrent programming languages and libraries. Currently, it is
of paramount importance to include practical education on programming tech-
niques that can provide scalability, speedup and performance to programs for
today’s multi and many-core processors.

To learn many different parallel patterns and syntactical constructs in CPP
is by no means an easy task for students, and thus they tend to avoid taking
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the courses on the subject or postpone for as long as possible. Current CSE
University Curricula [16], however, recognize the importance of teaching such
subjects early in CS or SE curricula, which would enable future IT professionals
to exploit the parallel potential that multiprocessors now offer.

The use of patterns to teach parallelism is in line with new didactics for
teaching CPP [2,6,16]. The GoF catalog [4] proposes a comprehensive set of
design patterns in the domain of simple object-oriented software design. Our
intention is for the parallel programming pattern (henceforth referred to simply
as pattern) to resemble the parallel design pattern [12] by describing solutions to
recurrent problems in the domain of parallel and distributed software systems.

However, there are several drawbacks to conduct teaching and learning based
on patterns: lack of interoperability, since some patterns are highly dependent
on the platform or memory models (STM, volatile, immortal, etc.); scalabil-
ity issues, especially if big data structures need to be mapped onto multicore
and many-core processor architectures; impossibility of quality and performance
testing, as long as for checking patterns it is necessary to simulate the execution
context of each used pattern within a program code that needs to be verified.

We dealt with these issues by defining a selected set of patterns for obtaining
optimal scalable parallel software code. Our approach is based on a new method
that involves blended learning [7], i.e., students can check/compile/run codes
generated from this set of key patterns. The student’s work is supervised and
evaluated by teachers aided by the Virtual Campus (Moodle supported) plat-
form at our University. Students can therefore import program code into the
programming language environment that they know and start working with the
proposed pattern in order to produce correct program code. Each learning session
is completed with a series of exercises to reinforce the students understanding
of each pattern introduced.

The paper concludes with an evaluation of the satisfaction degree of students
on the pilot course on concurrency, parallelism and real-time programming that
we taught over the last three years. As result of the teaching experience, our
model has been suggested for application to other courses on programming by
the officers in charge of educational issues at the University of Cádiz, and is in
process of implementation as a Massive Open Online Course (MOOC).

The paper is organized as follows: Sect. 2 examines the didactical objectives
of the course; Sect. 3 details the suggested teaching model and its development
in practical tasks and student assignments; Sect. 4 describes the most important
patterns in the set selected for the study; Sect. 5 details how the experiment
was evaluated and results analyzed; and finally, Sect. 6 outlines the conclusions
reached and future work to be developed.

2 Course on Concurrent, Parallel and Real-Time
Programming

The teaching and learning objectives of the experiment outlined in this article
aim not only to generally improve the quality of the theory content of lessons
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but also to increase student involvement in classes through a more practical ICT
integration in classical theory content teaching, which includes the core concepts:

1. Fundamental concurrent programming concepts: mutual exclusion, race con-
ditions, synchronization, concurrent systems properties (15%).

2. Mutual exclusion: algorithms for shared memory multiprocessors (20%).
3. Monitors: Hoare’s model, signal semantics, concurrent property verification

(safety, liveness and fairness) (20%).
4. Message passing and distributed parallel programs: RPC and RMI models,

MPI, rendez-vous (15%).
5. Real-time systems: periodic task scheduling based on static priority assign-

ment, scheduling tests, priority inversion anomaly, aperiodic and sporadic
task scheduling (30%).

Table 1. Lecture hours and a selected set of patterns from the last course

Course topics % Hours
(lectures+ lab)

No. of
patterns used

Pattern names

Fundamentals 15 4.5 + 6 2 Thread creation(*),
race-condition

Mutual exclusion 20 6 + 8 2 Lamport’s protocol(*),
Peterson’s algorithm

Monitors 20 6 + 8 2 Readers/writers, passing the
baton

Message passing 15 4.5 + 6 4 Rendez-vous, broadcast,
geometric parallelism, tumor
growth

Real-time systems 30 9 + 2 2 Observer, priority ceiling

Total 100 30 + 30 12 -

Table 1 shows the number of lecture hours allocated to each course topic, the
number of patterns typically used to teach each one and a possible selection of
patterns that covers all the important concepts of the course. Topics taught on
previous courses and reexamined on this one are labelled with an (*).

As with any lecture on general computer programming techniques, we are
particularly concerned that the content taught on CPP courses is both clear
and conceptually significant. We agree with other authors [5] that the use of pro-
gramming patterns, together with a documentary base of code samples, improves
comprehension of the material taught. These patterns must be easily available
to students in lectures [14,15].

By compiling and executing the program code arising from the application of
one of these patterns once it has been presented by the teacher, students become
more actively involved and participate more in lessons [9], and therefore they
are following a blended learning method that is identified as the most successful
for teaching programming contents effectively [7]. There has been, consequently,
a significant increase of the time that students spent in the practical work done
in our course [11].
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3 Teaching Model for Concurrent Programming

In a previous paper [1], we proposed a new concurrent program development
process, which students undertake to complete the assignments during the lec-
tures. Students are involved in the initial program design although they are not
required to design it from scratch. An initial design was validated by teachers
and the students are provided with pre-selected input data to check their imple-
mentations (following the above development process). With this work students
are ready to apply programming patterns to specific applications.

In our approach, students’ assignments comprise the following parts:

1. a set of active components or processes.
2. a concurrent ADT or shared resource.
3. a localized communication structure.

Students have to develop a solution that uses these elements particularized
for each exercise. Communication and synchronization between processes is only
carried out through this shared resource.

3.1 Predicative Specification Model

The students must develop a formal specification (pre-, post-, invariant) of the
initial shared resource design and its operations. We use a specification lan-
guage that admits a first-order logic semantics as in Logic of Programs [10] but
we decided to keep a similar style of specifications to a single-assignment proce-
dural language. The language also includes Z-like mathematical annotations for
easy specification of data structures and this facilitates translation into an OO
programming language.

Formal resource specification consists of three sections:

1. the declaration of the resource’s operations,
2. the definition of the correct states of the resource as a type invariant (Seman-

tics Domain section) and
3. the specification of the behavior of operations as pre- and post-conditions

(CPre and CPost annotations).

Pre-, post-conditions and type or class invariants are part of the design by con-
tract software construction method [13].

3.2 Validation and Code Generation

First, a model checker can be used to check that the invariant is not violated
as Fig. 1 shows. TLC [8] model checker is given to validate the entire System.
The logic of the processes is encoded into TLA+ and combined with the resource
specification so as to explore the interleavings that the real system can afford. By
considering this validation scenario, stronger invariants can therefore be proved.
Figure 1 points out that a test generation tool can be used for testing a large set
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of traces that explore all the system states up to a given depth. A typical tester
executes between 500 and 1,000 different traces of the system to be checked. By
exploring traces it is also possible to locally detect any malfunction of flawed
parts of the system. Students can use testers to discover what is wrong with
their implementations.

Fig. 1. Suggested development of the teaching model

Students are then instructed to deliver a code snippet that implements the
concurrent shared resource behavior. The programming work done by the stu-
dents has to prove the correct use of the parallel and concurrent constructs
taught during the course and it is graded as the 50% of the assignment. By
doing so, a set of design patterns are used to transform the formal model of a
resource specification into C++11 or Java code. This transformation is suscepti-
ble of being automated for specific cases. Concurrent properties (safety, fairness,
etc.) must have been assured through correct synchronization programming.
Different synchronization idioms are suggested for programming thread interac-
tion (notify–notifyAll, locks and conditions, MPI operations, etc.) to students to
implement the required code.

4 Set of Selected Patterns

Since our programming patterns are aimed at the coding level and, unlike algo-
rithmic skeletons or structured parallel patterns [3], they do not hide concurrent
instructions or synchronization operations. The connection topology or low-level
dependencies are not hidden either in the parallel algorithms used.

The main role of a parallel design pattern is to find solutions for differ-
ent aspects that must be addressed when designing a parallel application or
algorithm, i.e., to be capable of finding concurrency, and then to determine a
suitable algorithm structure and to define its supporting structure (data, com-
munications, user-interface). Finally, the implementation mechanism must be
described.
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In order to give a general overview of our teaching method, we present here
only three of the patterns included in the set of Table 1 and the rest of those can
be found in the prior publication [1].

Initial: #idleThreads ← N; finished(k)← false;
Invariant: #idleThreads <= size(TaskQueue)
Reachability: ��task(•) at finished(•)
Liveness:� � thread(i) at freeThread(i)

Fig. 2. Shared resource model for the executor pattern

4.1 Thread Creation: Executor Pattern

In this pattern tasks can be considered as logical units of work and threads are a
mechanism by which tasks can run asynchronously. A graphical high-level model
of the pattern is shown in Fig. 2.

When students attend first courses on concurrent and parallel programming,
they program by assigning a thread per task, or sequentially executing all the
applications’s tasks on a single thread. Assigning one thread per task is a bad
solution that might lead to poorly performant implementations, and a sequential
approach yields extremely bad application responsiveness. We propose to our
students to learn and use a high-level pattern for obtaining performance for
thread creation and launching in concurrent applications.

The executor pattern can be seen as a variant of the producer-consumer
concurrency paradigm. Application activities that submit tasks to the executor
monitor have a producer -behavior and the executor’s threads that pick up from
the queue and execute tasks have a consumer -behavior. The fundamental idea
that supports the executor pattern is to set up an adjustable number of threads
that sit idle, waiting for any pending work on the task queue that they can
perform.

Predicative Specification of the Executor Pattern. The resource’s opera-
tions are executeTask(), freeThread() and nextTask() and must be defined in the
context of a monitor to synchronize the concurrent access to resource TaskQueue

list. The correct states of the resource are defined as the invariant in the Seman-
tics Domain section of Fig. 3, i.e., the number of pre-created threads cannot
exceed the maximum number of tasks waiting on the queue.
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The behavior of the operations above is expressed in the form of pre- and
post-conditions (CPre and CPost annotations). When an application has a
task to execute, it calls the method executeTask(i), which inserts the task into
the TaskQueue list and informs the executor’s thread-pool that there is a new
executable task. One of the idle threads calls nextTask() and starts executing
the returned task; when the execution of the task-i finishes, the program calls
freeThread(i) method and goes back to waiting for the next task to perform.

After doing the shared resource specification, the student must choose the
correct concurrent language idioms, i.e., notify(), locks, conditions, etc. in order
to correctly synchronize operations on the TaskQueue shared resource and this
part of the exercise will then be completed.

TaskQueueExecutor

Operations

executeTask(processId == i)

freeThread(processId == i)

nextTask ():processId == i

Semantics Domain:

Type: TaskQueue (0..N-1) == seq N, processId: 0..N-1

Invariant: #idleThreads <= size(TaskQueue);

CPre: size(TaskQueue) > 0 and #idleThreads > 0;

int nextTask (){} // operation
CPost: size(TaskQueue) == size(TaskQueue)@pre - 1;

CPre: #idleThreads >0 and size(TaskQueue) >= 0;

void executeTask(i){} // operation
CPost: size(TaskQueue) == size(TaskQueue)@pre + 1;

CPre: size(TaskQueue) >= 0 and #idleThreads > 0;

void freeThread(i){} // operation
CPost: #idleThreads >= 0 and

#idleThreads == #idleThreads@pre - 1

Fig. 3. TaskQueue-monitor specification for the executor

4.2 Monitors: Readers and Writers Protocol

The problem of readers and writers is one of the classic problems in concurrent
programming (Fig. 4). There is a shared resource that two types of processes
try to access: the readers access the resource to obtain information, but do not
modify it; the writers modify the shared resource when they get access to it.
Because the readers do not modify the shared resource, multiple readers may be
accessing it at the same time. However, no other process can access the shared
resource while a writer is already in.
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Initial: #readers, #writers ← 0
Invariant:(#readers == 0 ∨ #writers == 0)∧

#writers <= 1
Safety: Invariant
Reachability:��Process(•) atEnd
Liveness:� � Process(i) at SharedResource

Fig. 4. Shared resource monitor pattern for reader/writer access

Predicative Specification Model. The problem begins from a situation
where there are no processes accessing to the shared resource. When a pro-
cess tries to access it, it must first check that there are no processes of the
other type already accessing to the resource, i.e., the condition #readers ==
0 ∨ #writers == 0 is satisfied. In any case, there can be only one writer access-
ing to the resource at the same time, i.e., the condition: #writers <= 1 has to
be part the invariant.

When processes of both types are trying to access the shared resource it is
necessary to decide which of them can access it. The readers-writers problem
can be solved by giving readers or writers higher priority to access the resource.
In case of prioritizing readers, only when there are no other readers trying to
access the shared resource, the lock of writers is released. On the other hand, if
writers are prioritized, it will be the writers which will unlock the readers when
there are no other writers trying to access the shared resource, as Fig. 5 shows.

SharedResource

Operations

void* read(void* p)

void* writer(void *p)

Semantics Domain:

Type: SharedResource == SQL_Type , readerId: 0..N-1,

writerId: 0..M-1

Invariant: (# readers ==0 or #writers ==0) and #writers <= 1;

CPre: #writers == 0 and #attending_writers == 0;

void* read(void* p){} // operation
CPost: #readers == #readers@pre + 1;

CPre: #writers == 0 and #readers == 0;

void* write(void* p){} // operation
CPost: #writers == 1;

Fig. 5. SQL-SharedResource specification with priority to writers
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Obviously, a third possibility consists of not giving priority to any of these
process categories. The semaphore-based solution to the readers/writers prob-
lem with equal priorities is a little brain teaser. The students are asked to solve
the equal priorities problem in order to motivate the students to follow our sys-
tematic scheme (based on shared resource formal specification) to find a correct
solution by themselves (Fig. 5).

The correct solution to the readers/writers problem with equal priority
includes many aspects of the versions with priorities, but also the need for a
second level of synchronization. Before allowing a process to check the processes
that are already accessing to the shared resource, a stage must be added to deter-
mine the order in which the processes have to proceed. With this problem the
students learn to design multi-level synchronization protocols by using shared
variables.

Invariant: queue.q != null ∧ queue.q.size() = m
if m items were added ∧ queue.q[i] = ki
where ki is the i-th item added

Safety: Invariant
Liveness: � � Subject(i).notifyObservers()
Guarantee: �(Subject(i) at notifiable state∧

Observer(•).notify() → �update())

Fig. 6. ObserversList data structure for the Observer pattern

4.3 Real-Time Systems Design: The Observer Pattern

The standard Observer pattern was considered during the course to introduce
real-time programming to students. Observer pattern serves to map Subject to
Observer entitity-roles in algorithms and applications. The objective of the pat-
tern is to keep consistency between the state of the object with the Subject role
and the state(s) of the object(s) with Observer roles.

Predicative Specification Model. Each Subject entity of the application
maintains a set of references to the observers attached to it. Each Subject

has a ObserverList queue as its representation type, which defines attach()

and detach() methods for adding and deleting observers, respectively, to that
observers-list. Subject entities will provide a notify() method as well, which has
to be immediately invoked whenever the subject’s state experiences a change. A
call to notify() method of the Subject must guarantee that the method update()

is invoked on each of the observers in the list. A call to an observer’s update()

method changes the observers state to make it consistent with the new Subject

state.
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When the Subject’s notify() is called, it is compulsory, according to the
standard specification in Fig. 7, that the update() method is invoked on each
attached observer, which updates the observer state and propagates the call to
its successor on the ObserverList queue. Therefore, the notify() call needs only
invoke update() on the first observer in the chain.

ObserverList

bool[N] notified=false; //N observers attached to Subject
Operations

attach(ObserverId == i)

detach(ObserverId == i)

notify (): {true , false}

Semantics Domain:

Type: ObserverList (0..N-1) == seq N, ObserverId :0..N-1

Invariant: #observers >= size(ObserverList);

CPre: size(ObserverList) >= 0 and #observers > 0;

void attach(i){}

CPost: size(ObserverList) == size(ObserverList)@pre + 1;

CPre: #observers >= 0 and size(ObserverList) > 0;

void detach(i){}

CPost: size(ObserverList) == size(ObserverList)@pre - 1;

CPre: size(ObserverList) > 0 and #observers > 0;

boolean notify(i){}

CPost: notified(i) == true

Guarantee: forall k:0..N-1: notified(k) == true;

Fig. 7. ObserversList and Subject operations specification for the Observer pattern

5 Assessment of the Teaching Experience

Learning concurrency in undergraduate courses is generally difficult for students,
because of the complexity and depth of the set of concepts that they must master
during the course. The main objective of the study proposed here has been to
facilitate the work of the students. For this, we have chosen to conduct a teaching
approach based on demonstrative teaching that uses patterns as the conceptual
guide to ease the communication between teacher and class. In this way, the
student got a pattern that allows her to take in new concepts in concurrent
programming when these concepts are presented anew by the teacher.

The patterns we have been used to develop this study were carefully cho-
sen to illustrate key aspects of concurrent/parallel programming, e.g., driver-
implementer patterns allow the programmer to delegate the entire responsibility
of tasks management to an executor, which also takes in any future asynchronous
computation of those tasks; the executor is therefore a complex design pattern,
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but at the same time it can be considered of enormous usefulness when it is well
understood. Another pattern introduced here amounts to the synchronization of
simultaneous accesses to a shared resource by tasks of reader and writer type.
This is another situation that must be frequently tackled by programmers, and
because of that we have included a specific pattern in the demostrative set that
reflects such synchronization between reader and writer threads.

We assessed how the model improves the final results obtained by the stu-
dents on the subject on completing our course. We also noticed more active
participation of students during lecture-oriented lessons. Additionally, working
time spent in the classroom became actually fun and optimized, and the breadth
and depth of the contents covered increased too.

5.1 Evaluation of the Study Results

To evaluate the results obtained from the course teaching experience, we ellab-
orated a survey form that included four dimensions to be evaluated by the stu-
dents:

(a) The concepts introduced in lectures were better apprehended through the
models provided by our set of parallel patterns.

(b) The number of exercises was adquate.
(c) The time required to complete the assigned exercises was sufficient.
(d) The students were satisfied with this approach to the teaching of concur-

rency and parallelism.

All the four study dimensions were evaluated with a score between 1 (com-
pletely disagree) and 5 (completely agree) with the inclusion of an additional
value (0) for when the student does not want to answer. The survey was made
available to a sample of n = 67 students at the end of the semester. The results
obtained are illustrated in Fig. 8. It is observed that the students significantly
improved their understanding of the concepts explained in the theoretical classes,
the number of programming exercises developed in the laboratories and their

Fig. 8. Students’ assesment
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weekly work assignments were considered as adequate, they had enough time
to finish the assignments and exercices, and thus the satisfaction level with the
pattern-based concurrency/parallelism model was generally high or very high
among the students.

6 Conclusions and Future Work

The outcome of the ICT-based experiment has been a noticeable improvement in
the grades obtained by the students in the final examination of the subject. This
ICT-based interactive teaching approach can easily be applied to other courses
in many different areas beyond the sphere of normal university courses. Teaching
projects such as MOOC could immediately benefit from our approach on many
of their engineering courses since in these cases our method would only require
a simple adaptation of specific course contents.

In the long term, we intend to develop a pattern-based CPP teaching tool in
the Cloud which would facilitate systematic learning for any student or person
interested and which would enable the method and techniques discussed in this
paper to be implemented. Our future work is focused on extending the set of
patterns proposed here, developing a course (MOOC) with exercises in several
programming languages, such as Java, C++ and MPI. We will include new
programming languages that are of interest for industry in the future.
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