
An Interactive Tool to Explore and Improve
the Ply Number of Drawings

Niklas Heinsohn(B) and Michael Kaufmann

Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{heinsohn,mk}@informatik.uni-tuebingen.de

Abstract. Given a straight-line drawing Γ of a graph G = (V, E), for
every vertex v the ply disk Dv is defined as a disk centered at v where
the radius of the disk is half the length of the longest edge incident to v.
The ply number of a given drawing is defined as the maximum number of
overlapping disks at some point in IR2. Here we present a tool to explore
and evaluate the ply number for graphs with instant visual feedback
for the user. We evaluate our methods in comparison to an existing ply
computation by De Luca et al. [WALCOM’17]. We are able to reduce the
computation time from seconds to milliseconds for given drawings and
thereby contribute to further research on the ply topic by providing an
efficient tool to examine graphs extensively by user interaction as well
as some automatic features to reduce the ply number.

1 Introduction

Graphs are the common mathematical model to represent relationships between
objects and occur in a huge variety of applications and disciplines. To make the
data stored in a graph accessible for humans, we need a graphical representation
which usually involves a drawing of the underlying graph. There exist several
schemes to draw graphs [8,16]. In this work we will focus on straight-line draw-
ings. Several aesthetic criteria on straight-line drawings have been defined to
capture the user requirement for a better understanding of the data (e.g. edge
crossings or angular resolution [3]).

Recently a new parameter called ply number was introduced as a quality
metric for graph layouts [9]. Given a straight-line drawing Γ of a graph G =
(V,E), for every vertex v the ply disk Dv is defined as a disk centered at v,
where the radius of the disk is half the length of the longest edge incident to v.
The ply number of Γ is the maximal number of overlapping disks at any point
in IR2. Theoretical results have been obtained on the ply number of graphs
[1,9] and there exist many real world graphs admitting natural drawings with
low ply number [10]. One common approach to draw such graphs are force-
directed algorithms [15], whose drawings are known to be aesthetically pleasing.
A recent study evaluated the correlation between the ply number of drawings
produced by force-directed algorithms and other known metrics defined on these
algorithms [7].
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 38–51, 2018.
https://doi.org/10.1007/978-3-319-73915-1_4



An Interactive Tool to Explore and Improve the Ply Number of Drawings 39

Fig. 1. A graph with 30 vertices and 40 edges is drawn by our tool in different layouts:
(a) randomly placed vertices with ply 15, (b) circular layout with ply 7, (c) organic
layout with ply 4, (d) the lowest known ply number of 3 for this graph.

There exist many tools and layout algorithms for graph drawing provided
e.g. by OGDF [6] or the yFiles library [19]. The identification of properties as
well as the development of new strategies to optimize parameters of drawings
involve frequent examination of graph drawings. In this paper we present a tool
which allows investigation of graphs according to its ply number. We present a
fast algorithm to compute the ply number for a given drawing based on a plane-
sweep algorithm which is known to be a powerful technique in computational
geometry. Furthermore we provide methods to modify the drawing to reduce the
ply number interactively as well as automatically. We confirm the value of our
tool by providing experimental results on the computation in terms of accuracy
and speed as well as the results on our ply minimization approaches.

A first prototype of the basic plane-sweep algorithm has been implemented
in [4]. We reimplemented the algorithm, improved it and added new features.
The experimental study of De Luca et al. [7] set a benchmark on the compu-
tation of the ply number for a given drawing. The authors evaluated several
layouts by force directed algorithms according to the ply number. To make our
comparison possible, the authors kindly provided some of their data. Both imple-
mentations of the ply computations are based on the Apfloat library [17] which
allows calculations on high precision levels at the cost of time.

2 Functionality

Our tool allows the investigation of a graph regarding its ply number. As basic
functionality, the tool is equipped with some graph layout algorithms, namely
organic, circular and randomized (provided by yFiles library [19]), as presented
in Fig. 1, and allows for interactive manipulation of the drawing, such as moving
vertices. Basic file formats are graphml [5] and gml [14] where graphml provides
structural information on the graph and gml provides a drawing.

Furthermore, we provide a test if a given drawing is empty-ply, where no
vertex is contained in any other vertex’s disk. With our tool we identified that the
complete graph K4,6 admits an empty-ply drawing whereas this was previously
known only for K4,4 [2]. Our implementation is able to compute the ply number
for the drawing during runtime, meaning while the drawing is modified, for
example by layout algorithms or user interaction.



40 N. Heinsohn and M. Kaufmann

Live feedback of the ply number on interactive graph manipulations by users
is another feature of our tool. We mark regions where the maximal ply number
occurred. The user can choose between different layouts as start configurations
for the graph and is able to improve the ply values automatically by a spring
embedder or by manually manipulating the positions of the vertices accordingly.

3 Ply Computation Algorithm

To compute the ply number of a drawing Γ we have to compute the intersections
of the ply disks. Clearly the ply number is at most linear in the number of
vertices. In the following, we introduce one major issue in computing ply numbers
and present our fast plane-sweep algorithm to compute the ply number.

3.1 Precision Problems

Naturally thinking of an easy case to start with are graphs that admit a drawing
with a ply number of 1. This case is easy to describe and points out the difficulty
of computing the ply number: A graph that admits a drawing with ply number
1 has no overlapping ply disks and can be drawn such that every edge has equal
length l and any two vertices are at a distance of at least l. Suppose that there
exists a drawing Γ and a vertex v with different edge lengths |(u, v)| = l1 and
|(w, v)| = l2 and let w.l.o.g l1 > l2. l2

2 is a lower bound on the ply disk Dw and
since l1

2 + l2
2 > l2 the ply disks Dv and Dw intersect and the ply number of

Γ is ≥ 2. Furthermore, since the radius for any ply disk Dv is l
2 , the distance

dist(v, w) between any two vertices has to be ≥ l.
The complete graph K3 admits a drawing with ply number 1, since the

vertices can be placed on an equilateral triangle. Computing a drawing of K3

with the vertices u, v, and w, some coordinates must be irrational, since otherwise
the condition dist(u, v) = dist(u,w) = dist(v, w) is violated. As a consequence
the computer would need an infinite precision to represent a drawing with ply
number 1. Furthermore the calculation of coordinates for intersection points of
circles involves precise arithmetic and is likely to result in irrational coordinates.

In previous applications [4,7] this problem was tackled by increasing the
precision using the Apfloat library. This allows calculation on up to 1000 digit
decimal precision. On the downside these arithmetics require high computational
effort. In the following we present an alternative approach using the primitive
type double reducing the computational effort. Later, we evaluate this decision
by experiments regarding the precision of the outcome in terms of events and
time spent computing the ply number.

3.2 Plane-Sweep Algorithm

A plane-sweep algorithm describes a powerful technique in computational geome-
try. Given a two-dimensional Euclidean space, a conceptual line which represents
the actual state of computation sweeps the Euclidean space scanning for events



An Interactive Tool to Explore and Improve the Ply Number of Drawings 41

from left to right. Given a drawing Γ of a graph G = (V,E), we can easily com-
pute the set of ply disks D = {Dv|v ∈ V }. Every disk Dv is associated with the
vertex v at position (xv, yv) and radius rv. At every x-coordinate of the setting
there exists a highest ply value. Note that the ply number of the graph is the
maximum over all ply values. The ply value can change whenever a disk starts
at (xv − rv, yv), ends at (xv + rv, yv) or if there is an intersection of two disks.
For our purpose these coordinates are called events.

To describe the vertical structure with opening and closing disks, we repre-
sent the disks as bottom and top halfcircles, re spective to the center. At any
x-coordinate between two consecutive events the order of opening and closing
halfcircles on a vertical line in a ply drawing and thereby the maximal ply value
is fix. For every halfcircle we associate and store the ply value.

Whenever we meet a leftmost coordinate xv − rv of a disk Dv, we introduce
two halfcircles (ht

v and hb
v) and add them in the vertical structure. We set the

ply values according to the neighboured halfcircles in this case. Whenever we
meet a rightmost coordinate xv + rv of a disk Dv, we remove both correspond-
ing halfcircles from the vertical structure. If there exist halfcircles between our
removed ones, we decrease the ply of these.

Note that two disks might intersect if and only if any two corresponding half-
circles occur next to each other in the vertical structure. Furthermore, any two
disks Du and Dv can intersect at most twice. To keep the computational effort
minimal the intersection of disks is calculated the first time any two halfcircles
appear next to each other in the vertical structure. Finally an intersection-event
swaps the two affected halfcircles hu and hv, the ply is updated due to a case
distinction.

The events are stored in a priority queue and are executed by their
x-coordinate. In case there exist several events at the same x-coordinate we define
the priority in ascending order as end-event, intersection-event, start-event.

The x-coordinates might get slightly inconsistent due to previously mentioned
precision errors. This results in events which cannot be handled consistently. One
example would be an intersection-event that requires a swap of halfcircles, which
are not neighboured in the actual state. Our solution to this scenario is linearly
searching for the closest consistent event. This event will be executed and we
jump back to the unresolved one. We repeat this until it can be resolved. These
events will be tracked as postponed events. In the results section we evaluate
this delay and describe graphs where this periodically occurs.

4 Experiments

This section is subdivided into three major parts. At first we will present results
on the ply number for various graphs, as well as the number of events and the
time. Second, we compare our results with the results of De Luca et al. [7]. Third,
we present an approach to reduce the ply number by local modification.

We will make use of three datasets. First we take a subset of the Rome
graphs [18], which is determined by taking all graphs matching the file name



42 N. Heinsohn and M. Kaufmann

Fig. 2. Ply number for the Rome
graphs with various densities.

Table 1. The table presents the average values on
Rome9data.

Layout Ply Time (ms) Events

Organic 6.3 < 1 546

Circular 12.5 1.1 974

Random 30 3.8 3153

pattern grafo9*. We call the set Rome9data. It consists of 1094 sparse graphs
with 10 to 100 nodes and a density between 0.9 an 1.8.

The second set contains 100 randomly generated graphs. Every graph consists
of 100 vertices and has densities between 1.5 and 40. We refer to this set as
RANDdata.

The third set will be referred to as FM3data. This set of graphs was kindly
provided by the authors of the experimental study [7] and each graph was
drawn using the fast multipole multilevel method of Hachul and Jünger [12]
which is among the most effective force-directed algorithms in the literature [13].
FM3data contains caterpillars, planar and general (connected simple graphs,
generated with uniform probability distribution) graphs.

4.1 Ply Number for Different Layouts

Our tool supports different layouts provided by the yFiles library, namely
organic, circular and random layout. We evaluated our algorithm on
Rome9data. We observe that for sparse graphs the organic layout creates draw-
ings with lower ply than the circular layout, whereas at densities close to one,
i.e. tree like, they produce similar ply numbers (see Fig. 2). As a reference the
random layout produces the highest ply numbers (see Table 1). We observe a
correlation between the ply number, time and events.

The results on RANDdata are presented in Table 2. Here, the number of
postponed events is noteworthy. While it can be neglected in the organic and
random layout, the number of postponed events in the circular layout is conse-
quential and highly increased with the density. The highly symmetric placement
of the vertices in the circular layout causes many events to share an x-coordinate.
This circumstance, paired with eventually occurring precision errors, influences
this number. Since summing up over all postponed events exceeds the total num-
ber of executed events, the postponed events highly influences the computation
time, as we do a linear search for the next event.

In sparse graphs spring embedding algorithms like the organic layout algo-
rithm produce drawings with low ply numbers, while in dense graphs the draw-
ings have similar ply numbers to a drawing where the vertices are placed ran-
domly. In the dense graphs the circular layout hits the theoretical upper bound
of |V |

2 as shown in Fig. 3.



An Interactive Tool to Explore and Improve the Ply Number of Drawings 43

Table 2. The average ply numbers for each layout is presented for RANDdata, as
well as the average computation time and the average number of postponed events.

Density Layout Ply Time (ms) Events Postponed

1.5–2.5 Organic 16.2 2.2 2381 0

Circular 29.3 5.3 4349.5 11.3

Random 48.2 8.3 7170 0

5–8 Organic 50 12.2 7568 0

Circular 47.5 15.9 9076.5 109.8

Random 75 15.2 9510 0

10–15 Organic 76.5 14 9534 0

Circular 49.7 18 9650.8 3343.6

Random 86 14.4 9882.5 0

20–40 Organic 93 15.9 10016.4 0

Circular 50 160.1 9925.6 151232

Random 94 17.9 10041.4 0

Fig. 3. The density of the graphs of RANDdata is plotted against the ply number
of the drawing. We observe that the organic layout produces low ply numbers for
low densities, whereas at higher densities the circular layout outperforms the organic
layout. In very dense graphs the organic layout performs evenly as the random layout.

4.2 Comparison on the FM3 Drawing Dataset

We compare the number of events and the average computation time on
FM3data. The Apfloat decimal precision was set to 20 digits for this com-
parison. This value was used in the experiments of [7]. We will present the data
split by the type of graphs and according to their density.

FM3data contains 50 caterpillars with 250 to 450 vertices. The average
number of events and the computation time is presented in Table 3. We observe
a huge difference in the total number of events and the computation time. The
difference in number of events can be explained due to the difference in handling
inconsistent events. The algorithm of [7] introduces a number of redundant events
to detect and handle inconsistencies. Our algorithm reduces the computation for
the ply number from seconds to milliseconds.



44 N. Heinsohn and M. Kaufmann

Table 3. The caterpillars of FM3data. Each subset with 250 to 450 vertices contains
10 graphs. During all experiments the ply numbers for both implementations were the
same. The table presents average values for each set of graphs.

Vertices Ply [7] Our Tool

Events Time (ms) Events Time (ms)

250 3.8 2692.4 1328.1 1122.6 3.5

300 4.3 3510.4 1831.9 1430 1.6

350 4.5 3827 1883.7 1602.4 1.9

400 4.6 4564.9 2291.5 1879.3 2.4

450 4.3 5032.8 2581 2110 2.3

Table 4. The planar graphs of FM3data. The values show the average results for
each subset. Both implementations always computed the same ply numbers.

Density Ply [7] Our Tool

Events Time (ms) Events Time (ms)

≤ 1.7 9.6 9878.6 8444.2 3434.6 3.7

> 1.7 11.4 9625.9 9625.9 3609.4 3.8

FM3data also contains planar graphs ranging from 250 to 400 vertices and
a density ranging from 1.5 to 2. We split the planar graphs in two density classes.
In one set all densities are ≤ 1.7 and in the second set the densities are > 1.7.
The results are presented in Table 4. We observed that the ply number seems
to be related to the density rather than the number of vertices. A summary
is presented in Fig. 4. As a confirmation of previously made observations we
computed the ply of organic and circular layouts. For low densities the circular
layout produces higher ply drawings where the organic layout produces similar
ply numbers as the FM3 algorithm. On average the drawings generated by FM3
have slightly higher ply than the organic layout. The average ply number in the
organic layout is 9 for graphs with density ≤ 1.7 and 9.7 for higher density.
Again, note the difference in number of events and computation time keeping
results equal.

The remaining subset of FM3data consists of general graphs with 250 to 450
vertices and the densities 1.5 and 2.5. In 96 of 100 graphs both implementations
computed the same ply number, whereas in 3 graphs we see a difference of 1. In
one specific graph, namely General 400 2.5 5 d 0 FMMM drawing.gml, the ply
number differs by 5. In these graphs we can detect a high number of postponed
events. Furthermore, our algorithm underestimates the ply number in all cases.

To conclude this section we present the interesting result on different layouts
on the third subset of FM3data presented in Fig. 5. Note that the ply numbers
on FM3 and organic layout are very similar. The stairs in the plot indicate the
jump between the densities from 1.5 to 2.5 for each set of graphs.



An Interactive Tool to Explore and Improve the Ply Number of Drawings 45

Fig. 4. For each planar graph of FM3data the computed ply numbers for each of the
three layouts is plotted. Note that the organic and the FM3 drawings have similar ply
numbers, while the circular layout produces higher ply numbers on low density graphs.

Fig. 5. The set of general graphs can be subdivided in 5 subsets consisting of graphs
with 200, 250, ... , 450 vertices. Each subset can be divided in 10 graphs with density
1.5 and 10 graphs with density 2.5. The figure indicates that the FM3 algorithm and
the organic layout produce similar drawings regarding the ply number.

4.3 Ply Minimization

In this part we will present some strategies to create drawings with low ply.
We evaluated our strategies on FM3data and Rome9data. Our first strategy
is based on an obvious upper bound of |V |

2 on the ply number of any graph
G = (V,E), which is obtained by placing the vertices regularly on a circle C.
For every disk there exist a unique disk on the opposite side of the center which
is not overlapping. Therefore at most half of the disks can contribute to the ply
number. We use this observation and apply the circular layout, whenever the
actual layout has ply number larger than |V |

2 .

4.4 Strategies

To achieve a low ply drawing for a given graph we introduce a workflow, which
is directly accessible in our tool. We start with the organic layout since it has
presented itself to produce drawings with low ply number on sparse graphs.
Examining these drawings with our tool, we observed that there often exist
very few regions with the maximal ply number, which often can be reduced by
moving a few vertices locally. From these observations we adjusted a new spring
embedder based on Fruchterman and Reingold [11], similar as suggested in [7],
and tuned the parameters to produce drawings with less ply.



46 N. Heinsohn and M. Kaufmann

4.5 Results

At first we present the advantages of our methods on Rome9data in comparison
to organic layouts. On average the ply number of 6.3 of the organic layout was
improved to 5.1 in the modified setting. This result is presented in Fig. 6.

In the experimental study of the ply number [7] one of the results was the
strength of the FM3 algorithm to produce low ply drawings. We compare the ply
numbers for FM3data to the findings of our ply minimization workflow. Like in
the previous chapters we will present the results separately. For all computations
of the ply numbers we took our implementation for consistency.

On the caterpillars the average ply number for the FM3data is 4.3, which
we could improve to 3.3. On the general graphs we could reduce the average ply
number from 37.3 to 36.7 and on the planar subset we could even improve the
average ply number from 10.4 to 8.8. The results are presented in Fig. 7.

Fig. 6. For each graph in the Rome9data set the organic and the improved ply
number are drawn. The graphs are ordered by the number of vertices.

(a) (b)

(c)

Fig. 7. The plots present the minimization results on FM3data. Note that the axis
change in scale throughout the plots. (a) the ply number of the caterpillars. (b) the
ply number of the planar graphs. (c) the ply number of the general graphs.



An Interactive Tool to Explore and Improve the Ply Number of Drawings 47

5 Discussion and Conclusion

To start our discussion we first want to analyze the results for the ply com-
putation for the different layouts followed by the comparison between the two
implementations. We continue with the ply minimization part. We conclude with
a paragraph on the advantages of our tool.

We have presented the results of the ply computation on various graph lay-
outs. Comparing different layouts, we can easily conclude that on sparse graphs
spring embedding algorithms produce low ply drawings. This confirms the find-
ings of [7]. Analyzing denser graphs, these algorithms tend to reach their limits.
On very dense graphs (close to complete graphs) they perform similar to ran-
dom layouts (see Fig. 3). To strengthen this claim we included the ply number
for randomly drawn graphs in this figure. An interesting observation suggests
that the circular layout produces ply numbers close to |V |

2 even in the worst case.
The reason for this is stated in Sect. 4.3.

Our experiments suggest the equilibrium between the circular and the organic
layout to be between density of 5 and 6.5. At densities larger than 6.5 the ply
numbers for graphs drawn with the circular layout are clearly lower than the ply
numbers for the organic layout (see Fig. 3).

The number of total events indicate a similar observation. While the number
of events highly correlates with the increasing density, a higher number of events
seems to imply a higher ply number of the drawing. Accordingly, the number of
events in dense graphs support the observation that our organic layout produces
similar ply numbers as the random layout (cf. Table 2). This effect is expected
and the reason for this is twofold. On the one hand, every vertex has one ply
disk which represents the dependency on the number of vertices. On the other
hand, more edges tend to induce larger radii and thereby more intersections
even though the number of disks stay the same. The increasing number of events
according to the density and number of vertices is observable in both evaluated
implementations.

According to the precision errors we observe a high number of postponed
events, especially in the circular layout. This can be explained by the highly
symmetric structure of these drawings, which cause many events to share an
x-coordinate. The radii of the ply disks are likely to be irrational numbers and
are thus prone for errors. Note that the value purely counts the number of events,
which could not be solved instantly. There exist events which are counted several
times, since they require more steps in between to be solved and we jump back
to the first unsolved event.

Comparing the two implementations on the FM3data, we observe three
facts. First of all the number of total events differ by a factor of 2 to 3. This
can be explained due to the implementation of [7] adds additional events to pre-
vent the influence of precision errors. This way the errors are detected instantly.
Second, the difference in computation time depends partially on the pure num-
ber of events but the major time difference can be explained by the arith-
metic computation time on Apfloat values in comparison to the primitive type
double. Since we present a tool for the examination of different graphs we need



48 N. Heinsohn and M. Kaufmann

Table 5. The average results of the general graphs of FM3data are presented. The
ply numbers in brackets indicate a different result of the algorithms. Note that these
cases have a high number of postponed events.

Density Vertices Ply [7] Our Tool

Events Time (ms) Events Time (ms) postponed

1.5 250 18 18334 23955 6430 10.2 0.4

300 19.8 25688.3 38454.8 8950.8 9.7 159

350 23.7 34140.5 52829.1 11949.7 23.7 0.6

400 25.4 43543.4 72928.5 15227.5 16.4 0.3

450 28 (27.9) 55643.2 100653.2 19395.6 23.1 0.7

2.5 250 38.1 47248 92192.7 16539.1 19.5 0.5

300 45.4 68070.5 147113.6 23892.3 36.7 2.2

350 51.4 90943.4 217999.9 31850.1 43.5 2.5

400 59.3 (58.7) 118188.7 309601.8 40606.9 83.8 40048.3

450 64.3 (64.2) 148973.3 426993.5 51640.4 112.9 62776.7

a fast computation of the ply number to achieve a feedback for the user within
milliseconds. Note that the implementation of [7] this was not applicable. To
give an overview, there were only 4 out of 100 graphs where a difference in
the computed ply number could be observed. In every case our implementa-
tion underestimated the ply in comparison to the other implementation [7]. The
average error is very low as presented in Table 5.

Examining the results we can state a likelihood or quality of the computed
result. Where the number of postponed events is one important indicator of
occurred precision errors and evenly important a large number of end-events
to solve inconsistencies increase the likelihood of miscomputation. A feature we
want to include in future work is to give visual feedback to the user in that case.

During the experiments we detected a few computations with a high number
of postponed events during the analysis of the FM3data. Examining the
graphs, we observed that the FM3 algorithm tends to produce drawings with
low average edge length and thereby are likely to induce precision errors. In our
layout algorithms larger average edge length where possible. This increases the
accuracy of our algorithm and explains the computation error on these graphs.
All in all we present an algorithm which can compete in the computed result
and is very fast. We conjecture that the accuracy can be even increased by
scaling a given graph. Unfortunately, we cannot support this by experimental
data, another task that will be tackled in future work.

Now we want to discuss the results of our minimization approach. We
compare the organic layout and our strategy to reduce the ply number on
Rome9data. We adjusted a spring embedder to reduce the ply number for
a drawing based on our organic layout. One of the important observations on
sparse graphs was that the maximal ply number is often reached in very few
regions. On this data, in average, we can reduce the ply number by one. For fur-



An Interactive Tool to Explore and Improve the Ply Number of Drawings 49

ther competition on sparse graphs we compare the FM3 layout algorithm, which
was the winning strategy in [7]. Our approach creates drawings that are on
average one ply lower than this algorithm.(cf. Figure 7). Even though our imple-
mentation tends to underestimate the ply number on some FM3data graphs.
Our modification produces a larger scaling and we conjecture that our approach
constructs drawings with lower ply number and the computations are more resis-
tant to precision errors.

For very dense graphs the spring embedding strategies seem to produce draw-
ings which have a ply number close to random layouts. Nevertheless, for dense
graphs we can guarantee an upper bound by using the circular layout, which is
included in our optimization.

Examining the minimization strategies on caterpillars of FM3data, the ply
numbers still range up to 4. Even though we know that caterpillars admit a ply
2 drawing [1]. Further examination on these graphs suggests that our methods
are often able to construct drawings with ply number 2 given a suitable start
configuration and enough time. Since we gave a strict time limit during the
experiments we did not manage to produce many ply 2 drawings on this set.

Our tool provides the user with our adjusted spring embedder and the possi-
bility to enforce equal edge lengths. The equal edge lengths can be interpreted as
a test if the actual embedding admits a ply 1 drawing. During our experiments,
due to precision errors, we did not observe ply 1 drawings by automated layout
methods. The enforced equality of edge lengths includes very strong forces and
converges if there exists a ply 1 drawing in the current embedding.

The optimization process involves several iterative computational steps using
spring embedding algorithms and computation of the ply number in between.
By using these steps and adjusting the vertices manually it is possible for the
user to reduce the ply number even further by moving few vertices, since due to
a previous observation there often exist only few regions with maximal ply.

We conclude this part with a short summary of functionality and a forecast
for our tool. We introduced a fast ply computation algorithm which is able
to give instant feedback to user interaction, e.g. whenever the drawing of a
graph is modified. We were successfully able to reduce the computation time
from seconds to milliseconds. Our tool is equipped with basic layout algorithms
and simple automated minimization techniques. The tool can be used to get
a deeper understanding of several graph classes e.g. according to the question
if there exists a lower bound on the ply number. In the near future we will
include an indicator on the accuracy of the computation. In these cases the
implementation providing higher precision in the computation might be used
as verification. Furthermore, we want to improve the minimization methods.
Further evaluation and experiments will be necessary to observe the influence of
scaling to our computations.

Acknowledgements. We specially thank the authors of [7] for providing their
implementation and data to compare with ours. We also thank Patrizio Angelini,
Lukas Bachus, Michael Bekos, and Felice De Luca for helpful discussions.



50 N. Heinsohn and M. Kaufmann

References

1. Angelini, P., Bekos, M.A., Bruckdorfer, T., Hančl, J., Kaufmann, M., Kobourov,
S., Symvonis, A., Valtr, P.: Low ply drawings of trees. In: Hu, Y., Nöllenburg, M.
(eds.) GD 2016. LNCS, vol. 9801, pp. 236–248. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50106-2 19

2. Angelini, P., Chaplick, S., De Luca, F., Fiala, J., Hancl, J., Heinsohn, N.,
Kaufmann, M., Kobourov, S., Kratochvil, J., Valtr, P.: On vertex- and empty-
ply proximity drawings. In: Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017) (2017, to appear)

3. Atallah, M.J.: Algorithms and Theory of Computation Handbook. CRC Press,
Boca Raton (1999)

4. Bachus, L.: Ply, University of Tübingen. Bachelor thesis (2016)
5. Brandes, U., Eiglsperger, M., Lerner, J., Pich, C.: Graph markup language

(GraphML). In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualiza-
tion, pp. 517–541. Chapman and Hall/CRC (2013)

6. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on
Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013)

7. De Luca, F., Di Giacomo, E., Didimo, W., Kobourov, S., Liotta, G.: An experimen-
tal study on the ply number of straight-line drawings. In: Poon, S.-H., Rahman,
M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 135–148. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53925-6 11

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

9. Di Giacomo, E., Didimo, W., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta,
G., Misue, K., Symvonis, A., Yen, H.: Low ply graph drawing. In: Bourbakis, N.G.,
Tsihrintzis, G.A., Virvou, M. (eds.) 6th International Conference on Information,
Intelligence, Systems and Applications, IISA 2015, Corfu, Greece, 6–8 July 2015,
pp. 1–6. IEEE (2015)

10. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: Aref, W.G., Mokbel, M.F., Schneider, M. (eds.) 16th ACM
SIGSPATIAL International Symposium on Advances in Geographic Information
Systems, ACM-GIS 2008, Proceedings, 5–7 November 2008, Irvine, California,
USA, p. 16. ACM (2008)

11. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw., Pract. Exper. 21(11), 1129–1164 (1991)

12. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

13. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: an experimental
study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)

14. Himsolt, M.: GML: A Portable Graph File Format. Universität Passau (1997).
http://www.fmi.uni-passau.de/graphlet/gml/gml-tr.html

15. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Hand-
book on Graph Drawing and Visualization, pp. 383–408. Chapman and Hall/CRC
(2013)

16. Tamassia, R., Liotta, G.: Graph drawing. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1163–1185.
Chapman and Hall/CRC (2004)

https://doi.org/10.1007/978-3-319-50106-2_19
https://doi.org/10.1007/978-3-319-50106-2_19
https://doi.org/10.1007/978-3-319-53925-6_11
https://doi.org/10.1007/978-3-540-31843-9_29
http://www.fmi.uni-passau.de/graphlet/gml/gml-tr.html


An Interactive Tool to Explore and Improve the Ply Number of Drawings 51

17. Tommila, M.: A C++ high performance arbitrary precision arithmetic package
(2003). http://www.apfloat.org/apfloat/

18. Welzl, E., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E.,
Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput.
Geom. 7, 303–325 (1997)

19. Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles - visualization and automatic
layout of graphs. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software,
pp. 173–191. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-
18638-7 8

http://www.apfloat.org/apfloat/
https://doi.org/10.1007/978-3-642-18638-7_8
https://doi.org/10.1007/978-3-642-18638-7_8

	An Interactive Tool to Explore and Improve the Ply Number of Drawings
	1 Introduction
	2 Functionality
	3 Ply Computation Algorithm
	3.1 Precision Problems
	3.2 Plane-Sweep Algorithm

	4 Experiments
	4.1 Ply Number for Different Layouts
	4.2 Comparison on the FM3 Drawing Dataset
	4.3 Ply Minimization
	4.4 Strategies
	4.5 Results

	5 Discussion and Conclusion
	References




