Skip to main content

Massive Transfusion Protocols (MTPs) in Cancer Patients

  • Reference work entry
  • First Online:
Oncologic Critical Care

Abstract

The management of soldiers with massive injury in the battleground and the blood support needed for these patients is an area of constant progress and led to the development of protocols to correct the rapid changes leading to death after the battle trauma. As a result there has been a standardization and timely release of blood components in defined ratios which are called massive transfusion protocols (MTPs). The civilian hospitals learned from the military experience, and MTPs are currently used in the emergency centers and operating rooms of hospitals. However, not all MTPs are created equal, and there is institutional variation, according to the type of patients requiring MTPs. There is still controversy around the ratios of blood components to be used and what population of patients benefit from the activation of MTPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergamin FS, Almeida JP, Landoni G, et al. Liberal versus restrictive transfusion strategy in critically ill oncologic patients: the transfusion requirements in critically ill oncologic patients randomized controlled trial. Crit Care Med. 2017;45:766–73. https://doi.org/10.1097/CCM.0000000000002283.

    Article  PubMed  Google Scholar 

  2. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63:805–13.

    Article  Google Scholar 

  3. Cata JP, Gottumukkala V. Blood loss and massive transfusion in patients undergoing major oncological surgery: what do we know? ISRN Anesthesiol. 2012;2012:918938, 11 pages. https://doi.org/10.5402/2012/918938.

    Article  Google Scholar 

  4. Cata JP, Gottumukkala V. Blood transfusion practices in cancer surgery. Indian J Anaesth. 2014;58(5):637–42. https://doi.org/10.4103/0019-5049.144675.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cohn EJ, Oncley JL, Strong LE, Hughes WL, Armstrong SH. Chemical, clinical, and immunological studies on the products of human plasma fractionation. I. The characterization of the protein fractions of human plasma. J Clin Invest. 1944;23:417–32.

    Article  CAS  Google Scholar 

  6. Collins JA. Problems associated with the massive transfusion of stored blood. Surgery. 1974;75:274–95.

    CAS  PubMed  Google Scholar 

  7. Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ. Hemostasis in massively transfused trauma patients. Ann Surg. 1979;190:91–9.

    Article  CAS  Google Scholar 

  8. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG(R)) and rotational thromboelastometry (ROTEM(R)) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18:518.

    Article  Google Scholar 

  9. Duchesne JC, Holcomb JB. Damage control resuscitation: addressing trauma-induced coagulopathy. Br J Hosp Med (Lond). 2009;70:22–5.

    Article  Google Scholar 

  10. Einersen PM, Moore EE, Chapman MP, Moore HB, Gonzalez E, Silliman CC, Banerjee A, Sauaia A. Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusion. J Trauma Acute Care Surg. 2017;82:114–9.

    Article  Google Scholar 

  11. Etchill EW, Myers SP, Mcdaniel LM, Rosengart MR, Raval JS, Triulzi DJ, Peitzman AB, Sperry JL, Neal MD. Should all massively transfused patients be treated equally? An analysis of massive transfusion ratios in the nontrauma setting. Crit Care Med. 2017;45:1311–6.

    Article  Google Scholar 

  12. Hanke AA, Horstmann H, Wilhelmi M. Point-of-care monitoring for the management of trauma-induced bleeding. Curr Opin Anaesthesiol. 2017;30:250–6.

    Article  Google Scholar 

  13. Holcomb JB, Del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, Alarcon LH, Bai Y, Brasel KJ, Bulger EM, Cotton BA, Matijevic N, Muskat P, Myers JG, Phelan HA, White CE, Zhang J, Rahbar MH, Group PS. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148:127–36.

    Article  Google Scholar 

  14. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, Del Junco DJ, Brasel KJ, Bulger EM, Callcut RA, Cohen MJ, Cotton BA, Fabian TC, Inaba K, Kerby JD, Muskat P, O’Keeffe T, Rizoli S, Robinson BR, Scalea TM, Schreiber MA, Stein DM, Weinberg JA, Callum JL, Hess JR, Matijevic N, Miller CN, Pittet JF, Hoyt DB, Pearson GD, Leroux B, Van Belle G, Group PS. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.

    Article  CAS  Google Scholar 

  15. Johansson PI, Stensballe J. Hemostatic resuscitation for massive bleeding: the paradigm of plasma and platelets – a review of the current literature. Transfusion. 2010;50:701–10.

    Article  Google Scholar 

  16. Kutcher ME, Kornblith LZ, Narayan R, Curd V, Daley AT, Redick BJ, Nelson MF, Fiebig EW, Cohen MJ. A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices. JAMA Surg. 2013;148:834–40.

    Article  Google Scholar 

  17. Leslie SD, Toy PT. Laboratory hemostatic abnormalities in massively transfused patients given red blood cells and crystalloid. Am J Clin Pathol. 1991;96:770–3.

    Article  CAS  Google Scholar 

  18. Mcdaniel LM, Neal MD, Sperry JL, Alarcon LH, Forsythe RM, Triulzi D, Peitzman AB, Raval JS. Use of a massive transfusion protocol in nontrauma patients: activate away. J Am Coll Surg. 2013;216:1103–9.

    Article  Google Scholar 

  19. Mcquilten ZK, Crighton G, Brunskill S, Morison JK, Richter TH, Waters N, Murphy MF, Wood EM. Optimal dose, timing and ratio of blood products in massive transfusion: results from a systematic review. Transfus Med Rev. 2018;32:6–15.

    Article  Google Scholar 

  20. Mercadante S, Gebbia V, Marrazzo A, Filosto S. Anaemia in cancer: pathophysiology and treatment. Cancer Treat Rev. 2000;26(4):303–11. Review.

    Article  CAS  Google Scholar 

  21. Mesar T, Larentzakis A, Dzik W, Chang Y, Velmahos G, Yeh DD. Association between ratio of fresh frozen plasma to red blood cells during massive transfusion and survival among patients without traumatic injury. JAMA Surg. 2017;152:574–80.

    Article  Google Scholar 

  22. Meyer DE, Vincent LE, Fox EE, O’Keeffe T, Inaba K, Bulger E, Holcomb JB, Cotton BA. Every minute counts: time to delivery of initial massive transfusion cooler and its impact on mortality. J Trauma Acute Care Surg. 2017;83:19–24.

    Article  Google Scholar 

  23. Montange F, Salm B, Godfrin PY, Dartois D, Carolus J. Massive transfusion in cancer surgery. A study of the survival of 21 patients. Cah Anesthesiol. 1996;44(2):111–3. French.

    CAS  PubMed  Google Scholar 

  24. Moren AM, Hamptom D, Diggs B, Kiraly L, Fox EE, Holcomb JB, Rahbar MH, Brasel KJ, Cohen MJ, Bulger EM, Schreiber MA, Group PS. Recursive partitioning identifies greater than 4 U of packed red blood cells per hour as an improved massive transfusion definition. J Trauma Acute Care Surg. 2015;79:920–4.

    Article  Google Scholar 

  25. Odell DD, Bilimoria KY. Evaluating appropriate blood transfusion in cancer surgery. JAMA Surg. 2016;151(6):525–6. https://doi.org/10.1001/jamasurg.2015.5104.

    Article  PubMed  Google Scholar 

  26. Ojima T, Iwahashi M, Nakamori M, et al. Anaemia in cancer: pathophysiology and treatment. J Gastrointest Surg. 2009;13:1821.

    Article  Google Scholar 

  27. Primrose A, Ryerson ES. The direct transfusion of blood: its value in haemorrhage and shock in the treatment of the wounded in war. Br Med J. 1916;2:384–6.

    Article  CAS  Google Scholar 

  28. Raymer JM, Flynn LM, Martin RF. Massive transfusion of blood in the surgical patient. Surg Clin North Am. 2012;92:221–34, vii.

    Article  Google Scholar 

  29. Vincent J-L, Lelubre C. The sicker the patient, the more likely that transfusion will be beneficial. J Thorac Dis. 2017;9(12):4912–4. https://doi.org/10.21037/jtd.2017.11.102.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wilson RF, Binkley LE, Sabo FM Jr, Wilson JA, Munkarah MM, Dulchavsky SA, Diebel LN. Electrolyte and acid-base changes with massive blood transfusions. Am Surg. 1992;58:535–44; discussion 544–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Knopfelmacher, A.M., Martinez, F. (2020). Massive Transfusion Protocols (MTPs) in Cancer Patients. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74588-6_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74588-6_110

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74587-9

  • Online ISBN: 978-3-319-74588-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics