Skip to main content

Environmental Conditions and Its Effect on PV Performance

  • Chapter
  • First Online:
Generating Electricity Using Photovoltaic Solar Plants in Iraq

Abstract

As the photovoltaics are fixed outdoor exposed to external meteorological conditions, which vary from one area to another, the atmospheric condition can be considered as the major factor in the impressive performance of the cells. Therefore, the efficiency and productivity of the PV cell vary from one location to another. The experts and photovoltaic manufacturers have identified parameters at which the PV modules give the maximum performance. These parameters are the solar intensity of 1000 W/m2, a temperature of 25 °C, and the air mass of 1.5. These air requirements are limited, and their presence together may be difficult if not impossible, for every area of their own conditions, which may increase or decrease compared to these requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duffie JA, Beckman WA (1991) Solar engineering of thermal processes. John Wiley and Sons, New York

    Google Scholar 

  2. Fröhlich C (1991) History of solar radiometry and the world radiation reference. Metrologia 28:111–115

    Article  Google Scholar 

  3. Gueymard CA, Myers DR (2008) Solar radiation measurement: progress in radiometry for improved modeling. In: Badescu V (ed) Modeling solar radiation at the earth surface. Springer, Berlin, pp 1–27

    Google Scholar 

  4. Gueymard CA (2004) The sun’s total and spectral irradiance for solar energy application and solar radiation models. Sol Energy 76(4):423–453

    Article  Google Scholar 

  5. Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A (2009) A review of principle and sun-tracking methods for maximizing solar systems output. Renew Sustain Energy Rev 13:1800–1818

    Article  Google Scholar 

  6. Dickinson WC, Cheremisinoff PN (1980) Solar energy technology handbook. Butterworths, London

    Google Scholar 

  7. Kumar L, Skidmore AK, Knoles E (1997) Modeling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci 11(5):475–497

    Article  Google Scholar 

  8. Earth radiation budget (http://marine. Rutagers, Deu / mrs / education class / yur / erb .html)

    Google Scholar 

  9. International energy agency (http://www.iea.org/)

  10. Earth radiation Budgest earth Radeation budget (http:// marine.Rutgers. edu/mrs/education/classs/yuri/erb.html) NASA langlely research center (2006-10- 17). Retrieved on 17 Oct 2006

    Google Scholar 

  11. Duncan CH, Willson RC, Kendall JM, Harrison RG, Hickey JR (1982) Latest rocket measurements of the solar constant. Sol Energy 28:385–390

    Article  Google Scholar 

  12. Kondratyev KY (1965) Radiative heat exchange in the atmosphere. Pergamon Press, New York

    Google Scholar 

  13. Williams LD, Barry RG, Andrews JT (1972) Application of computed global radiation for areas of high relief. J Appl Meteorol 11:526–533

    Article  Google Scholar 

  14. Khatib T, Mohamed A, Mahmoud M, Sopian K (2012) Estimating global solar energy using multilayer perception artificial neural network. Int J Energy 6(1):23–33

    Google Scholar 

  15. El-Shazly RM, Feasibility of concentrated solar power under Egyptian conditions, MSc Thesis, University of Kassel, Cairo University (Egypt), 2011

    Google Scholar 

  16. Tomson T (2008) Discrete two-positional tracking of solar collectors. Renew Energy 33:400–405

    Article  Google Scholar 

  17. Chaichan MT, Abaas KH, Kazem HA, Hasoon F, Aljibori HS, Ali A, Alwaeli K, Raheem FS, Alwaeli AH, Effect of design variation on saved energy of concentrating solar power prototype, Proceedings of the World Congress on Engineering, WCE III 2012, London, UK, 2012

    Google Scholar 

  18. Asia/Pacific PV Markets 2010 (http://www.solarbuzz.com/AP10.htm)

    Google Scholar 

  19. Green MA (2003) Crystalline and thin-film silicon solar cells: state of the art and future potential. Int Sol Energy Soc ISES 74(3):181–192

    Article  Google Scholar 

  20. Duryea S, Islam S, Lawrance W (2001) A battery management system for stand-alone photovoltaic energy systems. IEEE Ind Appl Soc 7(3):67–72

    Article  Google Scholar 

  21. Durisch W, Kiess H, Crystalline silicon cells and technology, Third Generation Concepts for Photovoltaic Conference, Osaka, Japan, 12–16 May 2003

    Google Scholar 

  22. Chouder A, Silvestre S, Sadaoui N, Rahmani L (2012) Simulation of a grid connected PV system based on the evaluation of main PV. Simul Model Pract Theory 20(1):46–58

    Article  Google Scholar 

  23. Thongpao K, Sripadungtham P, Raphisak P, Sriprapha K, Ekkachart O (2010) Solar cells based on the influence of irradiance and module temperature in, Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), International Conference , Chiang Mai, Thailand, pp 153–160

    Google Scholar 

  24. Burari FW, Sambo AS (2001) Model for the prediction of global solar radiation for Bauchi using meteorological data. Nigeria J Renew Energy 91:30–33

    Google Scholar 

  25. Al-Salihi AM, Kadum MM, Mohammed AG (2010) Estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian J Sci Res 3(4):240–248

    Article  Google Scholar 

  26. Kalogirou S (2009) Solar energy engineering: process and systems. Academic Press, London

    Google Scholar 

  27. Abdullah FS, Ali FA (2012) Estimation the effects of each site factors, time factors, and optical factors on absorbed solar radiation value that incident on a flat plate solar collector. J Theor Appl Inf Technol 41(2):122–133

    Google Scholar 

  28. Jarras J (1987) Feasibility of a fund for financing solar water heaters and projects related to the promotion of renewable energies in Jordan. MEMR press, Amman

    Google Scholar 

  29. Li DHW, Lam JC (1999) An analysis of climatic variables and design implications. Architect Sci Rev 42(1):15–25

    Article  Google Scholar 

  30. Muneer T (1990) Solar radiation model for Europe. Build Serv Eng Res Technol 11(4):153–163

    Article  Google Scholar 

  31. Li DHW, Lam JC (2004) Predicting solar irradiance on inclined surfaces using sky radiance data. Energ Conver Manage 45(11–12):1771–1783

    Article  Google Scholar 

  32. Vartiainen E (2000) A new approach to estimating the diffuse irradiance on inclined surfaces. Renew Energy 20(1):45–64

    Article  Google Scholar 

  33. Schaab G (2000) Modellierung und Visualisierung der räumlichen und zeitlichen Variabilität der Einstrahlungsstärke mittels eines Geo– Informationssystems, Kartographische Bausteine, Dresden, 160 pp

    Google Scholar 

  34. Al- Salaymeh A (2006) Modeling of global daily solar radiation on horizontal surfaces for Amman city. Emirates J Eng Res 11(1):49–56

    Google Scholar 

  35. Khatib T, Mohamed A, Sopian K (2012) A review of solar energy modeling techniques. Renew Sustain Energy Rev 16:2864–2869

    Article  Google Scholar 

  36. Kreider J, Kreith F (1981) Solar energy handbook. McGraw-Hill, New York

    Google Scholar 

  37. Wardle DI, McKay DC, Recent advances in pyranometry, In: Proceedings of International Energy Agency, Task IX, Solar Radiation and Pyranometer Studies, Norrkoping, Sweden, p 984

    Google Scholar 

  38. Zerlaut GA (1986) Solar radiometry instrumentation, calibration techniques, and standards. Sol Cells 18:189–203

    Article  Google Scholar 

  39. Lester A, Myers DR (2006) A method for improving global pyranometer measurements by modeling responsivity functions. Sol Energy 80:322–331

    Article  Google Scholar 

  40. Michalsky JJ et al (1995) Cosine response characteristics of some radiometric and photometric sensors. Sol Energy 54:397–402

    Article  Google Scholar 

  41. Bush BC (2000) Characterization of thermal effects in pyranometers: a data correction algorithm for improved measurement of surface insolation. J Atmos Oceanic Tech 17:165–175

    Article  Google Scholar 

  42. Dutton EG et al (2001) Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J Atmos Oceanic Tech 18:297–314

    Article  Google Scholar 

  43. Wilcox S (2001) Improving global solar radiation measurements using zenith angle dependent calibration factors. In: Proceedings Forum 2001 solar energy: the power to choose. American Solar Energy Society, Washington, DC

    Google Scholar 

  44. Michalsky J (1999) Optimal measurement of surface shortwave irradiance using current instrumentation. J Atmos Oceanic Tech 16:55–69

    Article  Google Scholar 

  45. Michalsky JJ (2005) Toward the development of a diffuse horizontal shortwave irradiance working standard. J Geophys Res. https://doi.org/10.1029/2004JD00526

  46. Reda I (2005) Using a blackbody to calculate net-longwave responsivity of shortwave solar pyranometers to correct, for their thermal offset error during outdoor calibration using the component sum method. J Atmos Oceanic Tech 22:1531–1540

    Article  Google Scholar 

  47. Gueymard CA, Myers DR (2009) Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol Energy 83:171–185

    Article  Google Scholar 

  48. Rajput AK, Tewari RK, Sharma A (2012) Utility base estimated solar radiation at destination Pune, Maharashtra, India. Int J Pure Appl Sci Technol 13(1):19–26

    Google Scholar 

  49. Almorex J (2011) Estimating global solar radiation from common meteorological data in Aranjuez-Spain. Turk J Phys 35:53–64

    Google Scholar 

  50. Marion B, Kroposki B, Emery K, del Cueto J, Myers D, Osterwald C (1999) Validation of a photovoltaic module energy ratings procedure at NREL. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  51. Gay CF, Rumberg JE, Wilson JH (1982) AM-PM: all day module performance measurements, Proceedings 16th IEEE Photovoltiac Specialist Conference, San Diego, CA: IEEE, pp 1041–1046

    Google Scholar 

  52. del Cueto JA (2007) PV module energy ratings part II: feasibility of using the PERT in deriving photovoltaic module energy ratings. National Renewable Energy Laboratory, Golden

    Google Scholar 

  53. Poissant Y, Pelland S, Turcotte D (2008) A compareson of energy rating methodologies using field test measurements, 23rd European PV Solar Energy Conference and Exhibition Valencia, Spain: CANMET Energy Technology Center, pp 1–6

    Google Scholar 

  54. Buday MS, Measuring irradiance, temperature and angle of incidence effects on photovoltaic modules in Auburn Hills, Michigan, MSc Thesis, Natural Resources and Environment, University of Michigan, 2011

    Google Scholar 

  55. Bashir MA, Ali HM, Khalil S, Ali M, Siddiqui AM, Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan, International Journal of Photoenergy, Hindawi Publishing Corporation, vol 2014, Article ID 898414, 8 pages, 2014

    Google Scholar 

  56. Garcia M, Marroyo L, Lorenzo E, Perez M (March 2011) Soiling and other optical losses in solar-tracking PV plants in Navarra. Prog Photovolt Res Appl 19(2):211–217

    Article  Google Scholar 

  57. Cano J, Photovoltaic modules: effect of tilt angle on soiling, MSC Thesis, Arizona State University, 2011

    Google Scholar 

  58. Salih SM, Kadim LA (2014) Effect of tilt angle orientation on photovoltaic module performance. ISESCO J Sci Technol 10(17):19–25

    Google Scholar 

  59. Salih SM, Salih FF, Hasan ML, Bedaiawi MY (2012) Performance evaluation of photovoltaic models based on a solar model tester. IJ Inf Technol Comput Sci (7):1–10

    Article  Google Scholar 

  60. Mehleri ED, Zervas PL, Sarimveis H, Palyvos JA, Markatos NC (2010) Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew Energy, Elsevier 35(11):2468–2475

    Article  Google Scholar 

  61. Emanuele C (2012) The disagreement between anisotropic-isotropic diffuse solar radiation models as a function of solar declination: computing the optimum tilt angle of solar panels in the area of southern-Italy. Smart Grid Renew Energy 3:253–259

    Article  Google Scholar 

  62. Ling S, Twidell J, Boardman B (2002) Household photovoltaic market in Xining, Qinghai province, China, The role of local PV business. Sol Energy 73(4):227–240

    Article  Google Scholar 

  63. Rahoma UA (2008) Utilization of solar radiation in high energy intensive of the world by PV system. Am J Environ Sci 4(2):121–128

    Article  Google Scholar 

  64. Alnaser WE, Eliagoubi B, Al-Kalak A, Trabelsi H, Al-Maalej H, El-Sayed HM, Alloush M (2004) First solar radiation atlas for the Arab world. Renew Energy 29:1085–1107

    Article  Google Scholar 

  65. Al-Hilphy ARS (2013) A theoretical and practical study for the incident solar radiation intensity in the Basrah province (south of Iraq). IOSR J Eng (IOSRJEN) 3(9):25–35

    Article  Google Scholar 

  66. Sharif SFA (2012) The project, Iraq DESERTEC is the future second electricity supplier to Europe through Turky. Int J Sci Eng Res 3(11):1–8

    Google Scholar 

  67. Kanter J, European solar power from African deserts, The New York Times, Retrieved 2009-07-03, 2009

    Google Scholar 

  68. Lahmeyer International GmbH, Integrated solar thermal power plants in the Al-Anbar region of Iraq, Terms of Reference for Consulting Services for Preparing a Pre-Feasibility Study, Bad Vilbel, Germany, 2011

    Google Scholar 

  69. Abbas MA, Nzsr MK Er (1974) Cloudiness and estimation of incoming solar radiation in Iraq. Pageoph 112(I):234–239

    Article  Google Scholar 

  70. Omer MA, Ahmed SA, Al-Jumaily KJ (2013) Solar cycle forcing on Kurdistan-Iraq temperature. J Zankoy Sulaimani- Part A (JZS-A) 15(1):43–55

    Google Scholar 

  71. Alasady AMA (2011) Solar energy the suitable energy alternative for Iraq beyond oil, 2011 International Conference on Petroleum and Sustainable Development (IPCBEE), vol 26. IACSIT Press, Singapore

    Google Scholar 

  72. Burgermeister J, Iraq looks to solar energy to help rebuild its economy, March 3, 2009. Available at: http://www.renewableenergyworld.com/rea/news/article/2009/03/iraq-looks-to-solar-energy-to-help-rebuild-itseconomy

  73. Al-Yahyai S, Charabi Y, Gastli A (2010) Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renew Sustain Energy Rev 14(9):3192–3198

    Article  Google Scholar 

  74. Al-Tarabsheh A, Voutetakis S, Papadopoulos AI, Seferlis B, Etiera I, Saraereh O (2013) Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells. Chem Eng Trans 35:1387–1392

    Google Scholar 

  75. Lobera DT, Valkealahti S (2013) Dynamic thermal model of solar PV systems under varying climatic conditions. Sol Energy 93:183–194

    Article  Google Scholar 

  76. Zambolin E, Del Col D (2010) Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol Energy 84:1382–1396

    Article  Google Scholar 

  77. Myers D (2009) Evaluation of the performance of the PVUSA rating methodology applied to dual junction PV technology, American Solar Energy Society Annual Conference. National Renewable Energy Laboratory, Buffalo, pp 1–11

    Google Scholar 

  78. Hanif M, Ramzan M, Rahman M, Khan M, Amin M, Aamir M (2012) Studying power output of PV solar panels at different temperatures and tilt angles. J Sci Technol 8(14):9–12

    Google Scholar 

  79. Skoplaki E, Boudouvis AG, Palyvos JA (2008) A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol Energy Mater Sol Cells 92:1393–1402

    Article  Google Scholar 

  80. Gregg A, Parker T, Swenson R (2005) A “real world” examination of PV system design and performance. Conf Rec IEEE Photovoltaic Spec Conf 31:1587–1592

    Google Scholar 

  81. Charabi Y, Rhouma BHM, Gastli A (2013) GIS-based estimation of roof-PV capacity & energy production for the Seeb region in Oman. IEEE Int Energy Conf Renew Energy 57:635–644

    Article  Google Scholar 

  82. Gastli A, Charabi Y, Zekri S (2010) GIS-based assessment of combined CSP electric power & seawater desalination plant for Duqum-Oman. Renew Sustain Energy Rev 14(2):821–827

    Article  Google Scholar 

  83. Ghaznafar SA, Fisher M (1998) Vegetation of the Arabian Peninsula. Kluer Academin Publishers, Netherlands, pp 5–38

    Book  Google Scholar 

  84. Hughes BR, Cherisa NBS, Beg O (2011) Computational study of improving the efficiency of photovoltaic panels in the UAE. World Acad Sci Eng Technol 5(1)

    Google Scholar 

  85. George Makrides G, Zinsser B, Phinikarides A, Schubert M, Georghiou GE (2012) Temperature and thermal annealing effects on different photovoltaic technologies. Renew Energy 43:407–417

    Article  Google Scholar 

  86. Mutlak FA, Design and fabrication of parabolic trough solar collector for thermal energy applications, Ph D Thesis, University of Baghdad, March 2011

    Google Scholar 

  87. Al-Hilphy ARS (2013) A theoretical and practical study for the incident solar radiation intensity in the Basrah province (south of Iraq). IOSR J Eng 3(9):25–35

    Article  Google Scholar 

  88. Chaichan MT, Abaas KI, Kazem HA (2012) The effect of variable designs of the central receiver to improve the solar tower efficiency. Int J Eng Sci 1(7):56–61

    Google Scholar 

  89. Kazem HA, Chaichan MT (2012) Status and future prospects of renewable energy in Iraq. Renew Sustain Energy Rev 16(8):6007–6012

    Article  Google Scholar 

  90. Nordmann T, Clavadetscher L (2003) Understanding temperature effects on PV system performance. In: Proceedings of the third world conference on photovoltaic energy conversion. Osaka, Japan, pp 2243–2246

    Google Scholar 

  91. Krauter SCW (2004) Development of an integrated solar home system. Sol Energy Mater Sol Cells 82:119–130

    Article  Google Scholar 

  92. Franghiadakis Y, Tzanetakis P (2006) Explicit empirical relation for the monthly average cell-temperature performance ratio of photovoltaic arrays. Prog Photovolt Res Appl 14:541–551

    Article  Google Scholar 

  93. Chenni R, Makhlouf M, Kerbache T, Bouzid A (2007) A detailed modelling method for photovoltaic cells. Energy 32:1724–1730

    Article  Google Scholar 

  94. Durisch W, Bitnar B, Mayor JC, Kiess H, Lam KH, Close J (2007) Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation. Sol Energy Mater Sol Cells 91:79–84

    Article  Google Scholar 

  95. Skoplaki E, Palyvos JA (2009) Operating temperature of photovoltaic modules: a survey of pertinent correlations. Renew Energy 34:23–29

    Article  Google Scholar 

  96. Farr MG, Stein JS, Spatial variations in temperature across a photovoltaic array, proceeding to IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014

    Google Scholar 

  97. Jones AD, Underwood CP (2001) A thermal model for photovoltaic systems. Sol Energy 70:349–359

    Article  Google Scholar 

  98. Tsai HF, Tsai HL (2012) Implementation and verification of integrated thermal and electrical models for commercial PV modules. Sol Energy 86:654–665

    Article  Google Scholar 

  99. Lobera DT (2014) Modeling and analysis of the operation of PV power generators under varying atmospheric conditions, Ph D. Thesis, Tampere University of Technology, Finland

    Google Scholar 

  100. Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energy 87:365–379

    Article  Google Scholar 

  101. Teo HG, Lee PS, Hawlader MNA (2012) An active cooling system for photovoltaic modules. Appl Energy 90:309–315

    Article  Google Scholar 

  102. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli M (2010) An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl Energy 87:2328–2339

    Article  Google Scholar 

  103. Joshi AS, Tiwari A, Tiwari GN, Dincer I, Reddy BV (2009) Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int J Therm Sci 48:154–164

    Article  Google Scholar 

  104. Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K (2007) Photovoltaic thermal (PV/T) collectors: a review. Appl Therm Eng 27:275–286

    Article  Google Scholar 

  105. Rosli MAM, Mat S, Anuar MK, Sopian K, Sulaiman MY, Ellias S (2014) Progress on flat-plate water based of photovoltaic thermal (PV/T) system: a review. Iranica J Energy Environ 5(4):407–418

    Google Scholar 

  106. Krauter S (2004) Increased electrical yield via water flow over the front of photovoltaic panels. Sol Energy Mater Sol Cells 82:131–137

    Article  Google Scholar 

  107. Odehand S, Behnia M (2009) Improving photovoltaic module efficiency using water cooling. Heat Transfer Eng 30(6):499–505

    Article  Google Scholar 

  108. Liu L, Zhu L, Wang Y, Huang Q, Sun Y, Yin Z (2011) Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Sol Energy 85:922–930

    Article  Google Scholar 

  109. Yang DJ, Yuan ZF, Lee PH, Yin HM (2012) Simulation and experimental validation of heat transfer in a novel hybrid solar panel. Int J Heat Mass Transfer 55:1076–1082

    Article  Google Scholar 

  110. Kerzmann T, Schaefer L (2012) System simulation of a linear concentrating photovoltaic system with an active cooling system. Renew Energy 41:254–261

    Article  Google Scholar 

  111. Chandrasekar M, Suresh S, Senthilkumar T, Karthikeyan MG (2013) Passive cooling of standalone flat PV module with cotton wick structures. Energ Conver Manage 71:43–50

    Article  Google Scholar 

  112. Kern EC Jr, Russell MC (1978) Combined photovoltaic and thermal hybrid collector systems, In: Proceedings of the 13th IEEE PV specialist conference, pp 1153–1157

    Google Scholar 

  113. Zhao X, Zhang X, Riffat SB, Su X (2011) Theoretical investigation of a novel PV/T roof module for heat pump operation. Energ Conver Manage 52:603–614

    Article  Google Scholar 

  114. Zhang X, Zhao X, Smith S, Xub J, Yuc X (2012) Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew Sustain Energy Rev 16:599–617

    Article  Google Scholar 

  115. Tang X, Zhao Y, Quan Z (2009) The experimental research of using novel flat-plate heat pipe for solar cells cooling, Proceeding to the Chinese thermal engineering physics of heat and mass transfer conference, pp 239–241

    Google Scholar 

  116. Zhao Y et al (2008) Photovoltaic cell radiating and combined heat and power system, Patent CN 200820123998 U

    Google Scholar 

  117. Feng QJ, Zhang MA, Dong L (2010) Analysis of a new photovoltaic thermal building integration system and correlative technology. Build Energy Environ 29(2):12–16

    Google Scholar 

  118. Amori KE, Al-Najar HMT (2012) Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq. Appl Energy 98(100):384–395

    Article  Google Scholar 

  119. Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT (2017) PV/T (photovoltaic/thermal): status and future prospects. Renew Sustain Energy Rev 77:109–130

    Article  Google Scholar 

  120. Al-Waeli AH, Sopian K, Kazem HA, Chaichan MT (2016) Photovoltaic solar thermal (PV/T) collectors past, present and future: a review. Int J Appl Eng Res 11(22):1075–10765

    Google Scholar 

  121. AHA A-W, Sopian K, Chaichan MT, Kazem HA, Hasan HA, Al-Shamani AN (2017) An experimental investigation on using of nano-SiC-water as base-fluid for photovoltaic thermal system. Energy Conserv Manage 142:547–558

    Article  Google Scholar 

  122. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energ Conver Manage 148(15):963–973. https://doi.org/10.1016/j.enconman.2017.06.072

    Article  Google Scholar 

  123. Al-Waeli AH, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S, Ruslan MH (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energ Conver Manage 151:693–708

    Article  Google Scholar 

  124. Koehl M, Heck M, Wiesmeier S (2012) Modeling of conditions for accelerated life time testing of Humidity impact on PV-modules based on monitoring of climatic data. Sol Energy Mater Sol Cells 99:282–291

    Article  Google Scholar 

  125. Elminir HK, Benda V, Tousek J (2001) Effects of solar irradiation conditions and other factors on the outdoor performance of photovoltaic modules. J Electr Eng 52(5–6):125–133

    Google Scholar 

  126. Kempe MD (2006) Modeling of rates of moisture ingress into photovoltaic modules. Sol Energy Mater Sol Cells 90(16):2720–2738

    Article  Google Scholar 

  127. Park NC, Oh WW, Kim DH (2013) Effect of temperature and humidity on the degradation rate of multicrystalline silicon photovoltaic module. International Journal of Photo-energy 2013, Article ID 925280, 9 pages

    Google Scholar 

  128. Rotronic Instrument Corp., The Rotronic Humidity Handbook, All you never wanted to know about Humidity and didn’t want to ask! 12/2005. www.rotronic-usa.com

  129. Fanney AH, Davis MW, Dougherty BP, King DL, Boyson WE, Kratochvil JA (2006) Comparison of photovoltaic module performance measurements. Trans ASME 128:152–159

    Google Scholar 

  130. Morita K, Inoue T, Kato H, Tsuda I, Hishikawa Y, Degradation factor analysis of crystalline-Si PV modules through long-term field exposure test, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, pp 1948–1951, May 2003

    Google Scholar 

  131. Dhere NG, Raravikar NR (2001) Adhesional shear strength and surface analysis of a PV module deployed in harsh coastal climate. Sol Energy Mater Sol Cells 67(1–4):363–367

    Article  Google Scholar 

  132. Han X, Wang Y, Zhu L, Xiang H, Zhang H (2012) Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water. Energ Conver Manage 53(1):1–10

    Article  Google Scholar 

  133. Bhattachary B, Dey S, Mustaphi B (2014) Some analytical studies on the performance of grid connected solar photovoltaic system with different parameters, proceeding to 3rd International Conference on Material Processing and Materials Science Characterization (ICMPC- 2014), vol 6, pp 1942–1950

    Google Scholar 

  134. Laronde R, Charki A, Bigaud D (2013) Lifetime estimation of a photovoltaic module subjected to corrosion due to damp heat testing. J Sol Energy Eng 135(2), Article ID 021010, 8 pages

    Article  Google Scholar 

  135. Peike C, Hoffmann S, Hulsmann P (2013) Origin of dampheat induced cell degradation. Sol Energy Mater Sol Cells 116:49–54

    Article  Google Scholar 

  136. Touati F, Massoud A, Abu Hamad J, Saeed SA, Effects of environmental and climatic conditions on PV efficiency in Qatar, International Conference on Renewable Energies and Power Quality (ICREPQ’13), Bilbao (Spain), 20–22 Mar 2013

    Google Scholar 

  137. Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 16:2920–2925

    Article  Google Scholar 

  138. Gwandu BAL, Creasey DJ (1995) Humidity: a factor in the appropriate positioning of a photovoltaic power station. Renew Energy 6(3):313–316

    Article  Google Scholar 

  139. Prakash JK, Gopinath N, Kirubakaran V (2014) Optimization of solar PV panel output: a viable and cost effective solotion, Int J Adv Technol Eng Res (IJATER) National Conference on “Renewable Energy Innovations for Rural Development” ISSN No: 2250–3536 20, New Delhi

    Google Scholar 

  140. Darwish ZA, Kazem HA, Sopian K, Alghoul MA, Chaichan MT (2013) Impact of some environmental variables with dust on solar photovoltaic (PV) performance: review and research status. Int J Energy Environ 7(4):152–159

    Google Scholar 

  141. Omubo-Pepple VB, Israel-Cookey C, Alamunokuma GI (2009) Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur J Sci Res 35:173–180

    Google Scholar 

  142. Katkar AA, Shinde NN, Koli GC, Gaikwad SP (2013) Evaluation of industrial solar cell w.r.t. temperature. Second International Conference on Emerging Trends in engineering (SICETE). IOSR J Mech Civ Eng (IOSR-JMCE) 3:27–38

    Google Scholar 

  143. Kazem HA, Chaichan MT, Al-Shezawi IM, Al-Saidi HS, Al-Rubkhi HS, Al-Sinani JK, Al-Waeli AHA (2012) Effect of humidity on the PV performance in Oman. Asian Trans Eng 2(4):29–32

    Google Scholar 

  144. Al Hanai T, Hashim RB, El Chaar L, Lamont LA (2011) Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system. Renew Energy 36:2615–2622

    Article  Google Scholar 

  145. Ettah EB, Udoimuk AP, Obiefuna JN, Opara FE (2012) The effect of relative humidity on the efficiency of solar panels in Calabar, Nigeria. Univ J Manag Soc Sci 2(3):8–11

    Google Scholar 

  146. Klampaftis E, McIntosh KR, Richards BS (2007) Degradation of an undiffused SI–SIO2 interface due to humidity, 22nd European Photovoltaic Solar Energy Conference, 3–7 September, Milan, Italy

    Google Scholar 

  147. Panjwani MK, Narejo GB (2014) Effect of humidity on the efficiency of solar cell (photovoltaic). Int J Eng Res Gen Sci 2(4)

    Google Scholar 

  148. Omubo-Pepple VB, Tamunobereton-ari I, Briggs-Kamara MA (2013) Influence of meteorological parameters on the efficiency of photovoltaic module in some cities in the Niger delta of Nigeria. J Asian Sci Res 3(1):107–113

    Google Scholar 

  149. Rachman A, Sopian K, Mat S, Yahya M (2011) Feasibility study and performance analysis of solar assisted desiccant cooling technology in hot and humid climate. Am J Environ Sci 7(3):207–211

    Article  Google Scholar 

  150. Chegaar M, Mialhe P (2008) Effect of atmospheric parameters on the silicon solar cells performance. J Electron Devices 6:173–176

    Google Scholar 

  151. Ndiaye A, Charki A, Kobi A, Ke´be´ CMF, Ndiaye PA, Sambou V (2013) Degradations of silicon photovoltaic modules: a literature review. Sol Energy 96:140–151

    Article  Google Scholar 

  152. Kemp MD (2005) Control of moisture ingress into photovoltaic modules. In: 31st IEEE Photovoltaic Specialists Conference and Exhibition, Lake Buena Vista, Florida

    Google Scholar 

  153. Wohlgemuth JH, Kurtz S, Reliability testing beyond qualification as a key component in photovoltaic’s progress toward grid parity, proceeding in IEEE International Reliability Physics Symposium Monterey, California, 10–14 Apr 2011

    Google Scholar 

  154. IEC: International Electro-technical Commission (1987) Standard IEC61215: crystalline silicon terrestrial photovoltaic (PV) modules. Design Qualification and Type Approval IEC Central Office, Geneva

    Google Scholar 

  155. Vazquez M, Ignacio RS (2008) Photovoltaic module reliability model based on field degradation studies. Progr Photovolt Res Appl 16:419–433

    Article  Google Scholar 

  156. Quintana MA, King DL, McMahon TJ, Osterwald CR (2002.) Commonly observed degradation in field-aged photovoltaic modules. In: Proc. 29th IEEE Photovoltaic Specialists Conference, pp 1436–1439

    Google Scholar 

  157. Munoz MA, Alonso-Garcia MC, Nieves V, Chenlo F (2011) Early degradation of silicon PV modules and guaranty conditions. Sol Energy 85:2264–2274

    Article  Google Scholar 

  158. Skoczek A, Sample T, Dunlop ED, Ossenbrink HA (2008) Electrical performance results from physical stress testing of commercial PV modules to the IEC61215 test sequence. Sol Energy Mater Sol Cells 92:1593–1604

    Article  Google Scholar 

  159. Jansen KW, Delahoy AE (2003) A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates. Thin Solid Films 423:153–160

    Article  Google Scholar 

  160. Oreski G, Wallner GM (2005) Aging mechanisms of polymeric films for PV encapsulation. Sol Energy 79:612–617

    Article  Google Scholar 

  161. Oreski G, Wallner GM (2009) Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions. Sol Energy 83:1040–1047

    Article  Google Scholar 

  162. Kojima T, Yanagisawa T (2004) The evaluation of accelerated test for degradation a stacked a-Si solar cell and EVA films. Sol Energy Mater Sol Cells 81(1):119–123

    Article  Google Scholar 

  163. Berman D, Faiman D (2007) EVA browning and the time-dependence of I-V curve parameters on PV modules with and without mirror enhancement in a desert environment. Sol Energy Mater Sol Cells 45(4):401–412

    Article  Google Scholar 

  164. Wohlgemuth JH, Cunningham DW, Nguyen AM, Miller J (2005) Long term reliability of PV modules. In: Proc. 20th European Photovoltaic Solar Energy Conference, pp 1942–1946

    Google Scholar 

  165. Osterwald C R, Anderberg A, Rummel S, Ottoson L (2002) Degradation analysis of weathered crystalline-silicon PV modules. 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana

    Google Scholar 

  166. Wohlgemuth JH, Cunningham DW, Nguyen AM, Kelly G, Amin D (2010) Failure modes of crystalline silicon modules. In: Proceedings of PV module reliability workshop

    Google Scholar 

  167. Rueland E, Herguth A, Trummer A, Wansleben S, Fath P (2005) Optical l-crack detection in combination with stability testing for inline inspection of wafers and cells. In: Proceedings of 20th EUPVSEC, Barcelona, pp 3242–3245

    Google Scholar 

  168. Dallas W, Polupan O, Ostapenko S (2007) Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers. Meas Sci Technol 18:852–858

    Article  Google Scholar 

  169. Fesharaki VJ, Dehghani M, Fesharaki JJ, The effect of temperature on photovoltaic cell efficiency, in Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation (ETEC ’11), Tehran, Iran, November 2011

    Google Scholar 

  170. Siddiqui R, Bajpai U (2012) Deviation in the performance of solar module under climatic parameter as ambient temperature and wind velocity in composite climate. Int J Renew Energy Res 2(3):486–490

    Google Scholar 

  171. Ettah EB, Eno EE, Udoimuk AB (2009) The effects of solar panel temperature on the power output efficiency Calabar, Nigeria. J Assoc Radiogr Niger 23:16–22

    Google Scholar 

  172. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons, Inc., New York

    Google Scholar 

  173. Kaldellis JK, Kapsali M, Kavadias KA (2014) Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew Energy 66:612–624

    Article  Google Scholar 

  174. Holmes JD (2001) Wind loading of structures. Spon Press, London

    Book  Google Scholar 

  175. Tieleman HW Wind tunnel simulation of the turbulence in the surface layer. J Wind Eng Indus Aerodyn 36:1309–1318

    Article  Google Scholar 

  176. Yorukoglu M, Celik AN (2006) A critical review on the estimation of daily global solar radiation from sunshine duration. Energ Conver Manage 47:2441–2450

    Article  Google Scholar 

  177. Burdick J et al (1996) Qualification testing of thin-film and crystalline photovoltaic modules. Sol Energy Mater Sol Cells 41/42:575–586

    Article  Google Scholar 

  178. Edwards B (1980) Collector deflections due to wind gusts and control scheme design. Sol Energy 25:231–234

    Article  Google Scholar 

  179. Radu A, Axinte E, Theohari C (1986) Steady wind pressures on solar collectors on flat- roofed buildings. J Wind Eng Indus Aerodyn 23(1–3):249–258

    Article  Google Scholar 

  180. Radu A, Axinte E (1989) Wind forces on structures supporting solar collectors. J Wind Eng Indus Aerodyn 32:93–100

    Article  Google Scholar 

  181. Zhou Y, Kareem A (2002) Definition of wind profiles in ASCE 7. J Struct Eng 128(8):1082–1086

    Article  Google Scholar 

  182. National Research Council (2010) National building code of Canada, 13th edn. Associate Committee on the National Building Code, Ottawa

    Google Scholar 

  183. American Society of Civil Engineers (ASCE) (2005) Minimum design loads for buildings and other structures, ASCE 7-05. American Society of Civil Engineers, Reston

    Google Scholar 

  184. Miller R, Zimmerman D (1979) Wind loads on flat plate photovoltaic array fields. Phase III, Final report (No.DOE/JPL/954833813). Boeing Engineering and Construction Co., Seattle

    Book  Google Scholar 

  185. Wood GS, Denoon RO, Kwok KC (2001) Wind loads on industrial solar panel arrays and supporting roof structure. Wind Struct 4(6):481–494

    Article  Google Scholar 

  186. Kopp GA, Surry D, Chen K (2002) Wind loads on a solar array. Wind Struct 5(5):393–406

    Article  Google Scholar 

  187. Bhattacharya T, Chakraborty AK, Pal K, Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India, Hindawi Publishing Corporation. Journal of Solar Energy 2014, Article ID 817078, 5 pages. https://doi.org/10.1155/2014/817078

  188. Ladas DI, Stathopoulos T (2014) Wind effects on the performance of solar collectors on roofs, MSc Thesis, Concordia University, Montreal, Quebec, Canada

    Google Scholar 

  189. Vasan N, Stathopoulos T (2012) Wind tunnel assessment of the wind velocity distribution on vertical façades, Proceedings of eSim 2012: the Canadian Conference on Building Simulation, Page 61 of 614 May 1–4. Halifax Nova Scotia, Canada

    Google Scholar 

  190. Green MA, Emery K, Hishikawa Y, Warta W (2011) Solar cell efficiency tables (version 37). Progr Photovolt Res Appl 19:84–92

    Article  Google Scholar 

  191. Rao A, Mani M (2013) Evaluating the nature and significance of ambient wind regimes on solar photovoltaic system performance, Building Simulation Applications BSA 2013, 1st IBPSA Italy conference, Bozen-Bolzano, pp 395–405

    Google Scholar 

  192. Matsukawa H, Kurokawa K (2005) Temperature fluctuation analysis of photovoltaic modules at short time interval. 31st IEEE Photovoltaic Specialists Conference, pp 1816–1819

    Google Scholar 

  193. Armstrong S, Hurley WG (2010) A thermal model for photovoltaic panels under varying atmospheric conditions. Appl Therm Eng 30:1488–1495

    Article  Google Scholar 

  194. Schwingshackla C, Petittaa M, Wagnera JE, Belluardoc G, Moserc D, Castellia M, Zebischa M, Tetzlaff A (2013) Wind effect on PV module temperature: analysis of different techniques for an accurate estimation. Energy Procedia 40:77–86

    Article  Google Scholar 

  195. Mattei M, Notton G, Cristofari G, Muselli M, Poggi P (2006) Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 31:553–567

    Article  Google Scholar 

  196. Skoplaki E, Boudouvis AG, Palyvos JA (2008) A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol Energ Mat Sol C 92:1393–1402

    Article  Google Scholar 

  197. Koehl M, Heck M, Wiesmeier S, Wirth J (2011) Modeling of the nominal operating cell temperature based on outdoor weathering. Sol Energ Mat Sol C 95:1638–1646

    Article  Google Scholar 

  198. Kurtz S, Whitfield K, Miller D, Joyce J, Wohlgemuth J, Kempe M et al (2009) Evaluation of high-temperature exposure of rackmounted photovoltaic modules. 34th IEEE Photovoltaic Specialists Conference (PVSC), pp 2399–2404

    Google Scholar 

  199. Chen H, Chen X, Li S, Ding H (2014) Numerical study on the electrical performance of photovoltaic panel with passive cooling of natural ventilation. Int J Smart Grid and Clean Energy 4(4):395–400

    Google Scholar 

  200. Trinuruk P, Sorapipatana C, Chenvidhya D (2007) Effects of air gap spacing between a photovoltaic panel and building envelope on electricity generation and heat gains through a building. Asian J Energy Environ 8(1 and 2):73–95

    Google Scholar 

  201. Geurts CPW, Steenbergen RDJM (2009) Full scale measurements of wind loads on stand-off photovoltaic systems. 5th European & African Conference on Wind Engineering (EACWE), Florence, Italy

    Google Scholar 

  202. Velicu R, Moldovean G, Scaletchi I, Butuc BR (2010) Wind loads on an azimuthal photovoltaic platform. Experimental study. In: Proceeding of International Conference on Renewable Energies and Power Quality, Granada, Spain

    Google Scholar 

  203. Shademan M, Barron RM, Balachandar R, Hangan H (2014) Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations. Can J Civ Eng 41:728–738

    Article  Google Scholar 

  204. Ogedengbe AA, Hangan H, Siddiqui K (2015) Experimental investigation of wind effects on a standalone photovoltaic (PV) module. Renew Energy 78:657–665

    Article  Google Scholar 

  205. Goossens D, Van Kerschaever E (1999) Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance. Sol Energy 66(4):277–289

    Article  Google Scholar 

  206. U.S. Energy Information Administration, International Energy Statistics—Total Electricity Installed Capacity, Aug 2010

    Google Scholar 

  207. Bony L, Doig S, Hart C, Maurer E, Newman S (2010) Achieving low-cost solar PV: Industry workshop recommendations for near-term balance of system cost reductions, Opportunity 1: efficient design for wind forces, Rocky Mountain Institute, RMI.org

  208. Li H, Ma W, Wang X, Lian Y (2011) Estimating monthly average daily diffuse solar radiation with multiple predictors: a case study. Renew Energy 36:1944–1948

    Article  Google Scholar 

  209. Gueymard CA (2009) Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol Energy 83(3):432–444

    Article  Google Scholar 

  210. Kudish AI, Evseev EG (2010) The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density. Renew Energy 52(1):31–42

    Google Scholar 

  211. Chaichan MT, Kazem HA, Kazem AA, Abaas Kh I, Al-Asadi KAH (2015) The effect of environmental conditions on concentrated solar system in desertic weathers, International. J Sci Eng Res 6(5):850–856

    Google Scholar 

  212. Kazem HA, Chaichan MT, Saif SA, Dawood AA, Salim SA, Rashid AA, Alwaeli AA (2015) Experimental investigation of dust type effect on photovoltaic systems in north region, Oman. Int J Sci Eng Res 6(7):293–298

    Google Scholar 

  213. Eliminir HK, Ghitas AE, Hamid RH, Hussainy FE, Beheary MM, Abdel-Moneim KM (2006) Effect of dust on the transparent cover of solar collectors. Energ Conver Manage 47:3192–3203

    Article  Google Scholar 

  214. Jiang H, Lu L, Sun K (2011) Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos Environ 45:4299–4304

    Article  Google Scholar 

  215. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen- Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  216. Goosens D, Kerschaever EV (1999) Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance. Sol Energy 66:277–289

    Article  Google Scholar 

  217. Mani M, Pillai R (2010) Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew Sustain Energy Rev 14:3124–3131

    Article  Google Scholar 

  218. Hottel H, Woertz B (1942) Performance of flat-plate solar-heat collectors. Trans Am Soc Mech Eng (USA) 64:91–104

    Google Scholar 

  219. Nimmo B, Said SAM (1979) Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia—preliminary results. In: Vezirogluv TN (ed) Proceedings of the 2nd Miami International Conference on Alternative Energy Sources, Dec 10–13. pp 223–238

    Google Scholar 

  220. Salim A, Huraib F, Eugenio N (1988) PV power-study of system options and optimization. In: Proceedings of the 8th European PV solar energy conference

    Google Scholar 

  221. Maghrabi A, Alharbi B, Tapper N, Impact of the March 2009 dust event in 1 Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    Google Scholar 

  222. Wakim F (1981) Introduction of PV power generation to Kuwait. Kuwait Institute for Scientific Researchers, Report No. 440

    Google Scholar 

  223. Sayigh AAM (960) Effect of dust on flat plate collectors. In: de Winter F, Cox M (eds) Sun: mankind’s future source of energy; proceedings of the international solar energy congress, New Delhi, vol 2. Pergamon Press, New York, pp 964–1978

    Google Scholar 

  224. Sayigh AAM, Al-Jandal S, Ahmed H (1985) Dust effect on solar flat surfaces devices in Kuwait. Proceedings of the workshop on the physics of non-conventional energy sources and materials science for energy. ICTP, Triest, pp 353–367

    Google Scholar 

  225. Qasem H, Betts TR, Müllejans H, AlBusairi H, Gottschalg R (2014) Dust-induced shading on photovoltaic modules. Prog Photovolt Res Appl 22:218–226

    Article  Google Scholar 

  226. Touati F, Al-Hitmi M, Bouchech H, “Towards understanding the effects of climatic and environmental factors on solar PV performance in Arid Desert Regions (Qatar) for various PV technologies”. World Renewable Energy Congress, Indonesia, International Conference on Renewable Energy and Energy Efficiency, 17–19 Oct 2011, Bali, Indonesia

    Google Scholar 

  227. Darwish ZA, Kazem HA, Sopian K, Al-Goul MA, Alawadhi H (2015) Effect of dust pollutant type on photovoltaic performance. Renew Sustain Energy Rev 41:735–744

    Article  Google Scholar 

  228. Kazem HA, Khatib T, Sopian K, Buttinger F, Elmenreich W, Albusaidi AS (2013) Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. Int J Renew Energy Res 3(4):850–853

    Google Scholar 

  229. Sukhatme SP (2003) Solar energy: principles of thermal collection and storage. Tata McGraw-Hill, New Delhi

    Google Scholar 

  230. Nahar N, Gupta J (1990) Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India. Solar Wind Technol 7:237–243

    Article  Google Scholar 

  231. Sayyah A, Stark J, Abuhamed T, Weisinger W, Horenstein M, Mazumder MK, Energy yield loss caused by dust deposition in solar power plants, Proc. 2012 Joint Electrostatics Conference

    Google Scholar 

  232. UN Public Information Office (UNPIO) 2013. www.iq.one.un.org. Accessed on May 2013

  233. Brown LR (2011) World on the edge: how to prevent environmental and economic collapse. Earth Policy Institute, USA

    Google Scholar 

  234. Crook J, Climate analysis and long range forecasting of dust storms in Iraq, M.Sc thesis applied to Naval Postgraduate School in June 2009

    Google Scholar 

  235. Public Information Office (UNPIO), UN Envoy Supports Greenbelts in Iraq to Combat Sandstorms, Baghdad, 23 Feb 2013

    Google Scholar 

  236. US Ministry of Water Resources (USMWR) (2005) Iraq Reconstruction–Water Resources Sector, Speech by the Minister of Water Resources in USA

    Google Scholar 

  237. Fadhil AM (2009) Land degradation detection using geo-information technology for some sites in Iraq. J Al-Nahrain Univ 12(3):94–108

    Article  Google Scholar 

  238. Pease P, Vatche P, Tchakerian N, Tindale N (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39:477–496

    Article  Google Scholar 

  239. Xin-jiang Z, Cheng L, Xiao-ping X et al (1995) Cloudiness features of two kinds of dust devil weather in China. J Meteorol 21(2):27–31

    Google Scholar 

  240. Wilkerson WD (1991) Dust and sand forecasting in Iraq and adjoining countries, AWS/TN—91/001, Air Weather Service, Scott AFB, IL, p 63

    Google Scholar 

  241. McDonald E, Caldwell T Geochemical and physical characteristics of Iraqi dust and soil samples, Final Project Report, Yuma Proving Ground Natural Environments Test Office, 8 Oct 2004

    Google Scholar 

  242. ASTM (American Society for Testing and Materials) (2000) Standard test method for determining the particle size distribution of alumina quartz by laser light scattering, C 1070-86 (reapproved 1992), 2000 Annual Book of ASTM Standards, vol 15, no 2, ASTM, Philadelphia, PA, pp 375–376

    Google Scholar 

  243. Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Topp GC (eds) Methods of soil analysis: part 4–physical methods. No. 5, Soil Sci. Soc. Am. Book Series, Soil Science Society of America, Madison, pp 255–293

    Google Scholar 

  244. Anderson J (2004) An analysis of a dust storm impacting operation Iraqi Freedom, 25–27 March 2003, MSc Thesis, Dept of Meteorology, Naval Postgraduate School, p 123

    Google Scholar 

  245. Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL et al (eds) Methods of soil analysis: part 3– chemical methods. No. 5, Soil Sci. Soc. Am. Book Series, Soil Science Society of America and American Society of Agronomy, Madison, pp 961–1010

    Google Scholar 

  246. Karathanasis AD, Hajek BV (1996) Elemental analysis by X-ray fluorescence spectroscopy. In: Sparks DL et al (eds) Methods of soil analysis: part 3–chemical methods. No. 5, Soil Sci. Soc. Am. Book Series, Soil Science Society of America and American Society of Agronomy, Madison, pp 161–223

    Google Scholar 

  247. Akhter MS, Madany IM (1993) Heavy metals in street and house dust in Bahrain. Water Air Soil Pollut 66:111–119

    Article  Google Scholar 

  248. Draxler RR, Gillette DA, Kirkpatrick JS, Heller J (2001) Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos Environ 35:4315–4330

    Article  Google Scholar 

  249. Al-Kharouf SJ, Al-Hamarneh IF, Dababneh M (2008) Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. J Environ Radioact 102(11):975–1064

    Google Scholar 

  250. Landis GA (1997) Mars dust removal technology, NASA Lewis Research center. IEEE, Energy Convers Eng Conf 1:764–767

    Google Scholar 

  251. Alwan AA (2012) The effect of dust storms on total solar radiation rates for Baghdad City, Iraqi Information Agency (IIA)

    Google Scholar 

  252. Al-Rasoul KT, Ali FH, Ali MM, Al-Shakry AJ (2010) Characterization of quartz and calcite particle size presents in local dust fell on Baghdad on June 2009, Iraqi. J Phys 8(12):60–64

    Google Scholar 

  253. Ferg EE, Loyson P, Gromer G (2008) The influence of particle size and composition on the quantification of Airborne Quartz analysis on filter paper. Ind Health 46:144–151

    Article  Google Scholar 

  254. Wang AS, Angel SJ, Chaney RL, Delorme TA, Reeves RD (2006) Soil PH effects on uptake of CD and Zn by Thlaspi caerulescene. Plant and Soil 281:325–337

    Article  Google Scholar 

  255. Lee CJ, Zhang SC, JudithX Y, Chow C, An ZS, Ho KF, Watson JG, Fung K, Wang YQ, Shen ZX (2005) Characteraztion of airborne carbonate over a site near Asia dust souree region during spring 2002 and its climatic and environmental significance. J Geophys Res 110:D03203

    Google Scholar 

  256. Sims RA, Biris AS, Wilson JD, Yurteri CU, Mazumder MK, Calle CI, Buhler CR (2002) Development of transport self-cleaning dust shield for solar panels. Proc. ESA-IEEE Joint Meeting on Electrostatics, Little Rock, pp 814–821

    Google Scholar 

  257. Kasim KN, Al-Wattar AJ, Abbas KK (2010) New technique for treatment of the dust accumulation from PV solar panels surface, Iraqi. J Phys 8(12):54–59

    Google Scholar 

  258. Al-Sudany AHS (2009) Studying the effects of dust and temperature on the solar cell performance, M.Sc Thesis, Al-Mustansiriyah University

    Google Scholar 

  259. Astaw KS (2007) Tropical Area is a best place to achieve the best performance of amorphous silicon photovoltaic, electronic and electrical engineering, Loughborough University, Leicestershire, LE113TU, UK, TPSDP Research Fellowship (TPSDP-ADB) No.1792-INO

    Google Scholar 

  260. David LK (1997) Photovoltaic module and array performance characterization methods for all system operating conditions, Sandia National Laboratories, Photovoltaic Systems Department, MSO 752, Albuquerque, NM 87185, New York, pp 1–22

    Google Scholar 

  261. Chaichan MT, Mohammed BA, Kazem HA (2015) Effect of pollution and cleaning on photovoltaic performance based on experimental study. Int J Sci Eng Res 6(4):594–601

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaichan, M.T., Kazem, H.A. (2018). Environmental Conditions and Its Effect on PV Performance. In: Generating Electricity Using Photovoltaic Solar Plants in Iraq. Springer, Cham. https://doi.org/10.1007/978-3-319-75031-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75031-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75030-9

  • Online ISBN: 978-3-319-75031-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics