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Abstract. We study straight-line drawings of graphs where the vertices
are placed in convex position in the plane, i.e., convex drawings. We
consider two families of graph classes with nice convex drawings: outer
k-planar graphs, where each edge is crossed by at most k other edges;
and, outer k-quasi-planar graphs where no k edges can mutually cross.

We show that the outer k-planar graphs are (�√4k + 1� + 1)-
degenerate, and consequently that every outer k-planar graph can be
(�√4k + 1� + 2)-colored, and this bound is tight. We further show that
every outer k-planar graph has a balanced separator of size at most
2k+3. For each fixed k, these small balanced separators allow us to test
outer k-planarity in quasi-polynomial time, i.e., none of these recognition
problems are NP-hard unless ETH fails.

For the outer k-quasi-planar graphs we discuss the edge-maximal
graphs which have been considered previously under different names.
We also construct planar 3-trees that are not outer 3-quasi-planar.

Finally, we restrict outer k-planar and outer k-quasi-planar drawings
to closed drawings, where the vertex sequence on the boundary is a
cycle in the graph. For each k, we express closed outer k-planarity and
closed outer k-quasi-planarity in extended monadic second-order logic.
Thus, since outer k-planar graphs have bounded treewidth, closed outer
k-planarity is linear-time testable by Courcelle’s Theorem.

1 Introduction

A drawing of a graph maps each vertex to a distinct point in the plane, each
edge to a Jordan curve connecting the points of its incident vertices but not
containing the point of any other vertex, and two such Jordan curves have at
most one common point. In the last few years, the focus in graph drawing has
shifted from exploiting structural properties of planar graphs to addressing the
question of how to produce well-structured (understandable) drawings in the
presence of edge crossings, i.e., to the topic of beyond-planar graph classes. The
primary approach here has been to define and study graph classes which allow
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some edge crossings, but restrict the crossings in various ways. Two commonly
studied such graph classes are:

1. k-planar graphs, the graphs which can be drawn so that each edge (Jordan
curve) is crossed by at most k other edges.

2. k-quasi-planar graphs, the graphs which can be drawn so that no k pairwise
non-incident edges mutually cross.

Note that the 0-planar graphs and 2-quasi-planar graphs are precisely the
planar graphs. Additionally, the 3-quasi-planar graphs are simply called quasi-
planar.

In this paper we study these two families of classes of graphs by restricting
the drawings so that the points are placed in convex position and edges mapped
to line segments, i.e., we apply the above two generalizations of planar graphs to
outerplanar graphs and study outer k-planarity and outer k-quasi-planarity. We
consider balanced separators, treewidth, degeneracy (see paragraph “Concepts”
below), coloring, edge density, and recognition for these classes.

Related work. Ringel [27] was the first to consider k-planar graphs by showing
that 1-planar graphs are 7-colorable. This was later improved to 6-colorable
by Borodin [8]. This is tight since K6 is 1-planar. Many additional results on
1-planarity can be found in a recent survey paper [21]. Generally, each n-vertex
k-planar graph has at most 4.108n

√
k edges [26] and treewidth O(

√
kn) [14].

Outer k-planar graphs have been considered mostly for k ∈ {0, 1, 2}. Of
course, the outer 0-planar graphs are the classic outerplanar graphs which are
well-known to be 2-degenerate and have treewidth at most 2. It was shown that
essentially every graph property is testable on outerplanar graphs [5]. Outer
1-planar graphs are a simple subclass of planar graphs and can be recognized
in linear time [4,18]. Full outer 2-planar graphs, which form a subclass of outer
2-planar graphs, can been recognized in linear time [19]. General outer k-planar
graphs were considered by Binucci et al. [7], who (among other results) showed
that, for every k, there is a 2-tree which is not outer k-planar. Wood and Telle [30]
considered a slight generalization of outer k-planar graphs in their work and
showed that these graphs have treewidth O(k).

The k-quasi-planar graphs have been heavily studied from the perspective of
edge density. The goal here is to settle a conjecture of Pach et al. [25] stating
that every n-vertex k-quasi-planar graph has at most ckn edges, where ck is a
constant depending only on k. This conjecture is true for k = 3 [2] and k = 4 [1].
The best known upper bound is (n log n)2α(n)ck [16], where α is the inverse
of the Ackermann function. Edge density was also considered in the “outer”
setting: Capoyleas and Pach [9] showed that any k-quasi-planar graph has at
most 2(k−1)n−(

2k−1
2

)
edges, and that there are k-quasi-planar graphs meeting

this bound. More recently, it was shown that the semi-bar k-visibility graphs are
outer (k + 2)-quasi-planar [17]. However, the outer k-quasi-planar graph classes
do not seem to have received much further attention.

The relationship between k-planar graphs and k-quasi-planar graphs was
considered recently. While any k-planar graph is clearly (k + 2)-quasi-planar,
Angelini et al. [3] showed that any k-planar graph is even (k + 1)-quasi-planar.
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The convex (or 1-page book) crossing number of a graph [29] is the minimum
number of crossings which occur in any convex drawing. This concept has been
introduced several times (see [29] for more details). The convex crossing number
is NP-complete to compute [23]. However, recently Bannister and Eppstein [6]
used treewidth-based techniques (via extended monadic second order logic) to
show that it can be computed in linear FPT time, i.e., O(f(c) · n) time where c
is the convex crossing number and f is a computable function. Thus, for any k,
the outer k-crossing graphs can be recognized in time linear in n + m.
Concepts. We briefly define the key graph theoretic concepts that we will study.

A graph is d-degenerate when every subgraph of it has a vertex of degree
at most d. This concept was introduced as a way to provide easy coloring
bounds [22]. Namely, a d-degenerate graph can be inductively d + 1 colored
by simply removing a vertex of degree at most d. A graph class is d-degenerate
when every graph in the class is d-degenerate. Furthermore, a graph class which
is hereditary (i.e., closed under taking subgraphs) is d-degenerate when every
graph in that class has a vertex of degree at most d. Note that outerplanar
graphs are 2-degenerate, and planar graphs are 5-degenerate.

A separation of a graph G is pair A,B of subsets of V (G) such that A∪B =
V (G), and no edge of G has one end in A\B and the other in B\A. The set A∩B
is called a separator and the size of the separation (A,B) is |A∩B|. A separation
(A,B) of a graph G on n vertices is balanced if |A \ B| ≤ 2n

3 and |B \ A| ≤ 2n
3 .

The separation number of a graph G is the smallest number s such that every
subgraph of G has a balanced separation of size at most s. The treewidth of
a graph was introduced by Robertson and Seymour [28]; it is closely related
to the separation number. Namely, any graph with treewidth t has separation
number at most t+1 and, as Dvořák and Norin [15] recently showed, any graph
with separation number s has treewidth at most 105s. Graphs with bounded
treewidth are well-known due to Courcelle’s Theorem (see Theorem 6) [10], i.e.,
having bounded treewidth means many problems can be solved efficiently.

The Exponential Time Hypothesis (ETH) [20] is a complexity theoretic
assumption defined as follows. For k ≥ 3, let sk = inf{δ : there is an O(2δn)-time
algorithm to solve k-SAT}. ETH states that for k ≥ 3, sk > 0, e.g., there is no
quasi-polynomial time1 algorithm that solves 3-SAT. So, finding a problem that
can be solved in quasi-polynomial time and is also NP-complete, would contra-
dict ETH. In recent years, ETH has become a standard assumption from which
many conditional lower bounds have been proven [12].

Contribution. In Sect. 2, we consider outer k-planar graphs. We show that they
are (�√4k + 1	 + 1)-degenerate, and observe that the largest outer k-planar
clique has size (�√4k + 1	 + 2), i.e., implying each outer k-planar graph can
be (�√4k + 1	 + 2)-colored and this is tight. We further show that every outer
k-planar graph has separation number at most 2k + 3. For each fixed k, we
use these balanced separators to obtain a quasi-polynomial time algorithm to
test outer k-planarity, i.e., these recognition problems are not NP-hard unless
ETH fails.
1 i.e., with a runtime of the form 2poly(logn).
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In Sect. 3, we consider outer k-quasi-planar graphs. Specifically, we discuss
the edge-maximal graphs which have been considered previously under different
names [9,13,24]. We also relate outer k-quasi-planar graphs to planar graphs.

Finally, in Sect. 4, we restrict outer k-planar and outer k-quasi-planar draw-
ings to closed drawings, where the sequence of vertices on the outer boundary
is a cycle. For each k, we express both closed outer k-planarity and closed outer
k-quasi-planarity in extended monadic second-order logic. Thus, closed outer
k-planarity is testable in O(f(k) · n) time, for a computable function f .

2 Outer k-Planar Graphs

In this section we show that every outer k-planar graph is O(
√

k)-degenerate
and has separation number O(k). This provides tight bounds on the chromatic
number, and allows for testing outer k-planarity in quasi-polynomial time.

Degeneracy. We show that every outer k-planar graph has a vertex of degree
at most

√
4k + 1 + 1. First we note the size of the largest outer k-planar clique

and then we prove that each outer k-planar graph has a vertex matching the
clique’s degree. This also tightly bounds the chromatic number in terms of k,
i.e., Theorem 1 follows from Lemma 1 (proven in Appendix B.1) and Lemma 2.

Lemma 1. Every outer k-planar clique has at most �√4k + 1	 + 2 vertices.

Lemma 2. An outer k-planar graph can have maximum minimum degree at
most

√
4k + 1 + 1 and this bound is tight.

Proof. Assume that the outer k-planar graph has maximum minimum degree
δ. Since we can create a clique with �√4k + 1	 + 2 vertices (see Lemma 1),
δ ≥ �√4k + 1	 + 1. Let us show that δ cannot be larger than

√
4k + 1 + 1.

Consider an edge ab that cuts l ∈ N vertices of the graph to one side (not
counting a and b), then there are at least δl − l(l + 1) edges crossing the edge
ab. We will now show by induction that if there existed an outer k-planar graph
with minimum degree δ ≥ √

4k + 1 + 2, it would be too small to accommodate
such a minimum degree vertex.

Any edge ab that cuts l vertices is crossed by at least δl − l(l + 1) edges.
Therefore, if δ ≥ √

4k + 1 + 2, there is l∗ such that ab cannot cut l∗ ≥ 1
2 (δ − 1 −√

(δ − 1)2 − 4(k + 1)) vertices because then it is crossed by δl∗−l∗(l∗+1) ≥ k+1
edges. Take the smallest such l∗ and let us show that there also cannot be an
edge ab that cuts more than l∗ vertices. As the induction hypothesis, assume
that no edge ab cuts between l∗ and l vertices inclusive. Thus, the minimum
number of edges that cross ab is: δl − l(l + 1) + 2(

∑l−l∗

j=1 j) > k, where the last
term accounts for the absent edges that cut more than l − l∗ vertices. Now, if ab
cuts l + 1 vertices, it is crossed by

≥ δl − l(l + 1) + 2(
∑l−l∗

j=1 j) + δ − 2(l + 1) + 2(l − l∗ + 1)

> k + δ − 2(l + 1) + 2(l − l∗ + 1) > k

edges if δ > 2l∗.
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Since for δ >
√

4k + 1 + 2 the inequality is always satisfied, there cannot be
an edge that cuts more then l∗ <

√
4k + 1/2 vertices in any outer k-planar graph

with the maximum minimum degree δ ≥ √
4k + 1 + 2. But then, such a graph

can have at most 2l∗ <
√

4k + 1 vertices, which is not enough to accommodate
the minimum degree vertex required; a contradiction. 
�
Theorem 1. Each outer k-planar graph is

√
4k + 1 + 2 colorable. This is tight.

Quasi-polynomial time recognition via balanced separators. We show that
outer k-planar graphs have separation number at most 2k+3 (Theorem 2). Via a
result of Dvořák and Norin [15], this implies they have O(k) treewidth. However,
Proposition 8.5 of [30] implies that every outer k-planar graph has treewidth at
most 3k + 11, i.e., a better bound on the treewidth than applying the result of
Dvořák and Norin to our separators. The treewidth 3k + 11 bound also implies
a separation number of 3k + 12, but our bound is better. Our separators also
allow outer k-planarity testing in quasi-polynomial time (Theorem 3).

Theorem 2. Each outer k-planar graph has separation number at most 2k + 3.

Proof. Consider an outer k-planar drawing. If the graph has an edge that cuts
[n
3 , 2n

3 ] vertices to one side, we can use this edge to obtain a balanced separator
of size at most k + 2, i.e., by choosing the endpoints of this edge and a vertex
cover of the edges crossing it. So, suppose no such edge exists. Consider a pair of
vertices (a, b) such that the line ab divides the drawing into left and right sides
having an almost equal number of vertices (with a difference at most one). If
the edges which cross the line ab also mutually cross each other, there can be at
most k of them. Thus, we again have a balanced separator of size at most k + 2.
So, it remains to consider the case when we have a pair of edges that cross the
line ab, but do not cross each other. We call such a pair of edges parallel. We now
pick a pair of parallel edges in a specific way. Starting from b, let bl be the first
vertex along the boundary in clockwise direction such that there is an edge blb

′
l

that crosses the line ab. Symmetrically, starting from a, let ar be the first vertex
along the boundary in clockwise direction such that there is an edge ara

′
r that

crosses the line ab; see Fig. 1 (left). Note that the edges ara
′
r and blb

′
l are either

identical or parallel. In the former case, we see that all other edges crossing the
line ab must also cross the edge ara

′
r = blb

′
l, and as such there are again at most

k edges crossing the line ab. In the latter case, there are two subcases that we
treat below. For two vertices u and v, let [u, v] be the set of vertices that starts
with u and, going clockwise, ends with v. Let (u, v) = [u, v] \ {u, v}.

Case 1. The edge blb
′
l cuts μ ≤ n

3 vertices to the top; see Fig. 1 (center).
In this case, either [b′

l, b] or [b, bl] has [n
3 , n

2 ] vertices. We claim that neither
the line bbl nor the line bb′

l can be crossed more than k times. Namely, each
edge that crosses the line bbl also crosses the edge blb

′
l. Similarly, each edge that

crosses the line bb′
l also crosses the edge blb

′
l. Thus, we have a separator of size

at most k + 2, regardless of whether we choose bbl or bb′
l to separate the graph.

As we observed above, one of them is balanced.
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a

b

bl

b′
l

ar

a′
r

a

b

bl

b′
l

n
3 ≥ μ

a

b

bl

b′
l

ar

a′
r

n
3 ≥ α

β ≤ n
3

γ

δ

Fig. 1. Left: the pair of parallel edges blb
′
l and ara

′
r; center: case 1; right: case 2

Case 1′. The edge ara
′
r cuts at most n

3 vertices to the bottom.
This is symmetric to case 1.

Case 2. The edge blb
′
l cuts at most n

3 vertices to the bottom, and the edge ara
′
r

cuts at most n
3 vertices to the top; see Fig. 1 (right).

We show that we can always find a pair of parallel edges such that one cuts
at most n

3 vertices to the bottom and the other cuts at most n
3 vertices to the

top, and no edge between them is parallel to either of them. We call such a pair
close. If there is an edge e between blb

′
l and ara

′
r, we form a new pair by using

e and ara
′
r if e cuts at most n

3 vertices to the bottom or by using e and blb
′
l

if e cuts at most n
3 vertices to the top. By repeating this procedure, we always

find a close pair. Hence, we can assume that blb
′
l and ara

′
r actually form a close

pair. Let α = |(a′
r, ar)|, β = |(b′

l, bl)|, γ = |(ar, b
′
l)|, and δ = |(bl, a

′
r)|; see Fig. 1

(right).
Suppose that a′

r = bl or ar = b′
l. We can now use both edges blb

′
l and ara

′
r

(together with any edges crossing them) to obtain a separator of size at most
2k + 3. The separator is balanced since α + β ≤ 2n

3 and γ + δ ≤ 2n
3 .

So, now ar, a
′
r, bl, b

′
l are all distinct. Note that γ, δ ≤ n

2 since each side of
the line ab has at most n

2 vertices. We separate the graph along the line blar.
Namely, all the edges that cross this line must also cross blb

′
l or a′

rar. Therefore,
we obtain a separator of size at most 2k + 2.

To see that the separator is balanced, we consider two cases. If δ ≥ n
3 (or

γ ≥ n
3 ), then α + β + γ ≤ 2n

3 (or α + β + δ ≤ 2n
3 ). Otherwise δ < n

3 and
γ < n

3 . In this case δ + α ≤ 2n
3 and γ + β ≤ 2n

3 . In both cases the separator is
balanced. 
�
Theorem 3. For fixed k, testing the outer k-planarity of an n-vertex graph takes
O(2polylog n) time.

Proof. Our approach is to leverage the structure of the balanced separators as
described in the proof of Theorem 2. Namely, we enumerate the sets which could
correspond to such a separator, pick an appropriate outer k-planar drawing
of these vertices and their edges, partition the components arising from this
separator into regions, and recursively test the outer k-planarity of the regions.
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c4
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(a)

v

w
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(b)
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b1

. . .
a�

(c)

Fig. 2. Shapes of separators, special separator S in blue, regions in different colors
(red, orange, and pink), components connected to blue vertices in green: (a) closest-
parallels case; (b) single-edge case; (c) special case for single-edge separators. (Color
figure online)

To obtain quasi-polynomial runtime, we need to limit the number of com-
ponents on which we branch. To do so, we group them into regions defined by
special edges of the separators.

By the proof of Theorem 2, if our input graph has an outer k-planar draw-
ing, there must be a separator which has one of the two shapes depicted in
Fig. 2(a) and (b). Here we are not only interested in the up to 2k + 3 vertices
of the balanced separator, but actually the set S of up to 4k + 3 vertices one
obtains by taking both endpoints of the edges used to find the separator. Note:
S is also a balanced separator. We use a brute force approach to find such an S.
Namely, we first enumerate vertex sets of size up to 4k + 3. We then consider
two possibilities, i.e., whether this set can be drawn similar to one of the two
shapes from Fig. 2. So, we now fix this set S. Note that since S has O(k) vertices,
the subgraph GS induced by S can have at most a function of k different outer
k-planar drawings. Thus, we further fix a particular drawing of GS .

We now consider the two different shapes separately. In the first case, in S,
we have three special vertices v, w1 and w2 and in the second case we will have
two special vertices v and w. These vertices will be called boundary vertices and
all other vertices in S will be called regional vertices. Note that, since we have
a fixed drawing of GS , the regional vertices are partitioned into regions by the
specially chosen boundary vertices. Now, from the structure of the separator
which is guaranteed by the proof of Theorem 2, no component of G \ S can be
adjacent to regional vertices which live in different regions with respect to the
boundary vertices.

We first discuss the case of using GS as depicted in Fig. 2(a). Here, we start
by picking the three special vertices v, w1 and w2 from S to take the role as
shown in Fig. 2(a). The following arguments regarding this shape of separator
are symmetric with respect to the pair of opposing regions.

Notice that if there is a component connected to regional vertices of different
regions, we can reject this configuration. From the proof of Theorem 2, we fur-
ther observe that no component can be adjacent to all three boundary vertices.
Namely, this would contradict the closeness of the parallel edges or it would
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contradict the members of the separator, i.e., it would imply an edge connecting
distinct regions. We now consider the four possible different types of components
c1, c2, c3 and c4 in Fig. 2(a) that can occur in a region neighboring w1. Compo-
nents of type c1 are connected to (possibly many) regional vertices of the same
region and may be connected to boundary vertices as well. In any valid drawing,
they will end up in the same region as their regional vertices. Components of type
c2 are not connected to any regional vertices and only connected to one of the
three boundary vertices. Since they are not connected to regional vertices, they
can not interfere with other parts of the drawing, so we can arbitrarily assign
them to an adjacent region of their boundary vertex. Components that are con-
nected to two boundary vertices appear at first to have two possible placements,
e.g., as c3 or c4 in Fig. 2(a). However, c4 is not a valid placement for this type
of component since it would contradict the fact that this separator arose from
two close parallel edges as argued in the proof of Theorem 2. From the above
discussion, we see that from a fixed configuration (i.e., set S, drawing of GS ,
and triple of boundary vertices), if the drawing of GS has the shape depicted
in Fig. 2(a), we can either reject the current configuration (based on having bad
components), or we see that every component of G \ S is either attached to
exactly one boundary vertex or it has a well-defined placement into the regions
defined by the boundary vertices. For those components which are attached to
exactly one boundary vertex, we observe that it suffices to recursively produce a
drawing of that component together with its boundary vertex and to place this
drawing next to the boundary vertex. For the other components, we partition
them into their regions and recurse on the regions. This covers all cases for this
separator shape.

The other shape of our separator can be seen in Fig. 2(b). Note that we now
have two boundary vertices v and w and thus only have two regions. Again we
see the two component types c1 and c2 and can handle them as above. We also
have components connected to both v and w but no regional vertices. These
components now truly have two different placement options c3, c4. If we have
an edge viwi (as in Fig. 2(b)) of the separator that is not vw, we now observe
that there cannot be more than k such components. Namely, in any drawing,
for each component, there will be an edge connecting this component to either
v or w which crosses viwi. Thus, we now enumerate all the different placements
of these components as type c3 or c4 and recurse accordingly.

However, the separator may be exactly the pair (v, w). Note that there are no
components of type c1 and the components of type c2 can be handled as before.
We will now argue that we can have at most a function of k different components
of type c3 or c4 in a valid drawing. Consider the components of type c3 (the
components of type c4 can be counted similarly). In a valid drawing, each type
c3 component defines a sub-interval of the left region spanning from its highest to
its lowest vertex such that these vertices are adjacent to one of v or w. Two such
intervals relate in one of three ways: They overlap, they are disjoint, or one is
contained in the other. We group components with either overlapping or disjoint
intervals into layers. We depict this situation in Fig. 2(c) where, for simplicity,
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for every component we only draw its highest vertex and its lowest vertex and
they are connected by one edge.

Let a1b1 be the bottommost component of type c3 (i.e., a1 is the clockwise-
first vertex from v in a component of type c3). The first layer is defined as the
component a1b1 together with every component whose interval either overlaps
or is disjoint from the interval of a1b1. Now consider the green edge b1w (see
Fig. 2(c)), note we may have that this edge connects a1 to w instead. Now, for
every component of this layer which is disjoint from the interval of a1b1, this
edge is crossed by at least one edge connecting it to v. Furthermore, for every
component of this layer which overlaps the interval of a1b1, there is an edge
connecting b1 to either v or w which is crossed by at least one edge within that
component. So in total, there can only be O(k) components in this first layer.
New layers are defined by considering components whose intervals are contained
in a1b1. To limit the total number of layers, let a� be the bottommost vertex of
the first component of the deepest layer and consider the purple edge va�. This
edge is crossed by some edge of every layer above it and as any edge can only
have k crossings, there can only be O(k) different levels in total. This leaves us
with a total of at most O(k2) components per region and again we can enumerate
their placements and recurse accordingly.

The above algorithm provides the following recurrence regarding its runtime.
Namely, we let T (n) denote the runtime of our algorithm, and we can see that
the following expression generously upper bounds its value. Here f(s) denotes
the number of different outer k-planar drawings of a graph with s vertices.

T (n) ≤
{

nO(k) · f(4k + 3) · n3 · n · T ( 2n
3 ) for n > 5k

f(n) otherwise

Thus, the algorithm runs in quasi-polynomial time, i.e., 2poly(log n). 
�

3 Outer k-Quasi-Planar Graphs

In this section we consider outer k-quasi-planar graphs. We first describe some
classes of graphs which are outer 3-quasi-planar. We then discuss edge-maximal
outer k-quasi-planar drawings.

Note, all sub-Hamiltonian planar graphs are outer 3-quasi-planar. One can
also see which complete and bipartite complete graphs are outer 3-quasi-planar.

Proposition 1. The following graphs are outer 3-quasi-planar: (a) K4,4; (b) K5;
(c) planar 3-tree with three complete levels; (d) square-grids of any size.

Proof. (a) and (b) are easily observed. (c) was experimentally verified by con-
structing a Boolean expression and using MiniSat to check it for satisfiability;
see Appendix A. (d) follows from square-grids being sub-Hamiltonian. 
�

Correspondingly, we note complete and complete bipartite graphs which are
not outer-quasi planar. Furthermore, not all planar graphs are outer quasi-
planar, e.g., the vertex-minimal planar 3-tree in Fig. 3(a) is not outer quasi-
planar, this was verified checking for satisfiability the corresponding Boolean
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(a) (b)

Fig. 3. A vertex-minimal 23-vertex planar 3-tree which is not outer quasi-planar:(a)
planar drawing; (b) deleting the blue vertex makes the drawing outer quasi-planar
(Color figure online)

expression; see Appendix A. A drawing of the graph in Fig. 3(b) was constructed
by removing the blue vertex and drawing the remaining graph in an outer quasi-
planar way.

Proposition 2. The following graphs are not outer 3-quasi-planar: (a) Kp,q,
p ≥ 3, q ≥ 5; (b) Kn, n ≥ 6; (c) planar 3-tree with four complete levels.

Together, Propositions 1 and 2 immediately yield the following.

Theorem 4. Planar graphs and outer 3-quasi-planar graphs are incomparable
under containment.

Remark 1. For outer k-quasi-planar graphs (k > 3) containment questions
become more intricate. Every planar graph is outer 5-quasi-planar because planar
graphs have page number 4 [31]. We also know a planar graph that is not outer
3-quasi-planar. It is open whether every planar graph is outer 4-quasi-planar.

Maximal outer k-quasi-planar graphs. A drawing of an outer k-quasi-planar
graph is called maximal if adding any edge to it destroys the outer k-quasi-
planarity. We call an outer k-quasi-planar graph maximal if it has a maximal
outer k-quasi-planar drawing. Recall that Capoyleas and Pach [9] showed the
following upper bound on the edge density of outer k-quasi-planar graphs on n
vertices: |E| ≤ 2(k − 1)n − (

2k−1
2

)
.

We prove (see Appendix B.2) that each maximal outer k-quasi-planar graph
meets this bound. Our proof builds on the ideas of Capoyleas and Pach [9] and
directly shows the result via an inductive argument. However, while preparing
the camera-ready version of this paper, we learned of two other proofs of this
result in the literature [13,24]. We thank David Wood for pointing us to these
results. Both papers prove a slightly stronger theorem (concerning edge flips)
as their main result. Namely, for a drawing G = (V,E), an edge flip produces
a new drawing G∗ by replacing an edge e ∈ E with a new edge e∗ ∈ (

n
2

) \ E.
They [13,24] show that, for every two maximal outer k-quasi-planar drawings
G = (V,E) and G′ = (V,E′), there is a sequence of edge flips producing drawings
G = G1, G2, . . . , Gt = G′ such that each Gi is a maximal k-quasi-planar drawing.
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Together with the tight example of Capoyleas and Pach [9], this implies the next
theorem, and makes our proof fairly redundant.

Theorem 5 ([13,24]). Each maximal outer k-quasi-planar drawing G = (V,E)
has:

|E| =

{(|V |
2

)
if |V | ≤ 2k − 1,

2(k − 1)|V | − (
2k−1

2

)
if |V | ≥ 2k − 1.

4 Closed Convex Drawings in MSO2

Here we express graph properties in extended monadic second-order logic
(MSO2). This subset of second-order logic is built from the following primitives.

– variables for vertices, edges, sets of vertices, and sets of edges;
– binary relations for: equality (=), membership in a set (∈), subset of a set

(⊆), and edge–vertex incidence (I);
– standard propositional logic operators: ¬, ∧, ∨, →.
– standard quantifiers (∀,∃) which can be applied to all types of variables.

For a graph G and an MSO2 formula φ, we use G |= φ to indicate that φ can
be satisfied by G in the obvious way. Properties expressed in this logic allow us
to use the powerful algorithmic result of Courcelle stated next.

Theorem 6 ([10,11]). For any integer t ≥ 0 and any MSO2 formula φ of length
�, an algorithm can be constructed which takes a graph G with treewidth at most
t and decides in O(f(t, �) · (n + m)) time whether G |= φ where the function f
from this time bound is a computable function of t and �.

Outer k-planar graphs are known to have treewidth O(k) (see Proposition 8.5
of [30]). So, expressing outer k-planarity by an MSO2 formula whose size is
a function of k would mean that outer k-planarity could be tested in linear
time. However, this task might be out of the scope of MSO2. The challenge in
expressing outer k-planarity in MSO2 is that MSO2 does not allow quantification
over sets of pairs of vertices which involve non-edges. Namely, it is unclear how
to express a set of pairs that forms the circular order of vertices on the boundary
of our convex drawing. However, if this circular order forms a Hamiltonian cycle
in our graph, then we can indeed express this in MSO2. With the edge set
of a Hamiltonian cycle of our graph in hand, we can then ask that this cycle
was chosen in such a way that the other edges satisfy either k-planarity or k-
quasi-planarity. With this motivation in mind, we define the classes closed outer
k-planar and closed outer k-quasi-planar, where closed means that there is an
appropriate convex drawing where the circular order forms a Hamiltonian cycle.
Our main result here is stated next.

Theorem 7. Closed outer k-planarity and closed outer k-quasi-planarity can be
expressed in MSO2. Thus, closed outer k-planarity can be tested in linear time.
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The formulas for our graph properties are built using formulas for Hamil-
tonicity (Hamiltonian), partitioning of vertices into disjoint subsets (Vertex-
Partition) and connected induced subgraphs on sets of vertices using only a
subset of the edges (Connected). They can be found in Appendix C.

For a closed outer k-planar or closed outer k-quasi-planar graph G, we want
to express that two edges e and ei cross. To this end, we assume that there
is a Hamiltonian cycle E∗ of G that defines the outer face. We partition the
vertices of G into three subsets C, A, and B, as follows: C is the set containing
the endpoints of e, whereas A and B are connected subgraphs on the remaining
vertices that use only edges of E∗. In this way, we partition the vertices of G
into two sets, one left and the other one right of e. For such a partition, ei must
cross e whenever ei has one endpoint in A and one in B.

Crossing(E∗, e, ei) ≡ (∀A,B,C)
[(
Vertex-Partition(A,B,C)

∧ (I(e, x) ↔ x ∈ C) ∧ Connected(A,E∗) ∧ Connected(B,E∗)
)

→ (∃a ∈ A)(∃b ∈ B)[I(ei, a) ∧ I(ei, b)]
]

Now we can describe the crossing patterns for closed outer k-planarity and closed
outer k-quasi-planarity as follows:

Closed Outer k − PlanarG ≡ (∃E∗)
[
Hamiltonian(E∗)∧

(∀e)
[
(∀e1, . . . , ek+1)

[( k+1∧

i=1

ei �= e ∧
∧

i�=j

ei �= ej

)
→

k+1∨

i=1

¬Crossing(E∗, e, ei)
]]]

Here we insist that G is Hamiltonian and that, for every edge e and any set
of k + 1 distinct other edges, at least one among them does not cross e.

Closed Outer k − Quasi-PlanarG ≡ (∃E∗)
[
Hamiltonian(E∗)∧

(∀e1, . . . , ek)
[( ∧

i�=j

ei �= ej

)
→

∨

i�=j

¬Crossing(E∗, ei, ej)
]]

Again, we insist that G is Hamiltonian and further that, for any set of k
distinct edges, there is at least one pair among them that does not cross.

We conclude this section by mentioning an intermediate concept between
closed outer k-planarity and outer k-planarity, i.e., full outer k-planarity [19].
The full outer k-planar graphs are defined as having a convex drawing which
is k-planar and additionally there is no crossing on the outer boundary of the
drawing. Hong and Nagamochi [19] gave a linear-time recognition algorithm for
full outer 2-planar graphs. Clearly, the closed 2-planar graphs are a subclass of
the full 2-planar graphs. So, one open question is whether one can generalize our
MSO2 expressions of closed outer k-planarity and closed outer k-quasi-planarity
to the full versions. If yes, this would provide linear-time recognition of full outer
k-planar graphs for every k, including the full outer 2-planar case.
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14. Dujmović, V., Eppstein, D., Wood, D.R.: Structure of graphs with locally restricted
crossings. SIAM J. Discrete Math. 31(2), 805–824 (2017)
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