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Abstract. The alignment of observed and modeled behavior is a pivotal
issue in process mining because it opens the door for assessing the quality
of a process model, as well as the usage of the model as a precise predic-
tor for the execution of a process. This paper presents a novel technique
for reduction of a process model based on the notion of indication, by
which, the occurrence of an event in the model reveals the occurrence of
some other events, hence relegating the later set as less important infor-
mation when model and log alignment is computed. Once indications
relations are computed in the model, both model and log can be reduced
accordingly, and then fed to the state of the art approaches for computing
alignments. Finally, the (macro)-alignment derived is expanded in these
parts containing high-level events that represent a set of indicated events,
by using an efficient algorithm taken from bioinformatics that guarantees
optimality in the local parts of the alignment. The implementation of the
presented techniques shows a significant reduction both in computation
time and in memory usage, the latter being a significant barrier to apply
the alignment technology on large instances.
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1 Introduction

Nowadays many systems generate event logs, which are footprints left by pro-
cess executions. Process mining delves into this information and examines it to
extract, analyze and enhance evidence-based process models [15]. One of the
challenges in process mining is how to align a process model to a set of traces
forming an event log. Given a trace representing a real process execution, an
optimal alignment provides the best trace the process model can provide to imi-
tate the observed trace [1]. Alignments are crucial for important metrics like
fitness, precision and generalization [1,2].

This paper presents a model-based technique for reduction of a process model
and observed behavior that both preserves the semantics of the process model
and retains the information of the original observed behavior as much as pos-
sible. The technique is meant to fight the main problem current approaches for
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alignment computation have: the complexity both in space and time. In other
words the main goal of the reduction of a process model and event log presented
in this paper is to alleviate the current computational challenge of computing an
alignment rather than abstracting a process model to capture its essential frag-
ments and hiding details [11]. Therefore given a process model a particular kind
relation between transitions of the model which implies causality is of interest
and the presented technique seeks corresponding fragments of the process model
for this issue by which reduces the model. Also, other kinds of relation between
transitions of the model for the aim of abstraction or consistency verification
between process model are presented in [19] which are not suitable for the men-
tioned challenge. More specific, the overall idea of this paper relies on the notion
of indication between activities of the process model when it is represented as
a Petri net. An indication relation between a set of transitions (indicated set)
and another transition (indicator) denotes a deterministic causal firing relation
in the model, which expresses that the presence in any model’s sequence of the
indicator transition requires the presence of the indicated set as well. The notion
of indication is inspired from the reveals relation from [3] and co-occurrence rela-
tion in [19]. We use a well-known technique to find logically independent parts
of a graph (known as fragment with entry-exit pair in [12] or the so-called Sin-
gle Entry Single Ezit (SESE) in [6]), which are then used to gather indication
relations efficiently. These relations dictate which parts of a process model are
abstracted as a single, high-level node. Once the model is reduced, the observed
trace to align is projected (hence, reduced as well) into the reduced model’s
alphabet. This way, not only the model but also the trace are reduced, which in
turn makes the alignment techniques to be significantly alleviated, specially for
well-structured process models where many indication relations may exist. Once
alignments are computed, the final step is also an interesting contribution of this
paper: to cast the well-known Needleman-Wunsch algorithm [9] to expand locally
each high-level part of the alignment computed, using the indication relation.

2 Related Work

The seminal work in [1] proposed the notion of alignment, and developed a tech-
nique to compute optimal alignments for a particular class of process models.
For each trace ¢ in the log, the approach consists on exploring the synchronous
product of model’s state space and o. In the exploration, the shortest path
is computed using the A* algorithm, once costs for model and log moves are
defined. The approach is implemented in ProM, and can be considered as the
state-of-the-art technique for computing alignments. Several optimizations have
been proposed to the basic approach to speed up and improve memory con-
sumption. The recent work in [14] proposed a divide and conquer strategy based
on Integer Linear Programming (ILP) approach to compute approximate align-
ments. Despite its memory and time efficiency, it cannot guarantee the obtention
of an (optimal) alignment. The similar approach which combines the ideas of two
mentioned techniques and can always guarantee a solution (not optimal) and
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heavily uses the resolution of ILP and marking equation in combination with a
bounded backtracking is presented in [16].

The work in [7] presented a decomposition approach using SESEs for con-
formance checking of the model and observed behavior. The proposed approach
decomposes a given model to smaller parts via SESE and then applies confor-
mance checking for each part independently. This technique is very efficient, but
the result is decisional (a yes/no answer on the fitness of the trace). Recently
[18] proposed a new approach which provides an algorithm that is able to obtain
such an optimal alignment from the decomposed alignments if this is possible,
which is called proper optimal alignment. Otherwise, it produces a so-called
pseudo-alignment which as in the case of [14], may not be executable in the net.

The Refined Process Structure Tree (RPST), proposed by [17], is a graph
parsing technique that provides well-structured parts of a graph. The resulting
parse tree is unique and modular, i.e., local change in the local workflow graph
results in a local change of the parse tree. It can be computed in linear time
using the method proposed in [13] which is based on the triconnected compo-
nents of a given biconnected graph. The proposed approach only works with
single sink, single source workflow graphs which hampers its applicability to
real world problems with many sink, source nodes. The work in [12] presents a
more efficient way to compute RPST which can deal with multiple source, sink
workflow graphs.

Abstraction of business process models is presented in [11]. The core idea is to
replace the process fragments inside a given process model with the process tasks
of higher abstraction levels to simplify the given process models for non-technical
stakeholders. The key property of the presented approach is order preservation,
by which the abstraction mechanism ensures that neither new task execution
order constraints are produced nor existing ones gone after abstraction. Stated
differently the mentioned property secures the overall process logic to be reflected
in the abstracted model. To identify process fragments, the paper uses the notion
of process component i.e., a process fragment which is connected to the rest of the
model by only two nodes namely fragment entry and fragment exit. Identifying
process components in a given process model amounts to finding triconnected
components of a graph. To this end the presented approach lies on SPQR-tree
decomposition, by which triconnected components can be obtained. Afterwards,
the proposed abstraction rules utilize these components. Four abstraction rules
are presented which depend on the structure types returned from the decom-
position stage. Since the proposed approach relays on identifying triconnected
components of a process model therefore it must have some structural char-
acteristics like being free of self-loop structural patterns and must contain no
places with multiple incoming and multiple outgoing arcs. Similarly the work
in [19] presents causal behavioural profile notion for consistency verification
between a normative model and its workflow implementation, i.e., to what degree
the behavior of the later is captured by the former. The mentioned notion
represents a behavioural abstraction that includes dependencies in terms of
order, exclusiveness and causality between pairs of activities of a process model.
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The general idea of consistency measure is as follows, given the correspondence
relation between the sets of transitions of two WZF-nets, all respective tran-
sitions of two models are aligned and for each pair of aligned transitions it
is checked whether those transitions show the same constraints as defined by
the causal behavioural profile. To compute causal behavioural profile efficiently,
the presented approach concretises RPST fragments by annotating them with
behavioural characteristics. Stated differently, an explicit relation between struc-
tural and behavioural characteristics is established.

The seminal work [5] first introduced the notion of reveals relation, which
determines that whenever an action a happens, then the occurrence of another
action b is inevitable. The notion of indication in this paper on the one side is
inspired on the reveals relation and on the other side is an extension over co-
occurrence relation between two transitions of the process model defined in [19].

3 Preliminaries

3.1 Petri Nets, Structural Deadlock

A Petri Net is a 3-tuple N = (P, T, F), where P is the set of places, T is the set
of transitions, PNT =0, F : (P x T)U (T x P) — {0,1} is the flow relation.
Marking of a Petri net represents the number of tokens each place has. Given a
node z € PUT, its pre-set and post-set (in graph adjacency terms) are denoted
by ®x and x® respectively. A transition ¢ is emabled in a marking m when all
places in *t are marked. When a transition ¢ is enabled, it can fire or execute by
removing a token from each place in *¢ and putting a token to each place in t°.
A marking m/' is reachable from m if there is a sequence of firings t1ty...t, € T*
that transforms m into m’, denoted by mltits...t,)m’. For a given model N
and initial marking mg, the set RS(N,mg) = {m|Fw € T*.mpo[w)m} is the
reachability set [8].

A structural deadlock or simply deadlock in a Petri net is a set of places
such that every transition which outputs to one of the places in the deadlock
also inputs from one of these places. Formally, a nonempty subset of places Py
of a net N is a deadlock if *P; C P7, See Fig. 2. Deadlocks have the following
properties [4,10]:

— If marking m € RS(N,mg) is a deadlock state then Py = {p|m[p] = 0}, is an
unmarked set of places.

— Once all of the places in the deadlock become unmarked, the entire set of
places will always be unmarked; no transition can place a token in the dead-
lock because there is no token in the deadlock to enable a transition which
outputs to a place in the deadlock.

WF-net is a Petri net where there is a place start (denoting the initial state
of the system) with no incoming arcs and a place end (denoting the final state
of the system) with no outgoing arcs, and every other node is within a path
between start and end. Figure 1(a) represents a WF-net.
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Fig. 1. (a) WF-net, (b) Workflow graph, (¢) RPST, (d) Reduced WF-net
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Fig. 2. Pd = {Pl,Pz,P:g}, .Pd = {tz}, Pd. = {tl,tz}

3.2 Trace, Event Log, Alignment

Given an alphabet of events T' = {t1,...,t,}, a trace is a word o € T* that
represents a finite sequence of events. An event log L € B(T*) is a multiset
of traces'. An alignment is represented by a two-row matrix where the top
and bottom rows represent moves on log and the model respectively. Such an
alignment reveals how the given trace can be replayed on the process model. The
classical notion of aligning event log and process model was introduced by [1].
To achieve an alignment between a process model and an event log, we need to
relate moves in the trace to moves in the model. It may be the case that some

1 B(A) denotes the set of all multisets of the set A.
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of the moves in the trace can not be mimicked by the model and vice versa, i.e.,
it is impossible to have synchronous moves by both of them. For example given
trace t1tatatsts and the model in Fig. 1(a), an example of alignment is:

L[ talta]ts] L|s]
[ta]2ta] Lfts[tr]ts]

where the model is able to mimic ¢y, t4, t5 and tg hence they are called syn-
chronous moves and the rest are asynchronous moves. If weight is assigned to
each move such that synchronous moves get less weight than asynchronous moves
then an optimal alignment which is of interest is the one with minimum cost.

3.3 Interior and Boundary Nodes, SESE

Let F' C F represents a set of edges of a directed graph (V, E,¢), Gp = (Vp, F)
is the subgraph formed by F' if Vi is the smallest set of nodes such that G is
a subgraph. A node in Vp is boundary with respect to G if it is connected to
nodes in Vg and in V — Vg, otherwise it is interior. A boundary node u of G
is an entry node if no incoming edge of u belongs to F' or if all outgoing edges of
u belong to F. A boundary node v of G is an erit node of G if no outgoing
edge of v belongs to F' or if all incoming edges of v belong to F. G with one
entry and one exit node is called Single Entry Single Exit (SESE). If a SESE
contains only one edge it is called trivial. A SESE of G is called canonical if it
does not overlap with any other SESEs of GG, but it can be nested or disjoint
with other SESEs. For example in Fig. 1(b) all SESEs are canonical, So and Sy
are nested, S3 and Sy are disjoint. A WF-net can be viewed as a Workflow graph
if no distinctions are made between its nodes. WF-graph of Fig. 1(a) is presented
in Fig. 1(b). Let G be a graph, then its Refined Process Structure Tree (RPST)
is the set of all canonical SESEs of G. Because canonical fragments are either
nested or disjoint, they form a hierarchy. In a typical RPST, the leaves are trivial
SESE and the root is the whole graph. Figure1(c) is the RPST of WF-graph
in Fig. 1(b), S7 which is the entire graph is at root and leaves are trivial SESEs
which only contain one edge.

4 Overall Framework

Given a process model NV, represented by a Petri net, and o as observed behavior,
the strategy of this paper is sketched in Fig. 3. We now provide descriptions of
each stage.

— Model Reduction: N will be reduced based on the notion of indication rela-
tion which results in N,. It contains some abstract events representing the
indicators of certain indicated sets of transitions. Section 5.1 explains it in
detail.

— Log Reduction: Using the indication relations computed in the model, o is
projected into the remaining labels in IV,., resulting in o,.. Section 5.2 describes
this step.
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@ Log Reduction
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Fig. 3. Overall framework for boosting the computation of alignments
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— Computing Alignment: Given N, and o,., approaches like [1,14] can be applied
to compute alignments. At this point because both N,. and o, contain abstract
events, the computed alignment will have them as well. We call it macro-
alignment.

— Alignment Ezxpansion: For each abstract element of a macro-alignment, the
modeled and observed indications are confronted. Needleman—Wunsch algo-
rithm [9] is adapted to compute optimal alignments for these abstracted ele-
ments. Section 6 will be centered on this.

It must be stressed that for the proposed framework, obtaining an optimal align-
ment is not guaranteed due to expansion and reduction issues but the experi-
mental outcomes which are presented in Sect.7 revealed the results are closed
to optimal solutions.

5 Reduction of Model and Observed Behavior

5.1 The Indication Relation

Let us consider the model in Fig. 1(a). For any sequence of the model, whenever
transition t4 fires it is clear that transitions tq, t3, and to have fired as well or
firing of tg indicates that ¢1, t5 and ¢t7 must be happened already. Formally:

Definition 1 (Universal-Indication Relation). Let N = (P, T, F), Vt € T,
indication is defined as a function, I(t) where, I : T — [P(T)"]*? such that
for any sequence o € L(N), if t € o then I(T) € 0. If I(t) = wiws...w,, then
elements of wy, precede the elements of w, in o for 1 < m < n. It is called
linear if it contains only singleton sets, i.e. Yw; € I(t),|w;| = 1 otherwise it is
non-linear.

Model reduction can be done through the subclass of universal-indication
relation, which is called flow-indication relation. Stated formally:

Definition 2 (Flow-Indication Relation). Given Definition 1, If 1(t) =
WiWwa...wy, it represents a flow-indication if and only if, for all consecutive ele-
ments w;, wiy1, firing the whole elements of the former enable all elements in
the later, exclusively, for 1 <1 < n.

2 P(T) is powerset of the set of transitions of the model.
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For example in Fig.1(a), I(ts) = {t1}{{t2}, {t3}}{t4} (non-linear), which is a
flow-indication as well, and I(ts) = {t1}{ts}{tz}{ts} (linear), but it is not a
flow-indication because firing of ¢; will not enable t5 exclusively. From now on,
because the flow-indication relation is our concern for the remaining parts of the
paper, for the sake of simplicity, by indication we mean flow-indication relation,
unless otherwise stated explicitly.

5.1.1 Detecing Flow-Indication Relation Through SESE.

SESEs are potential candidates for identifying indication relations inside a WF-
net: the exit node of a SESE is the potential indicator of the nodes inside the
SESE. Since entry/exit nodes of a SESE can be either place or transitions,
SESEs are categorized as (P, P), (P,T), (T, P) or (T,T). In case the SESE is
linear, indication relations can be extracted easily and the corresponding SESE
is reduced (see Fig.4).

Non-linear cases are decomposed into linear ones such that indication rela-
tions can be computed directly on the linear components extracted. After that,
the indication relation of the corresponding linear SESEs are computed and they
are reduced as well. This procedure should be done with caution to avoid reach-
ing a deadlock situation. Hence a deadlock-free post-verification must be done
after reduction of these linear parts. Informally, the verification is only needed
for particular type of linear SESEs ((T',T")), and consists on validating the prop-
erty of the SESE after the reduction. Notice the verification is necessary in
these cases because, non-linear SESEs may contain linear universal-indications
at nested level, which cannot be extracted as flow-indication relations due to
choice or loop constructs. For example in Fig. 5(a), (b) t5 can not be the indica-
tor of transitions in the corresponding SESEs due to choice and loop structures.

Stated differently, the reduction of non-linear SESEs must be done alongside
by a deadlock-free post-verification; for instance, Fig. 6 shows that in spite of the
indication arising from SESE Ss, the net cannot be reduced without changing
the language. To put it another way, this reduction will cause a deadlock in
the reduced model, and hence must be avoided. Looking at the reduced result

ty P ty ta(New)
@ [—O—0
BT R g B H(New)
& O——0O— [] O—0O
S

to(New) P

b EEEE BY

i3 t3(New) P3

@ W&&&W@ O

Fig. 4. Linear SESEs and corresponding reductions.
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ts(New)
(a) (b)

Fig. 6. Incorrect indication-based reduction: a deadlock is introduced.

in Fig. 6(b), transition ¢5(/New) never fires because after the reduction it won’t
be enabled since P, never gets marked. To shed more light on the examination
of the deadlock-free post-verification, more details are stated in the following
theorem.

Theorem 1. Let S be a reduced linear SESE or the combination of other reduced
linear SESEs with entry, exit nodes (ty,t,) of the (T,T) category. If OUT (t,,)
and IN (t,) represent the set outgoing and incoming arcs of t,, and t, respectively,
then the reduction is deadlock-free if and only if:

(a) Vee OUT(t,), then e€S (b) VeeIN(t,), then e€S

Proof. First of all, assume that the original model before the reduction does not
have any deadlock and T's and t,(yew) represent internal transitions of S and the
reduced SESE respectively. The proof is presented by contradiction as follow:

Suppose that conditions in Theorem 1 hold and the reduction of S causes dead-
lock in the system. Namely, there is a set of places, P4, which attributes deadlock
or in other words t,(yew) Outputs to one of places in P; and inputs from one
of them. Due to the fact that all transitions in Tg are internal and do not have
direct access to any places in Py, the only incoming and outgoing arcs of &,(new)
belong to t, and t, respectively. So it can be concluded that once the places in
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Fig. 7. Schema for reduction of a WF-net.

P; become unmarked they will always be unmarked and neither ¢, nor ¢, can
place a token in the deadlock, but this contradicts with the assumption that the
original model does not have deadlock due to the fact that IN(t,) and OUT (¢,)
remain unchanged before and after reduction. Thus the theorem is true. O

The reduction schema is depicted in Fig.7. From the RPST, a top-down
approach is applied that searches for indication-based reductions that do preserve
the language of the initial model, once the net is expanded back, i.e., the language
of the model must be preserved after reduction.

Notice that the reduction can be applied more than once till saturation (hence
the arc back from the node “Reduced WF-net” to the node “WF-net” in Fig. 7).

Figure 8 shows an example (for the sake of simplicity only linear SESEs are
shown). Obviously, SESE S5 is inherently a linear SESE but the rest come from
the decomposition of non-linear SESEs. The reduction schema is as follows:
Since Sy is inherently a linear SESE, hence it can be reduced easily according to
Fig. 4 without any deadlock-free post-verification. The rest of linear SESEs also
will be reduced accordingly and the deadlock-free post-verification will be done
after each reduction to check that no deadlock arises. One can see all reductions
will pass the verification, except for S;, whose reduction induces a deadlock
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Fig. 8. (a) Process model, (b) One-time reduced (c) Two-times reduced.

hence must be excluded from abstraction. Applying the reduction once, results
in Fig.8(b). As mentioned earlier, the reduction can be applied more than once
until no reduction can be made. Figure8(c) is the reduction of the model in
Fig.8(b) and it is clear that no more reduction can be made from this model.

5.2 Reduction of Observed Behavior

Given a reduced model N, and o, we show how to produce o,.. We will use the
reduced model in Flg 8(b) and the trace g1 = t1t5t3t11t10t21t6t2t7t16t25t19t20t26.
The indication of t5(xe,) in Fig. 8(b) which is linear, equals to {t5}{t15}. So the
observed indication for this abstract node is 0111<t5<nw)> = t5. After computing
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the observed indication the reduced trace is tits(new)tatittiotaitetatrtictas
tigtaotas. For tiz(new), {(tir(nvew)) = {ts}{{t10},{t11}}{t17}, which is non-
linear and merged of two linear indications, I1(t17(new))=1t3}{t10}{t17} and
Ir(ti7(New)) = {ts}{t11}{t17}. So the projection must be done for each linear

indication separately, Ulih(tnm ) = t3t19 and 01112“17(N ) = t3t11, removing

transitions ts, t19, t11 and t17 from the current trace (notice that ¢17 does not
appear originally, hence it is not projected). Finally, we need to insert #;7(yew)
into the reduced trace; it will be inserted at the position of ¢y, because the end
transition of the abstract node, i.e. t17 did not happen in o, and t1¢9 happened
last in o. Therefore the reduced trace so far is t1t5(new)ti7(new)t21tet2trtictos
tigtaotas. By applying this process for the rest of abstract nodes (ti6(new)s

t22(New))7 we reach o, = tlt5(new)t17(new)t21t16(New) t22(New)t26~

6 Expansion Through Local Optimal Indication
Alignments

After reducing a given process model and corresponding observed behavior,
we can use current methods for computing alignments [1,14] to align N, and
oy, deriving «,.. For example the following is the macro alignment of o1, =
t1ts(mew)t17(new)t21t16(New) L22(New)t2s and the model in Fig.8(b) obtained by
the approach in [1].

‘tlﬁ(New) ‘tQQ(New) ‘t26 ‘

_‘tl‘t5(New)‘t17(New)‘t21‘ L ‘ 1
|t17(ew) | t21 24 |ts(Wew) | Er6(Vew) [ E22(Vew) |26

Tl 1

(07

When mapped to linear indications, indication of an abstract node and the
corresponding observed indication are both sequence of events; hence for each
linear combination of modeled/observed indication, we can adapt the dynamic
programming approach from [9] (used in bioinformatics) to align two sequences.
As an example, we use indication of ¢17(new) and its observed indication com-
puted in the previous section.

Table 1. Aligning modeled and observed indications

Table 1: Aligning modeled and observed indications

| t3 t11 | t3 t1o

0 ,'\-1 -2 0 -1 -2

ts 1 0 1 t3 1 0 L
I SN N | ETE T 00

ti7 -3 -2 |1 ti7 -3 -2 | -1

(b)

o t3 | tio | L
) t3 | tio | t17
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To achieve this goal, we create a table for each linear indication, where the
first row and column are filled by observed and abstract node indications respec-
tively, as depicted in Table1(a), (b). The second row and second column are
initialized with numbers starting from 0, —1, —2,..., they are depicted in yellow
color. The task then is to fill the remaining cells as follows:

SIM(ti,tj) = MAX(S]M(ti_l,tj_l) + S(ti,tj),SIM(ti_htj) — 1,5[M(ti,tj_1) — 1)

where STM(t;,t;) represents the similarity score between t; and ¢;. s(t;,t;) is
the substitution score for aligning ¢; and ¢;, it is 0 when they are equal and —1
otherwise.

The final step in the algorithm is the trace back for the best alignment. In
the above mentioned example, one can see the bottom right hand corner in for
example Table 1, score as —1. The important point to be noted here is that there
may be two or more alignments possible between the two example sequences. The
current cell with value —1 has immediate predecessor, where the maximum score
obtained is diagonally located and its value is 0. If there are two or more values
which points back, suggests that there can be two or more possible alignments.
By continuing the trace back step by the above defined method, one would reach
to the Oth row, Oth column. Following the above described steps, alignment of
two sequences can be found.

Alignments can be represented by a sequence of paired elements, for exam-
ple a1 — (t3,t3)(t11,t11)(J_,t17), Qg — (tg,tg)(tlo,tlo)(J_,t17) and final align—
ment which represent the non-linear indication is a = (¢3,t3){(t11,t11), (t10,%10)}
(L,t17). This information is booked for each abstract node.

After computing local alignments for abstract nodes, we can use them to
expand corresponding abstract nodes in a given «,. The policy of expansion
depends on whether the abstract node is in synchronous or asynchronous move.

In oy, t17(New) 18 in a synchronous move so we can expand it by its local
alignment, which results in:

:\h ts(New) | B3l 11 tiol Lltar| L| L |tig(vew) t22(vew)|t2s)
t1] L [ ts i tio) tar|to1|ted | ts(New) [F16(New) | t22(New) [E26]

«

The same story also happens for 16(new) and taa(new), Which results in:

e 55t rno [ 1 [ens| 1| 1 |
[ta] L [ta[tis|tio]tar[ter|tos

tio| tao| L |t26]
tw‘ tzo‘ tzz‘t%‘

tavew) | L] 2] b te| ta] tae| tos

On the other hand t5(yew) in - is a asynchronous move both on the model and
observed trace. The policy of expansion is to expand move on log and move on
model independently. To put it in another way, move on log will be expanded
using observed indication and move on model will be expanded using the abstract
node’ indication, which results:

a:‘tl‘ tslts|tin|tio] L tor| L | L Lltg|taltr| L] Lit1e|tas|t1o/to0| L [t26]
t1] Lits|t11|tio tir o1 |taa | tus b5 L ta|tr|ts|ts|ti6 tas 1o a0 ta2 | tas]
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7 Experiments

The technique presented in this paper has been implemented in Python as a
prototype tool. The tool has been evaluated over different family of examples
with variety of difficulties, alongside with the state of the art techniques for
computing alignments [14] (ILP.R), [1] (A*). We used benchmark datasets from
[7,14], and new generated datasets.

Reduction of Models. Table 2 provides the results of one-time reduction by apply-
ing the proposed method to benchmark datasets. Significant reductions are found
often. Obviously one can see that the results of reduction are more representa-
tive for models without loops like (prAmé,..,prGmé) or for models that contain
small loops, like (Banktransfer).

Table 2. Reduced benchmark datasets

Model Pl 7| larel | lolavg | IP] 7| [arel | lolavg
(Before) | (Before) | (Before) | (Before) | (After) (After) (After) | (After)

prAmé 363 347 846 31 175(52%) | 235(32%) | 498 22(29%)
prBmé6 317 317 752 43 188(40%) | 225(29%) | 490 33(23%)
prCmé6 317 317 752 42 188(40%) | 225(29%) | 490 33(21%)
prDm6 529 429 1140 248 270(49%) | 248(42%) | 618 148(40%)
prEm6 277 275 652 98 180(35%) | 205(26%) | 454 75(23%)
prFmé6 362 299 772 240 181(50%) | 172(42%) | 406 137(42%)
prGm6 357 335 826 143 195(45%) | 221(34%) | 498 94(34%)
M, 40 39 92 13 25(37%) | 28(28%) | 62 9(30%)
Mo 34 34 80 17 26(23%) | 28(18%) | 64 13(23%)
Ms 108 123 276 37 76(30%) | 98(20%) | 212 29(21%)
My 36 52 106 26 31(14%) | 48(8%) | 96 23(11%)
M5 35 33 78 34 27(23%) | 27(18%) | 62 28(18%)
Mg 69 72 168 53 51(26%) | 59(18%) | 132 43(19%)
My 65 62 148 37 43(34%) | 46(26%) | 104 28(24%)
Mg 17 15 36 17 6(65%) | 7(53%) | 14 9(47%)
Mo 47 55 120 44 26(45%) | 39(29%) | 78 34(23%)
Mo 150 146 354 58 91(39%) | 105(28%) | 236 42(28%)
Bank transfer | 121 114 272 58 61(46%) | 72(37%) | 152 38(34%)

Executable Property of Alignments. Since the alignment technique ILP.R may
be approximate or the results contain spurious elements, Table 3 provides an
overview of how many of the computed alignments can be replayed for ILP.R
method when combined with the technique of this paper. Also the correspond-
ing results for the technique in [1] are presented as well. One can see that the
expanded alignments provided by A* were replayed 100% for all datasets.
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Table 3. Replaying of computed step-sequences

Model Cases | Replay% Replay% Replay% Replay%
(Before)ILP.R | (After)ILP.R | (Before)A™ | (After)A™
prAmé6 1200 | 100% 100% 100% 100%
prBmé6 1200 100% 100% 100% 100%
prCmo6 500 100% 100% 100% 100%
prDm6 1200 100% 100% 100% 100%
prEm6 1200 | 100% 100% 100% 100%
prFmé6 1200 | 100% 100% 100% 100%
prGm6 1200 100% 100% 100% 100%
My 500 |94.2% 86% 100% 100%
Mo 500 |95.4% 86.2% 100% 100%
M3 500 | 98% 88.8% 100% 100%
My 500 | 90% 81% 100% 100%
Ms 500 | 94.8% 95.2% 100% 100%
Mg 500 | 98.6% 90.8% 100% 100%
M~ 500 |97.2% 96% 100% 100%
Mg 500 100% 100% 100% 100%
Mg 500 100% 98.8% 100% 100%
Mo 500 | 100% 99.8% 100% 100%
Bank transfer | 2000 | 97.25% 88.9% 100% 100%

Table 4. Quality of computed step-sequences

Model ED(A*vs Jaccard(A*vs | MSE(A*vs |ED(ILP.R vs |Jaccard(ILP.R vs | MSE(ILP.R vs
EXP.R.A*)|EXP.R.A*) |EXP.R.A*)|EXP.R.ILP.R) EXP.R.ILP.R) EXP.R.ILP.R)

prAmé 7.49 0 0.065 9.25 0.017 0.00081

prBmé6 7.87 0 0 18.31 0 0

prCmé6 8.65 0.016 0.005 11.60 0.0019 0.00646

prDm6 NA NA NA 93.28 0.0101 0.00041

prEm6 37.14 0 0.02 37 0 0

prFmé NA NA NA 67 0.013 0.0074

prGm6 NA NA NA T 0.011 0.00064

M1 4 0.085 0.021 4 0.025 0.0165

Mo 6 0.012 0.0193 6 0 0.018

Ms 8 0.046 0.021 5 0.011 0.016

My 4 12 0.028 2 0.015 0.025

Ms 11 0.0022 0.0045 15 0.00024 0.0103

Mg NA NA NA 12 0.0012 0.0088

M~ NA NA NA 15 0.0027 0.019

Mg 4 0.073 0.039 4 0.0078 0.035

Mg NA NA NA 3 0.0044 0.0085

Mo NA NA NA 13 0.00038 0.012

Bank transfer | 18 0.031 0.025 13 0.0118 0.0067

Comparing with Original Alignments. Table 4 reports the evaluation of the qual-
ity of the results for both approaches [1,14] with and without applying the
technique of this paper. Columns ED/Jaccard report the edit/Jaccard distances
between the sequences computed, while (Mean Square Error) MSE columns
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Table 5. The atrerage of required variables for ILP.R

Model [Var|qvg(Before) | [Var|qyg (After) | Model | [Var|,yq(Before) | |Var|qq, g (After)
prAm6 10757 5170 (52%) Mo 578 364 (37%)
prBm6 13631 7425 (45%) M3 4551 2842 (37%)
prCm6 13314 7425 (44%) | My 1352 1104 (18%)
prDm6 106392 36704 (65%) Ms 1122 756 (32%)
prEm6 26950 15375 (43%) Mg 3816 2537 (33%)
prFm6 71760 23564 (67%) M 2294 1288 (44%)
prGm6 47905 20774 (56%) | Ms 255 3 (75%)
banktransfer 6612 2736 (58%) Mg 2420 1326 (45%)
My 507 252 (50%) Mio 8468 4410 (48%)

report the mean square error between the corresponding fitness values. Edit
distances are often large, but interestingly this has no impact on the fitness,
since when expanding abstract nodes although the final position may differ, the
model still can replay the obtained sequences very often.

Memory Usage. By one-time reduction, the memory usage® of computing align-
ments using [1], is reduced significantly. See Fig.9(a)—(b) which represents the
required memory for [1] without and with using the proposed framework respec-
tively. For large models, prDm6, prE'm6, prGmé, it can only compute alignments
if applied in combination with the technique of this paper otherwise it runs out of
memory for the machine by which the experiment are done, denoted by (>5500
MB) in Fig.9(a), (b). For the approach in [14], due to the fact that it is based
on Integer Linear Programming (ILP), to accentuate the effect of reduction,
the evaluation was done based on number of required variables for computing
alignments with and without the proposed approach. The results in Table 5*
represent, in average, significant reduction to the number of variables when an
ILP instance needs to be solved a given problem.

Computation Time Comparison. Figures 10 and 11(a)—(b) report execution times
for BPM-2013 and other benchmark datasets for the computation of alignments
by techniques in [1,14] with and without using the presented technique in this
paper (denoted by EXP.R.) respectively. It is evident that A* approach combined
with the proposed method is significantly faster than the other approach in
nearly all datasets except (prGmé6, prDm6, Mg, Myp). Still A* approach cannot
compute alignments for models Mg and My even after applying the presented
technique, which are denoted by (N/A), and in that case the combination of
ILP.R with the presented technique is the best choice.

3 Each dataset during its execution was monitored every 0.15s, and the portion of
memory occupied by the corresponding process that is held in main memory (RSS)
was booked. Based on the gathered data 95% CI was computed.

4 For a given model with |T| transitions and an event log o, the required number of
variables for the ILP based technique in [14] is ©(|o| x |T]), totally.
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8 Conclusion and Future Work

We have presented a technique that can be used to significantly alleviate the
complexity of computing alignments. The technique uses the indication relation
to abstract unimportant parts of a process model so that global computation of
alignments focus on a reduced instance. The reduced part of computed align-
ments then will be expanded to represent local deviations as well. Experiments
are provided that witness the capability of the technique when used in combi-
nation with state-of-the-art approaches for alignment computation. Future work
will be devoted to apply the technique on more unstructured inputs and exam-
ining other methods to extract indication relations more efficiently.
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