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Abstract. Visibility graph reconstruction, which asks us to construct a
polygon that has a given visibility graph, is a fundamental problem with
unknown complexity (although visibility graph recognition is known to
be in PSPACE). We show that two classes of uniform step length poly-
gons can be reconstructed efficiently by finding and removing rectangles
formed between consecutive convex boundary vertices called tabs. In
particular, we give an O(n2m)-time reconstruction algorithm for orthog-
onally convex polygons, where n and m are the number of vertices and
edges in the visibility graph, respectively. We further show that recon-
structing a monotone chain of staircases (a histogram) is fixed-parameter
tractable, when parameterized on the number of tabs, and polynomially
solvable in time O(n2m) under reasonable alignment restrictions.
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1 Introduction

Visibility graphs, used to capture visibility in or between polygons, are simple
but powerful tools in computational geometry. They are integral to solving many
fundamental problems, such as routing in polygons, and art gallery and watch-
man problems, to name a few. Efficient, and even worst-case optimal, algorithms
exist for computing a visibility graph from an input polygon [16]; however, com-
paratively little is known about the reverse direction: the so-called visibility
graph recognition and reconstruction problems.

In this paper, we study vertex-vertex visibility graphs, which are formed by
visibility between pairs vertices of a polygon. Given a graph G = (V,E), the
visibility graph recognition problem asks if G is the visibility graph of some
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polygon. Similarly, the visibility graph reconstruction problem asks us to con-
struct a polygon with G as a visibility graph. Surprisingly, recognition of simple
polygons is only known to be in PSPACE [13], and it is still unknown if simple
polygons can be reconstructed in polynomial time. Therefore, current solutions
are typically for restricted classes of polygons.

1.1 Special Classes

A well-known result due to ElGindy [11] is that every maximal outerplanar is
a visibility graph and a polygon can be reconstructed from every such graph in
polynomial time. Other special classes rely on a unique configuration of reflex
and convex chains, which restrict visibility. For instance, spiral polygons [14],
and tower polygons [7] (also called funnel polygons), can be reconstructed in
linear time, and each consists of one and two reflex chains, respectively. 2-spirals
can also be reconstructed in polynomial time [3], as can a more general class of
visibility graphs related to 3-matroids [4].

For monotone polygons, Colley [8,9] showed that if each face of a maximal
outerplanar graph is replaced by a clique on the same number of vertices, then
the resulting graph is a visibility graph of some uni-monotone polygon (mono-
tone with respect to a single edge), and such a polygon can be reconstructed
if the Hamiltonian cycle of the boundary edges is known. However, not every
uni-monotone polygon (even those with uniformly spaced vertices) has such a
visibility graph [12]. Finally, Evans and Saeedi [12] characterized terrain visibility
graphs, which consist of a single monotone polygonal line.

For orthogonal polygons, orthogonal convex fans (also known as staircase
polygons), which consist of a single staircase and an extra vertex, can be recog-
nized in polynomial time [2]; however—strikingly—the only class of orthogonal
polygons known to be reconstructible in polynomial time is the staircase polygon
with uniform step lengths, due to Abello and Eğecioğlu [1]. Other algorithms for
orthogonal polygons use different visibility representations such as vertex-edge
or edge-edge visibility [18, Sect. 7.3], or “stabs” [17]. See Asano et al. [5] or
Ghosh [15] for a thorough review of results on visibility graphs.

1.2 Our Results

In this work, we investigate reconstructing polygons consisting of multiple uni-
form step length staircases. We first show that orthogonally convex polygons can
be reconstructed in time O(n2m). We further show that reconstructing orthog-
onal uni-monotone polygons is fixed-parameter tractable, when parameterized
on the number of the horizontal convex-convex boundary edges in the polygon.
We also provide an O(n2m) time algorithm under reasonable alignment assump-
tions. As a consequence of our reconstruction technique, we can also recognize
the visibility graphs of these classes of polygons with the same running times.
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2 Preliminaries

Let P be a polygon on n vertices. We say that a point p sees a point q (or p and
q are visible) in polygon P if the line segment pq does not intersect the exterior
of P . Under this definition, visibility is allowed along edges and through vertices.

For our visibility graph discussion, we adopt standard notation for graphs
and polygons. In particular, for a graph G = (V,E), we denote the neighborhood
of a vertex v ∈ V by N(v) = {u | (v, u) ∈ E}, and denote the number of
vertices and edges by n = |V | and m = |E|, respectively. For a visibility graph
GP = (VP , EP ) of a polygon P , we call an edge in GP that is an edge of P a
boundary edge. Other edges (diagonals in P ) are non-boundary edges.

Finally, critical to our proofs is the fact that a maximal clique in GP corre-
sponds to a maximal (in the number of vertices) convex region R ⊆ P whose
vertices are defined by vertices of P . A vertex v is called simplicial if N(v) forms
a clique, or equivalently v is in exactly one maximal clique. For our work here, we
further adapt this definition for an edge. We say that an edge (u, v) is 1-simplicial
if N(u)∩N(v) is a clique, or equivalently (u, v) is in exactly one maximal clique1.
The intuition behind why we consider 1-simplicial edges is that, in orthogonal
polygons with edges of uniform length, boundary edges between convex vertices
are 1-simplicial, with the vertices of the clique forming a rectangle. (See Fig. 1.)

C1

(a)

C2

e2

(b)

e3 C3

(c)

Fig. 1. Maximal convex regions on vertices of polygons are maximal cliques in visibility
graphs. (b)–(c) 1-simplicial edges are in exactly one maximal clique.

Our running times depend on the following observation for 1-simplicial edges.

Observation 1. We can test if (u, v) is 1-simplicial and in a maximal k-clique
in time O(kn).

3 Uniform-Length Orthogonally Convex Polygons

We first turn our attention to a restricted class of orthogonal polygons that have
only uniform-length (or equivalently, unit-length) edges. Let P be an orthogonal

1 This is not to be confused with simplicial edges, which are defined elsewhere to be
edges (u, v) such that for every w ∈ N(u) and x ∈ N(v), w and x are adjacent.
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polygon with uniform-length edges such that no three consecutive vertices on
P ’s boundary are collinear, and further let P be orthogonally convex 2. We call
P a uniform-length orthogonally convex polygon (UP). Note that every vertex
vi on P ’s boundary is either convex or reflex. We call boundary edges between
two convex vertices in a uniform-length orthogonal polygon P tabs and a tab’s
endvertices tab vertices. We reconstruct the polygon by computing the clockwise
ordering of vertices of the UP.

Note that the boundary of a UP consists of four tabs connected via staircases.
For ease of exposition, we imagine the UP embedded in R

2 with polygon edges
axis-aligned. We call the tab with the largest y-coordinate the north tab, and we
similarly name the others the south, east, and west tabs. We similarly refer to
the four boundary staircases as northwest, northeast, southeast, and southwest.

We only consider polygons with more than 12 vertices, which eliminates many
special cases. Smaller polygons can be solved in constant time via brute force.

We first introduce several structural lemmas which help us identify convex
vertices in a UP, which is key to our reconstruction.

Lemma 1. For every convex vertex u in a UP there is a convex vertex v, such
that (u, v) ∈ EP and (u, v) is 1-simplicial.

Proof. If u is a tab vertex, then the other tab vertex v is also convex and (u, v)
is 1-simplicial. Otherwise, without loss of generality, suppose that u is on the
northwest staircase. Then there is a convex vertex v on the southeast staircase
that is visible from u. Edge (u, v) is in exactly one maximal clique, consisting of
u, v, the reflex vertices within the rectangle R defined by u and v as the opposite
corners, and any other corners of R that are convex vertices of the polygon. �
Lemma 2. In a UP, if u or v is a reflex vertex, then edge (u, v) is not
1-simplicial.

Proof (Sketch3). If both u and v are reflex, then (u, v) is in one maximal clique
consisting of only reflex vertices and another one that includes some convex
vertex w. If one of u or v is convex, there exist two convex vertices w and w′,
forming two distinct maximal cliques with (u, v). �

Lemma 2 states that only edges between convex vertices can be 1-simplicial.
Hence it allows us to identify all convex vertices, by checking for each edge (u, v)
if N(u) ∩ N(v) is a clique in O(n2) time, leading to the following lemma.

Lemma 3. We can identify all convex and reflex vertices in a visibility graph
of a UP in O(n2m) time.

We say a UP is regular if each of its staircase boundaries have the same num-
ber of vertices. Otherwise, we call it irregular, consisting of two long and two
short staircases. We restrict our attention to irregular uniform-length orthogo-
nally convex polygons (IUPs); however, similar methods work for their regular
counterparts.
2 That is, any two points in P can be connected by a staircase contained in P .
3 Full proofs may be found in the full version of this paper [19].
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3.1 Irregular Uniform-Length Orthogonally Convex Polygons

Let GP be the visibility graph of IUP P . Our reconstruction algorithm first
computes the four tabs, then assigns the convex and reflex vertices to each
staircase. The following structural lemma helps us find the tabs. We assume
that we have already computed the convex and reflex vertices in O(n2m) time.

(a) (b)
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w u

v

(c)

Fig. 2. Elements of our reconstruction. (a) Elementary cliques C0, . . . , C4 interlock
along a short staircase. (b) Tab vertices a and b see unique reflex vertices on long
staircases. (c) Reflex vertices (square) are discovered by forming rectangles with known
vertices u, v and w.

Lemma 4. In every IUP there are exactly four 7-vertex maximal cliques, each
containing exactly three convex vertices. Each such clique contains exactly one
tab, and each tab is contained in exactly one of these cliques.

Proof. First note that each of the four tabs are in exactly one such maximal
7-clique. Further, any other clique that contains three convex vertices has at
least nine vertices: each convex vertex and its two reflex boundary neighbors. �

We note that it is not necessary to identify the four tabs explicitly to continue
with the reconstruction. There are only 74 = O(1) choices of tabs (one from each
7-clique of Lemma 4), thus we can try all possible tab assignments, continue with
the reconstruction and verify that our reconstruction produces a valid IUP P
with the same visibility graph. However, we can explicitly find the four tabs,
giving us the following lemma.

Lemma 5. We can identify the four tabs of an IUP in O(nm) time.

We pick one tab arbitrarily to be the north tab. We conceptually orient the
polygon so that the northwest staircase is short and the northeast staircase is
long. We do this by computing elementary cliques, which identify the convex
vertices on the short staircase.

Definition 1 (elementary clique). An elementary clique in an IUP is a max-
imal clique that contains exactly three convex vertices: one from a short staircase,
and one from each of the long staircases. (See Fig. 2(a).)
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Lemma 6. We can identify the elementary cliques containing vertices on the
northwest staircase in O(nm) time.

Proof (Sketch). Each elementary clique is constant size and contains a
1-simplicial edge, and can therefore be discovered in O(nm) time. Further,
elementary cliques “interlock” along a staircase: each elementary clique shares
exactly three reflex vertices with its at most two neighboring elementary cliques.
Thus they can be computed starting from the elementary clique containing the
north tab. �

Note that, if our sole purpose is to reconstruct the IUP P , we have sufficient
information. The number of elementary cliques gives us the number of vertices
on a short staircase of the polygon, from which we can build a polygon. However,
in what follows, we can actually map all vertices to their positions in the IUP,
which we later use to build a recognition algorithm for IUPs.

First, we show how to assign all convex vertices from the elementary cliques
to each of the three staircases, using visibility of the north and west tab vertices.
Note, constructing the elementary cliques with Lemma 6 also gives us the west
tab, since it is contained in the last elementary clique on the northwest staircase.

Lemma 7. We can identify the convex vertices on the northwest staircase in
O(n) time.

Proof. The northwest staircase contains the convex vertices of the elementary
cliques from Lemma 6 that cannot be seen by any of the north or west tab
vertices. The staircase further contains the left vertex of the north tab and the
top vertex of the west tab (which can be identified by the fact that they are tab
vertices that do not see either vertex of the other tab). �

We can repeat the above process to identify the convex vertices of the south-
east staircase. However, we might not yet be able to identify tabs as south or
east. Thus, we will obtain two possible orderings of the convex vertices on the
southeast staircase. Next, we show how to assign convex vertices to the long
staircases. In the process we determine south and east tabs, and consequently,
identify the correct ordering of convex vertices on the southeast staircase.

Lemma 8. We can assign the remaining convex vertices in O(n2) time.

Proof (Sketch). Let vi, vi+1 be convex vertices on the same staircase, separated
by a single reflex vertex. Let u be the unique vertex on the opposite staircase,
such that the angular bisector of vi goes through u. Then u sees vi+1. This
likewise holds for the opposite staircase. Therefore, starting from one convex
vertex on each staircase (such as a tab vertex), we can compute all convex
vertices on each staircase. �
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Fig. 3. (a) A histogram A with three tabs. (b) A decomposition of A into touching
rectangles with a contact graph that is a tree.

Lemma 9. We can assign the reflex vertices to each staircase in O(n2) time.

Proof (Sketch). First we compare the reflex vertices seen by tab vertices, which
gives us many vertices on the long staircases (see Fig. 2(b)). The remaining
reflex vertices are discovered by building vertical and horizontal rectangles that
contain unassigned reflex vertices (see Fig. 2(c)). �

Observe that within each staircase, boundary edges are formed only between
convex vertices and their reflex neighbors. Thus, we can order reflex vertices on
each staircase by iterating over the staircase’s convex vertices (order of which is
determined in Lemmas 6, 7 and 8) and we are done. This gives us the following
result:

Theorem 1. In O(n2m) time, we can reconstruct an IUP from its visibility
graph.

4 Uniform-Length Histogram Polygons

In this section we show how to reconstruct a more general class of uniform
step length polygons: those that consist of a chain of alternating up- and down-
staircases with uniform step length, which are monotone with respect to a single
(longer) base edge. Such polygons are uniform-length histogram polygons [10],
but we simply call them histograms for brevity (see Fig. 3(a) for an example).
We refer to the two convex vertices comprising the base edge as base vertices.
Furthermore, we refer to top horizontal boundary edges incident to two convex
vertices as tab edges or just tabs and their incident vertices as tab vertices.

The Case of Two Staircases. We first note that in double staircase polygons
(consisting of only two staircases) there is a simple linear-time reconstruction
algorithm based on the degrees of vertices in the visibility graph. However, the
construction relies on the symmetry of the two staircases and it is not clear
whether any counting strategy works for arbitrary histograms.

4.1 Overview of the Algorithm

Every histogram can be decomposed into axis-aligned rectangles, whose contact
graph is an ordered tree [10], as illustrated in Fig. 3(b). In Sect. 4.2, we show
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Fig. 4. Illustrating all maximal 4-cliques that contain 1-simplicial edges. These include
tab cliques (square regions) and non-tab cliques (triangular regions).

that we can construct the (unordered) contact tree T from the visibility graph
GP in O(n2m) time by repeatedly “peeling” tabs from the histogram. We then
show that each left-to-right ordering of T ’s k leaves (as well as a left-to-right
orientation of the rectangles in the leaves) induces a histogram P ′. For each
candidate polygon P ′ (of k!2k candidates), we then compute its visibility graph
GP ′ in O(n log n + m) time [16] and check if GP ′ is isomorphic to GP . Instead
of requiring an expensive graph isomorphism check [6], we show how to use the
ordering of T to quickly test if GP and GP ′ are isomorphic.

In Sect. 4.4 we show how to reduce the number of candidate histograms from
k!2k to (k − 2)!2k−2, leading to the main result of our paper:

Theorem 2. Given a visibility graph GP of a histogram P with k ≥ 2 tabs, we
can reconstruct P in O(n2m + (k − 2)!2k−2(n log n + m)) time.

Finally, we give a faster reconstruction algorithm when the histogram has a
binary contact tree, solving these instances in O(n2m) time (Sect. 4.4).

4.2 Rectangular Decomposition and Contact Tree Construction

We construct the contact tree T from GP by computing a set T of the k tab
edges of GP (Lemma 11). Each tab (u, v) is 1-simplicial and in a maximal
4-clique, since N(u) ∩N(v) is a 4-clique representing a unit square at the top of
the histogram. Given the set T of tab edges, our reconstruction algorithm picks
an edge t from T and removes the maximal 4-clique containing t. This is equiv-
alent to removing an axis-aligned rectangle in P , and, equivalently, removing a
leaf node from T . Moreover, it associates that node of T with four vertices of
P : two top vertices that are convex and two bottom vertices that are either both
reflex or are both convex base vertices. This process might result in a new tab
edge, which we identify and add to T .

Finding Initial Tabs. We start by finding the k tabs. Recall that every tab edge
is 1-simplicial and in a maximal 4-clique. The converse is not necessarily true.
Therefore, we begin by finding all 1-simplicial edges that are in maximal 4-cliques
as a set of candidate edges, and later exclude non-tabs from the candidates.

Given a visibility graph GP = (VP , EP ) of a histogram P and a maximal
clique C ⊆ VP , we call a vertex w ∈ C an isolated vertex with respect to P if
there exists a tab edge (u, v) ∈ EP , such that (N(u) ∪ N(v)) ∩ C = {w}, i.e., of
all vertices of C, only w is visible to some tab of P .
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Fig. 5. (a) A truncated histogram, created by iteratively removing six tabs (dashed)
from a histogram. (b) When removing Ct: t

′
a, t

′
b form a tab iff t′a, t

′
b ∈ T \ Ct, they see

u and v, and |Ct′ | = 4.

Lemma 10. In a histogram, every 1-simplicial edge in a maximal 4-clique con-
tains either a tab vertex or an isolated vertex.

Proof (Sketch). Figure 4 shows the only types of maximal 4-cliques. �
Lemma 11. In a visibility graph of a histogram, tabs can be computed in time
O(n2m).

Proof (Sketch). We find all maximal 4-cliques in O(nm) by Observation 1 and
detect and eliminate those containing isolated vertices in O(n2m) time. �

Note that top vertices cannot see the vertices above them. Therefore, only
bottom vertices see tab vertices. Moreover, every bottom vertex sees at least one
tab vertex. Thus, identifying all tabs immediately classifies vertices of GP into
top vertices and bottom vertices.

Peeling Tabs. Let P ′ be a polygon resulting from peeling tab cliques (rectan-
gles) from a histogram P . We call P ′ a truncated histogram. See Fig. 5(a) for an
example. After peeling a tab clique, the resulting polygon does not have uniform
step length and the visibility graph may no longer have the properties on which
Lemma 11 relied to detect initial tabs. Instead, we use the following lemma to
detect newly created tabs during tab peeling.

Lemma 12. When removing a tab clique from the visibility graph of a truncated
histogram, any newly introduced tab can be computed in time O(n).

Proof. Denote the removed (tab) clique by Ct and let t be its tab. Let u, v �∈ t
be the non-tab vertices of Ct. Since u sees v, (u, v) is an edge in GP .

Since top vertices can only see vertices at and below their own level, besides
the vertices of t, there are exactly two other top vertices in (remaining) GP that
see u and v, namely, the top vertices t′a and t′b of P on the same level as u and
v (see Fig. 5(b)). Since t′a, t

′
b are adjacent in GP , let t′ = (t′a, t

′
b).

When removing Ct from GP , we can compute t′a and t′b in time O(n) by
selecting the only two top vertices adjacent to both u and v. Since t′a and t′b are
the top vertices of a same rectangle Rt′ , edge t′ is 1-simplicial and is in exactly
one maximal clique Ct′ = N(t′a)∩N(t′b), which corresponds to the convex region
Rt′ . Finally, after Ct is removed, t′ is a newly created tab if and only if |Ct′ | = 4,
which can again be tested in time O(n) by computing N(t′a) ∩ N(t′b). �
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With each tab clique (rectangle) removal, we iteratively build the parent-
child relationship between the rectangles in the contact tree T as follows. Using
an array A, we maintain references to cliques being removed whose parents in
T have not been identified yet. When a tab clique Ct is removed from GP , the
reference to Ct is inserted into A[u], where u is one of the rectangle’s bottom
vertices. If the removal of Ct creates a new tab t′ = (t′a, t

′
b), we identify Ct′ in

O(n) time using Lemma 12. Recall that t′ sees all bottom vertices on the same
level. Thus, for every bottom vertex u ∈ N(t′a) (in the original graph GP ), if A[u]
is non-empty, we set Ct′ as the parent of the clique stored in A[u] and clear A[u].
This takes at most O(n) time for each peeling of a clique. We get the following
lemma, where the time is dominated by the computation of the initial tabs:

Lemma 13. In O(n2m) time we can construct the contact tree T of P , associate
with each v ∈ T the four vertices that define the rectangular region of v, and
classify vertices of GP as top vertices and bottom vertices.

4.3 Mapping Candidate Polygon Vertices to the Visibility Graph

Let T̂ correspond to T with some left-to-right ordering of its leaves and let
P̂ be the polygon corresponding to T̂ . We will map the vertices of GP to the
vertices of P̂ by providing for each vertex of GP the x- and y-coordinates of a
corresponding vertex of P̂ . Let t1, t2, . . . , tk be the order of the tabs in P̂ . Since
T̂ unambiguously defines the polygon P̂ , each node v of T̂ is associated with a
rectangular region on the plane, and the four vertices of GP are associated with
the four corners of the rectangular region. Since by Lemma 13 every vertex of GP

is classified as a top vertex or a bottom vertex, the y-coordinate can be assigned
to all vertices unambiguously, because there are two top vertices and two bottom
vertices associated with each node v of T̂ . For every pair p, p̄ of top vertices or
bottom vertices associated with a node in T̂ (we call them companion vertices)
there is a choice of two x-coordinates: one associated with the left boundary
and one associated with the right boundary of the rectangular region. Thus,
determining the assignment of each top vertex and bottom vertex in GP to the
left or the right boundary is equivalent to defining x-coordinates for all vertices
in GP . Although there appears to be 2n/2 possible such assignments, there are
many dependencies between the assignments due to the visibility edges in GP .
In fact, we will show that by choosing the x-coordinates of the tab vertices, we
can assign all the other vertices. Thus, in what follows we consider each of the
2k possible assignments of x-coordinates to the 2k tab vertices.

At times we must reason about the assignment of a vertex to the left (right)
staircases associated with some tab tj . Given T̂ , the x-coordinates of each ver-
tex in the left and right staircase associated with every tab tj is well-defined.
Therefore, assigning a vertex p to a left (right) staircase of some tab tj defines
the x-coordinate of p.

In a valid histogram, companion vertices p and p̄ must be assigned distinct
x-coordinates. Therefore, after each assignment below, we check the companion
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Fig. 6. Visibility from the left (right) base vertex determines the left- (right-)most tab,
and orients all rectangles on the left (right) spine of the contact tree.

vertex and if they are both assigned the same x-coordinate, we exclude the
current polygon candidate P̂ from further consideration.

We further observe that in a valid histogram, if a bottom vertex p is not in
the tab clique, then it sees exactly one tab vertex, which lies on the opposite
staircase associated with that tab. Thus, we assign every such bottom vertex the
left (right) x-coordinate if it sees the right (left) tab vertex.

Next, consider any node v of the contact tree T̂ and let Rv define the rectangle
associated with v in the rectangular decomposition of a valid histogram. Let p
be a top vertex in Rv and let S(p) be the set of vertices visible from p that are
not in Rv (S(p) can be determined from the neighborhood of p in GP ). Observe
that if p is assigned the left (right) x-coordinate, then every vertex in S(p) is a
bottom vertex to the right (left) of the rectangle Rv, none of them belongs to a
tab clique (i.e., all of them are already assigned x-coordinates), and all of them
are assigned a right (left) x-coordinate. Since the x- and y-coordinates of the
boundaries of Rv are well-defined by T̂ (regardless of vertex assignment), if S(p)
is non-empty, we check all of the above conditions and assign p an appropriate
x-coordinate. If a condition is violated, then the current polygon candidate is
invalid and we exclude it from further consideration.

Let p be one of the remaining top vertices without an assigned x-coordinate.
If the companion p̄ is assigned an x-coordinate, we assign p the other choice
of the x-coordinate. Otherwise, both p and p̄ see only the vertices inside their
rectangle. In this case, the neighborhoods N(p) and N(p̄) are the same and we
can assign p and p̄ to the opposite staircases arbitrarily.

Thus, the only remaining vertices without assigned x-coordinates are bottom
vertices in tab cliques. Let R be the rectangle defined by the tab and Sright(p)
(resp., Sleft(p)) denote the set of vertices that p sees among the vertices to the
right (resp., left) of R. Consider a companion pair p and p̄ of bottom vertices that
are in a tab clique. Observe that if p is on the left boundary, then Sright(p̄) ⊆
Sright(p) or Sleft(p) ⊆ Sleft(p̄). Symmetrically, if p̄ is on the left boundary then
Sright(p) ⊆ Sright(p̄) or Sleft(p̄) ⊆ Sleft(p). Thus, if |Sright(p̄)| �= |Sright(p)|
and |Sleft(p)| �= |Sleft(p̄)|, we can assign p and p̄ appropriate x-coordinates.
Otherwise, the neighborhoods N(p) and N(p̄) are the same, and we can assign
p and p̄ to the opposite boundaries arbitrarily.
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4.4 Reducing the Number of Candidate Histograms

We can reduce the number of possible orderings of tabs and staircases by consid-
ering only those that meet certain visibility constraints on the vertices that form
the corners of each rectangle. In particular, we say that two rectangles R1 �= R2

in the decomposition are orientation-fixed if a bottom vertex vbot from one can
see a top vertex vtop of another. Then these rectangles must be oriented so that
vbot and vtop are on opposite staircases (an up-staircase and a down-staircase).
Thus, fixing an orientation of one rectangle fixes the orientation of the other.

Note that every rectangle is orientation-fixed with some leaf rectangle (as
its bottom vertex can see a tab vertex). Therefore, ordering (and orienting)
the leaves induces an ordering/orientation of the tree. There are O(k!2k) such
orderings (and orientations) for all leaf rectangles, where k is the number of tabs.

For double staircases, T is a path and the root rectangle is orientation-fixed
with every other rectangle (a base vertex is seen by every top vertex). Hence,
orienting the base rectangle determines the positions of the top vertices on the
double staircase. Likewise, for the histogram, the spines of T are fixed:

Lemma 14. The base rectangle of a histogram is orientation-fixed with all rect-
angles on the left and right spines of T .

Moreover, the only tab vertices visible from a base vertex are incident to the
left-most or right-most tab. Thus, we can identify the left-most and right-most
tabs based on the neighborhood of the base vertices. Note that removing a base
rectangle of the histogram produces one or more histograms. Then we can apply
this logic recursively, leading to the following algorithm:

1. Fix the orientation of the base rectangle. This identifies the rectangles on the
left and right spines of T and their orientations. (See Fig. 6.)

2. The remaining subtrees collectively contain the remaining rectangles, which
still must be ordered and oriented. We recursively compute the ordering and
orientation of the rectangles in these subtrees.

Note if we compute the left and right spines of T , we identify the first and
last tabs, and the orientations of their tab edges. Thus, we have (k − 2)!2k−2

remaining orderings of T and orientations of the tab edges to check, as k − 2
tabs remain. This results in the overall reconstruction of a histogram with k ≥ 2
tabs in O(n2m + (k − 2)!2k−2(n log n + m)) time, proving Theorem 2.

We now generalize the number of orderings to consider by defining a recur-
rence on the tree structure. Let v ∈ T , and define C(v) be v’s children in T and
d(v) = |C(v)|. Then if we have a fixed orientation of v’s corresponding rectan-
gle, fixing the rectangles on the left-most and right-most paths from v limits the
number of possible orderings/orientations of v’s descendants to

F (v) ≤

⎧
⎪⎨

⎪⎩

2d(v)−2
∏

u∈C(v) F (u) if d(v) > 1,
F (u) if |C(v)| = 1, s.t.C(v) = {u},
1 if v is a leaf.
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Note that F (root) = 1 for a binary tree T . That is, the orientation of the base
rectangle completely determines the histogram. Furthermore, we can find such
an orientation by fixing the orientation of the base edge, determining the left-
and right-most paths, ordering and orienting them to match the base edge, and
then repeating this for each subtree whose root is oriented and ordered (but its
children are not), which acts as a base rectangle for its subtree. This process can
be done in time O(n + m) by traversing T and orienting each rectangle exactly
once by looking at its vertices neighbors in its base rectangle in T .

Theorem 3. Histograms with a binary contact tree can be reconstructed in
O(n2m) time.

5 From Reconstruction to Recognition

We note that all of our reconstruction algorithms assign each vertex to a specific
position in the constructed polygon. Let such an algorithm be called a vertex
assignment reconstruction. As a result, we get recognition algorithms for these
visibility graphs as well: we run our reconstruction until it fails or completes suc-
cessfully, verify that the resulting polygon has the same visibility graph in time
O(n log n+m) time [16], and verify that it is a polygon of the given type in linear
time. Thus, we conclude that our reconstruction algorithms imply recognition
algorithms with the same running times.
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