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Abstract. We show that triangle-free penny graphs have degeneracy at
most two, list coloring number (choosability) at most three, diameter
D = Ω(

√
n), and at most min

(
2n − Ω(

√
n), 2n − D − 2

)
edges.

1 Introduction

Penny graphs are the contact graphs of unit circles [1,2] — they are formed from
non-overlapping sets of unit circles by creating a vertex for each circle and an
edge for each tangency between two circles — and as such, fit into a long line of
graph drawing research on contact graphs of geometric objects [3–7]. The same
graphs (except the graph with no edges) are also proximity graphs, the graphs
determined from a finite set of points in the plane by adding edges between
all closest pairs of points, and for this reason they are also called minimum-
distance graphs [8,9]. A minimum-distance representation can be obtained from
a contact representation by choosing a point at the center of each circle, and a
contact representation can be obtained from a minimum-distance representation
by scaling the points so their minimum distance is two and using each point as
the center of a unit circle. However, finding either type of representation given
only the graph is NP-hard, even for trees [10].

As graph drawings, minimum distance representations are in many ways
ideal: they have no crossings, all edges have unit length, and the angular reso-
lution is at least π/3. Every graph that can be drawn with this combination of
properties is a penny graph. Moreover, penny graphs have degeneracy at most
three, where the degeneracy of a graph G is the minimum number d such that
every subgraph of G contains a vertex of at most d. Equivalently, the vertices of
any penny graph can be ordered so each vertex has at most three neighbors later
than it in the ordering. This ordering leads to a linear-time greedy 4-coloring
algorithm [11], much simpler than known quadratic-time 4-coloring algorithms
for arbitrary planar graphs [12]. Additionally, although planar graphs with n
vertices can have 3n − 6 edges, penny graphs have at most

⌊
3n − √

12n − 3
⌋

edges [13]. This bound is tight for pennies tightly packed into a hexagon [14], and
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its lower-order square-root term stands in an intriguing contrast to many simi-
lar bounds on the edge numbers of planar graphs, k-planar graphs, quasi-planar
graphs, and minor-closed graph families, with constant or unknown lower-order
terms [15–20].

Swanepoel [9] first considered corresponding problems for the triangle-free
penny graphs. In graph drawing terms, these are the graphs that can be drawn
with no crossings, unit-length edges, and angular resolution strictly larger than
π/3. Swanepoel observed that, as with triangle-free planar graphs more generally,
an n-vertex triangle-free penny graph can have at most 2n− 4 edges. As a lower
bound, the square grids have

⌊
2n − 2

√
n
⌋

edges, as do some subsets of grids
and some pentagonally-symmetric graphs found by Oloff de Wet [9]. Swanepoel
conjectured that, of the two bounds, it is the lower bound that is tight.

Triangle-free planar graphs more generally have also been considered.
Grötzsch proved that these graphs are 3-colorable [21,22] and they can be
3-colored in linear time [23]. However, not every triangle-free planar graph is
3-list-colorable: if each vertex is given a list of three colors, it is not always pos-
sible to assign each vertex a color from its list that differs from all its neighbors’
assigned colors [24]. 3-list-colorability is known for bipartite planar graphs [25],
planar graphs with girth at least five [22], and planar graphs of girth four with
well-separated 4-cycles [26], but these subclasses do not include all triangle-free
penny graphs.

We continue these lines of research with the following new results.

– Every triangle-free penny graph with at least one cycle has at least four
vertices of degree two or less. Consequently, the triangle-free penny graphs
have degeneracy at most two.

– Every triangle-free penny graph has list chromatic number (choosability) at
most three, and any list-coloring problem on a triangle-free penny graph with
three colors per vertex can be solved in linear time.

– Every n-vertex triangle-free penny graph has at most 2n − Ω(
√

n) edges.
Thus, the form of Swanepoel’s conjectured edge bound is correct, although
we cannot confirm the conjectured constant factor on the square-root term.

– Every penny graph has graph-theoretic diameter Ω(
√

n), and every triangle-
free penny graph with n vertices and diameter D has at most 2n − D − 2
edges. The combination of these two results provides an alternative proof of
the 2n − Ω(

√
n) edge bound, but with a worse constant factor in the Ω.

2 Degeneracy

We begin by showing that every triangle-free penny graph with at least one cycle
has at least four vertices of degree two or less. It is convenient to begin with a
special case of these graphs, the ones that are biconnected.

Lemma 1. Every biconnected triangle-free penny graph has at least four vertices
of degree two.
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Fig. 1. Rays Rv extending from the center of each boundary vertex directly away
from the clockwise neighbor of its clockwise boundary neighbor, used in the proof of
Lemma 1.

Proof. Given a biconnected triangle-free penny graph G, and its representation
as a penny graph, the outer face of the representation (as in any biconnected
plane graph) consists of a simple cycle of vertices; in particular each vertex of
this face has at least two neighbors. For each vertex v of this simple cycle, let
w be the clockwise neighbor of v in the cycle, and let u be the neighbor of v
that is next in clockwise order around v from w; define a ray Rv, having the
center of the disk of v as its apex, and pointing directly away from the center of
u (Fig. 1). Given the same boundary vertices v and w in clockwise order, define
the angle θw to be the angle made by rays Rv and Rw, assigned a sign so that θw
is positive if Rw turns a clockwise angle (less than π/2) from Rv, and negative if
Rw turns counterclockwise with respect to Rv. If Rv and Rw are parallel, then
we define θw = 0. Then these rays and their angles have the following properties:

– Each ray Rv points into the outer face of the drawing. Therefore, the sum of
the turning angles of the rays as we traverse the entire outer face in clockwise
order,

∑
θv, must equal 2π.

– If a boundary vertex w has degree three or more, then θw ≤ 0. For, if v and
w are consecutive on the outer face, with Rv pointing away from a neighbor
u of v (as above) and Rw pointing away from a neighbor x of w, then the
assumption that w has degree at least three implies that x �= v, and the
assumption that G is triangle-free implies that x �= u. If x and u touch,
so that uvwx forms a quadrilateral in G, then Rv and Rw are necessarily
parallel, so θw = 0. In any other case, to prevent x and u from touching, x
must be rotated counterclockwise around w from the position where it would
touch u, causing angle θw to become negative.
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– At a boundary vertex w of degree two, θw < 2π/3. For, in this case, Rw

points away from v, the counterclockwise neighbor of w on the outer face.
Let u be the neighbor of v such that Rv points away from u; then w �= u.
Because both Rv and Rw belong to lines through the center of v, their angle
θw is complementary to angle wvu, which must be greater than π/3 in order to
prevent circles u and w from overlapping or touching (and forming a triangle).
Therefore, θw is less than 2π/3.

For the sequence of angles θw, each less than 2π/3, to add to a total angle of 2π,
there must be at least four positive angles in the sequence, and therefore there
must be at least four degree-two vertices. ��
Theorem 1. Every triangle-free penny graph G with at least one cycle has at
least four non-articulation vertices of degree two or less.

Proof. By the assumption that G has at least one cycle, it has at least one
nontrivial biconnected component C. By Lemma 1, C has at least four degree-two
vertices, each of which either has degree two in G or forms an articulation point
of G. If it forms an articulation point, then the tree of biconnected components
connected through it to G has at least one leaf, which must either be a vertex
of degree one in G or a nontrivial biconnected component with at least four
degree-two vertices, only one of which can be an articulation point. Thus, each
of the four degree-two vertices in C is either itself a non-articulation vertex of
degree at most two in G or leads to such a vertex. ��

The bound on the number of degree-two vertices is tight for square grids.

Theorem 2. The degeneracy of every triangle-free penny graph is at most two.

Proof. Every subgraph of a triangle-free penny graph is another triangle-free
penny graph, so the result follows from Theorem1 and from the fact that, in a
graph with no cycles (a forest) there always exists a vertex of degree one or less
(a leaf or an isolated vertex). ��

3 Choosability

The choosability, or list chromatic number, of a graph G is the minimum number
c such that, for every labeling of each vertex of G by a list of c colors, there exists
an assignment of a single color from its list to each vertex, with no two adjacent
vertices assigned the same color. The usual graph coloring problem is a special
case in which all vertices have the same list. Known relations between list coloring
and graph degeneracy [25] give us the following result:

Theorem 3. If a triangle-free penny graph is labeled by a list of three colors
for each vertex, then we can find a solution to the list coloring problem for the
resulting labeled graph in linear time. The algorithm needs as input only the
abstract graph, not its representation as a penny graph.
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Proof. Find a vertex of degree at most two, remove it from the graph, color the
remaining subgraph recursively, and put back the removed vertex. It has at most
two neighbors, preventing it from being assigned at most two colors from its list
of three colors, so there always remains at least one color available for it to use.

Linear time follows by maintaining the degree of each vertex in the reduced
graph formed by the removals, a list of vertices of reduced degree at most two,
and a stack of removals to be reversed. It takes constant time per vertex removal
and replacement to update these data structures. ��
Corollary 1. Triangle-free penny graphs have choosability at most three.

This bound is tight as the odd cycles of length ≥ 5 are triangle-free penny
graphs with choosability exactly three.

4 Edge Count

We derive a bound on the number of edges of a triangle-free penny graph by
using the isoperimetric theorem to show that the outer face of any representation
as a penny graph has many vertices, and then by using Euler’s formula to show
that a planar graph with a large face has few edges.

Lemma 2. Let v be a vertex of a penny graph that (in some representation of the
graph as a penny graph) is not on the outer face. Then, in the Voronoi diagram
of the centers of the circles in the representation, the Voronoi cell containing
v has area at least 2

√
3, which is the area of a regular hexagon circumscribed

around a unit circle.

Proof. The area is minimized when each Voronoi neighbor of v is as close as
possible to v (so that the neighbor’s circle touches that of v, causing the Voronoi
cell of v to circumscribe its circle), when the neighbors are equally spaced around
v (forming a regular polygon), and when the number of neighbors is as large as
possible (forming a hexagon). The first two of these claims follow from the fact
that any other configuration of neighbors can be continuously deformed to make
the area of v’s cell smaller, while the last one follows by comparing the areas of
the other possible regular polygons. ��
Lemma 3. In any penny graph representation of a graph G with n vertices, the
number of vertex-face incidences on the outer face of the representation is at
least √

π · 2
√

3 · n − O(1) ≈ 3.3
√

n.

Proof. Unless there are at least this many incidences, by Lemma 2 there must be
a total area of at least 2

√
3 ·n−O(

√
n) enclosed by the outer face, because each

Voronoi cell of an inner vertex is enclosed and the Voronoi cells are all disjoint.
The result follows from the facts that each vertex-face incidence accounts for
2 units of length of the outer face (the two radii of a single unit circle in the
representation, along which the outer face enters and then leaves that circle)
and that any curve that encloses area A must have length at least 2

√
πA (the

isoperimetric theorem, with the shortest enclosing curve being a circle). ��
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Lemma 4. Let G be an n-vertex triangle-free plane graph in which one face has
k vertex-face incidences. Then G has at most 2n − k/2 − 2 edges.

Proof. Vertex-face incidences and edge-face incidences on any face are equal,
so the same face of G that has k vertex-face incidences also has k edge-face
incidences. We count the number of edge-face incidences in G in two ways: by
counting two incidences for each edge, and by summing the lengths of the faces.
Each face of G has at least four edges, so if there are e edges and f faces then
we have the inequality 2e ≥ 4(f − 1) + k, or equivalently e/2 − k/4 + 1 ≥ f .
Using this inequality to replace f in Euler’s formula n − e + f = 2, we obtain
n − e + e/2 − k/4 + 1 ≥ 2, or equivalently e ≤ 2n − k/2 − 2 as claimed. ��
Theorem 4. The number of edges in any n-vertex triangle-free penny graph is
at most

2n − 1
2

√
π · 2

√
3 · n + O(1) ≈ 2n − 1.65

√
n.

Proof. Lemma 3 proves the existence of a large face, and plugging the size of this
face as the variable k in Lemma 4 gives the stated bound. ��

We leave the problem of closing the gap between this upper bound and
Swanepoel’s 2n − 2

√
n lower bound as open for future research.

5 Diameter

Our results on degeneracy and number of edges can be connected via the follow-
ing two results, which provide an alternative proof that the number of edges in
a triangle-free penny graph is 2 − Ω(

√
n).

Theorem 5. Every connected n-vertex penny graph has diameter Ω(
√

n).

Proof. By a standard isodiametric inequality [27], for the convex hull of n disjoint
unit disks to enclose area 2πn, it must have (geometric) diameter Ω(

√
n). In

order to connect two unit disks at geometric distance Ω(
√

n) from each other,
they must also be at graph-theoretic distance Ω(

√
n). ��

Theorem 6. Every connected n-vertex triangle-free penny graph G with diam-
eter D has at most 2n − D − 2 edges.

Proof. We use induction on n. If G has no cycle, it is a tree, with n − 1 edges,
and the result follows from the fact that D ≤ n − 1. Otherwise, let uw be a
diameter pair, and let v be any vertex of degree at most two, whose removal
does not disconnect G, distinct from u and w. The existence of v follows from
Theorem 1. Then G−v has one less vertex, one or two fewer edges, and diameter
at least D. The result follows by applying the induction hypothesis to G − v. ��
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It is not true more generally that 2-degenerate triangle-free planar graphs
with diameter D have at most 2n − D − 2 edges; Theorem 6 relies on the spe-
cific properties of triangle-free penny graphs. However, we can prove analogous
bounds of 2n−Ω(

√
n) and 2n−D−2 on the numbers of edges in squaregraphs [28],

plane graphs in which every bounded face is a quadilateral and every vertex that
does not belong to the unbounded face has degree at least four. The details are
given in the appendix of the preprint of this paper [29].
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etry: Papers from the Third International Conference. Colloq. Math. Soc. János
Bolyai, Szeged, 2–7 September 1991, vol. 63, pp. 217–244, North-Holland (1994)

https://doi.org/10.1007/978-3-319-27261-0_20
https://doi.org/10.1007/978-3-319-21840-3_1
https://doi.org/10.1007/978-3-319-21840-3_1
https://doi.org/10.1007/978-3-319-27261-0_37


Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count 513

15. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007)

16. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

17. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K.,
Reislhuber, J.: On the density of maximal 1-Planar graphs. In: Didimo, W., Patrig-
nani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 29

18. Eppstein, D.: Densities of minor-closed graph families. Electron. J. Comb. 17(1),
R136 (2010)
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