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Abstract. Motivated by a new way of visualizing hypergraphs, we study
the following problem. Consider a rectangular grid and a set of colors χ.
Each cell s in the grid is assigned a subset of colors χs ⊆ χ and should be
partitioned such that for each color c ∈ χs at least one piece in the cell
is identified with c. Cells assigned the empty color set remain white. We
focus on the case where χ = {red, blue}. Is it possible to partition each
cell in the grid such that the unions of the resulting red and blue pieces
form two connected polygons? We analyze the combinatorial properties
and derive a necessary and sufficient condition for such a painting. We
show that if a painting exists, there exists a painting with bounded com-
plexity per cell. This painting has at most five colored pieces per cell if
the grid contains white cells, and at most two colored pieces per cell if
it does not.

1 Introduction

Hypergraphs are a powerful structure to represent unordered set systems. In gen-
eral, there are a number of elements (vertices of the hypergraph) and a number
of different subsets over these elements (the hyperedges of the graph). The pur-
pose of visualizing hypergraphs is to clarify the various set relations between the
hyperedges. There are, roughly speaking, two strands of hypergraph visualiza-
tions: those where the position of the elements is fixed (e.g. [2,7,8,15]), and those
where the positions can be chosen by the layout algorithm (e.g. [10,18,19]). For
a more detailed overview and in-depth classification of set visualization meth-
ods we refer to the survey by Alsallakh et al. [4]. Though some methods aim to
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overcome layout complexity by replicating elements (e.g. [3,10]), we focus on a
visualization using a single representation for each element.

In theoretic research on drawing hypergraphs (e.g. [6,12]), the (often implicit)
assumption is that the representations of two sets may cross at common vertices.
Such crossings are not deemed problematic as most visual encodings rely on the
local nesting of intersecting polygons (in line with the prototypical Venn and
Euler diagrams [5] and similar visual overlays [7,8,15]) to identify set mem-
berships. Nesting, however, gives a strong visual cue of containment and may
result in misleading visual representations implying containment relationships
between hyperedges. A rendering style without nesting is one suggested for Kelp
Diagrams [8]. However, its cluttered appearance caused it not to feature in the
later extension, KelpFusion [15].

One of the most well-established quality criteria of graph drawings is pla-
narity (see e.g. [16,17]). When nested encodings are used, a planar drawing
relates to finding a planar support [6]: a planar (regular) graph such that the
vertices of each hyperedge induce a connected subgraph in the support. Deciding
whether a planar support exists is possible for some simple support classes (see [6]
for a discussion), but is already NP-hard for 2-outerplanar support graphs [6].
Optimizing hypergraph supports for total graph length without planarity con-
straints is NP-hard, but approximation algorithms exist [1,11].

Representations that do not require nesting are edge-based drawings [13] or
the equivalent Zykov representation [22], for which notions of planarity follow
readily from the standard notion for regular graphs.

Fig. 1. A hypergraph that
is not Zykov-planar (top)
but has a disjoint-polygons
drawing (bottom).

Instead we suggest a visual design that uses dis-
joint polygons to present hyperedges: vertices are rep-
resented as simple geometric primitives (e.g. a square
or circle); hyperedges are represented as connected
polygons that overlaps only and all its incident ver-
tices; and all such polygons are pairwise disjoint. As
illustrated in Fig. 1, our disjoint-polygons encoding is
stronger as it can visualize some hypergraphs that are
not Zykov-planar, whereas any Zykov-planar hyper-
graph admits a disjoint-polygons representation. We
can use vertices to “pass in between” the represen-
tations of other hyperedges, though not as flexibly
as is allowed for planar supports: the polygons must
remain disjoint.

Contributions. We investigate the properties of drawing hypergraphs using dis-
joint polygons. Motivated by moving towards a set visualization in a geographic
small multiples or grid map (see e.g. [14,23]), we specifically study the variant
where each element has a fixed location, being a cell in a rectangular grid. As
an initial exploration we focus on the 2-color case, where each cell is either red,
blue, both (purple), or uncolored (white). We thus aim to partition each purple
cell into red and blue pieces, such that the resulting pieces of a single color form
a connected polygon. We derive a necessary and sufficient condition to efficiently
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recognize whether an instance is solvable. For solvable instances, we bound the
number of colored pieces within each cell by a small constant and show that these
bounds are tight. Due to space constraints, some proofs have been shortened or
omitted; for full proofs, please refer to the ArXiv version [21].

2 Preliminaries

We define a k-colored grid Γ as a rectangular grid, in which each cell s has a set of
associated colors χs ⊆ {1, . . . , k}. A fully k-colored grid is the case where χs �= ∅

for all cells s. Throughout this paper, we primarily investigate 2-colored grids
and use colored grid to refer to the 2-colored case, unless indicated otherwise.
We refer to the two colors as (r)ed and (b)lue; cells for which χs = {r, b} are
called (p)urple. Cells with no associated colors are white.

A region is a maximal set of cells that have the same color assignment (r, b,
or p) and where every cell s in the region is connected via adjacent cells to every
other cell s′ in the region. Cells are considered adjacent if they are horizontally
or vertically adjacent.

A panel πs for cell s (with χs �= ∅) maps each color c ∈ χs to a (possibly
disconnected) area πs(c) such that these partition the cell: that is,

⋃
c∈χs

πs(c) =
s and πs(c1) ∩ πs(c2) = ∅ for colors c1 �= c2. A painting Π of a k-colored grid
consists of panels πs for each cell s with πs(c) �= ∅ for each c ∈ χs and πs(c) = ∅

otherwise. We call a painting connected if each color forms a connected polygon:
that is,

⋃
s∈Γ πs(c) is a connected polygon for each color c ∈ {1, . . . , k}. For this

definition, two cells sharing only a corner are not considered connected. Our
primary interest is in connected paintings: in the remainder, we use painting to
indicate a connected painting.

3 Characterizing Colored Grids with a Painting

In this section we show how to test whether a 2-colored grid admits a painting
and how to find a painting if one exists. As all completely red, blue, and white
panels are fixed, finding a painting reduces to finding partitions of purple cells
that ensure that the resulting red and blue polygon are connected. We show
that this connectivity is of key importance: if we can find suitable connections
though the purple regions, then we can also create a partition that results in a
valid panel for each cell in the purple regions.

We capture the connectivity options for the red and blue polygon using two
embedded graphs, Gr and Gb. We construct these graphs in three steps:

1. Connect red (blue) regions that are adjacent along a purple region’s boundary.
2. Remove holes from the purple regions by inserting connections (Sect. 3.3).
3. Construct Gr and Gb using a gadget for purple regions (Sects. 3.1 and 3.2).

For the first step, observe that consecutive (not necessarily distinct) adjacent
regions of the same color can always be safely connected via the purple region’s
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Fig. 2. Safe connections
between adjacent same-color
regions. (Color figure online)

Fig. 3. 2-colored grid with 4 regions around each
purple region and corresponding graphs Gr and
Gb. (Color figure online)

boundary without restricting the connectivity options for the other color (see
Fig. 2). After the first two steps, we represent the remaining red (blue) regions
as vertices in Gr (Gb). Edges in Gr and Gb represent connection options through
purple regions; intersections indicate a choice to connect either blue or red regions
through (part of) a purple region. The gadget for purple regions with many
adjacent red and blue regions also requires some additional vertices in these
graphs. We prove that these graphs admit a simple characterization of 2-colored
grids that admit a painting, as captured in the theorem below.

Theorem 1. A 2-colored grid Γ admits a painting if and only if the correspond-
ing graphs Gr and Gb are each other’s exact duals: there is exactly one blue vertex
in every red face and there is exactly one red vertex in every blue face.

For explanatory reasons we start with the simplest case: purple regions with
at most four neighbors and without holes (Sect. 3.1). Subsequently, we alleviate
the assumption on the number of neighbors (Sect. 3.2) and permit holes in the
purple regions, by showing how to perform Step 2 (Sect. 3.3).

3.1 Simple Purple Regions

We assume that Step 1 has been performed and a purple region has no holes
and at most four adjacent regions. The adjacent red and blue regions of a purple
region P form an ordered cyclic list as they appear along the boundary of P and
alternate in color (due to Step 1). Let κ(P ) denote the length of this list for P .
κ is even due to color alternation, and by assumption here κ(P ) ≤ 4. There can
be duplicates in this list as the same red or blue region can touch P multiple
times.

Every purple region with κ(P ) = 2 can be painted by creating a spanning
tree on the centers of the panels of P in one color and connecting it to the corre-
sponding region. The rest of the panels is colored in the other color. We assume
these are handled; what remains is to deal with the regions with κ(P ) = 4.

For a purple region P with κ(P ) = 4, we create a red edge in Gr and a blue
edge in Gb that intersect: the red edge connects the red vertices corresponding to
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the adjacent red regions; the blue edge connects the corresponding blue vertices.
There may be multiple edges between two vertices (see Fig. 3). If the same red
or blue region touches the purple region twice, the edge is a self-loop. Every
red or blue edge intersects exactly one blue or red edge respectively, and Gr

and Gb are plane by construction. Using the following lemma we prove the
exact characterization of graphs Gr and Gb of a 2-colored grid Γ that admits a
painting.

Lemma 1 ([9,20]). Let G be a plane graph, G∗ its dual and T a spanning tree
of G. Then T ∗ = {e∗ | e �∈ T} is a spanning tree of G∗.

Lemma 2. A 2-colored grid Γ in which each purple region P has no holes and
κ(P ) ≤ 4, admits a painting if and only if the corresponding graphs Gr and Gb

are each other’s exact duals.

Proof (sketch). We prove that if Γ admits a painting then graphs Gr and Gb are
each other’s duals using a counting argument. We count the number of edges
needed to connect all red and blue regions, and use Euler’s formula to show the
number of red faces must be equal to the number of blue vertices, and vice versa.
The other direction follows from Lemma 1. Having two dual spanning trees (e.g.,
Fig. 3), simply draw the two spanning trees and for any cell not yet having a
blue (red) piece add a crossing-free connection to the blue (red) polygon. ��

3.2 Spiderweb Gadgets

Let us now extend the result in the previous section, by showing how to include
purple regions with more than four adjacent regions. For every purple region P
with κ(P ) > 4 we construct a spiderweb gadget and insert it into the graphs Gr

and Gb, such that an argument similar to Lemma 2 can be applied.
A spiderweb gadget W of P with κ(P )/2 = k red and k blue alternating

adjacent regions consists of 	k/2
 + 1 levels, labeled 0 (outermost) to 	k/2

(innermost), see Fig. 4. Each level, except 0 and 	k/2
, is a cycle of k vertices.
The level 0 has k (blue) vertices without any edges between them, and the
innermost level 	k/2
 consists of only a single vertex. The vertices of even levels
are blue and labeled with even numbers from 0 to 2k − 2 clockwise. The vertices
of odd levels are red and labeled with odd numbers 1 to 2k − 1 clockwise.

Each vertex of level � with 2 ≤ � < 	k/2
 is connected to the vertex with
the same label on level � − 2. The single vertex of level 	k/2
 is connected to all
the vertices of level 	k/2
 − 2. This gives us 2k paths starting from levels 0 and
1 to the two innermost levels. We call these paths spokes, and refer to them by
the label of the corresponding vertices. We embed the two resulting connected
components in such a way that they are each other’s dual, by making sure that
we get a proper clockwise numbering on the vertices of the two outermost levels
(see Fig. 4). The vertices on levels 0 and 1 represent respectively the blue and red
regions around the purple region P and respect the adjacency order around P .

If a blue (or red) region touches P multiple times, then the corresponding
vertices on level 0 (or 1) map to the same region and are in fact one and the same
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Fig. 4. Spiderweb gadget for k = 6:
three blue levels with indices 0, 2, 4,
and two red levels with indices 1, 3.
(Color figure online)

Fig. 5. Topology of the connections in a
purple region and the corresponding bridg-
ing paths through a spiderweb gadget.
(Color figure online)

vertex in Gb (or Gr). All edges connected to this vertex are consistent with the
topology of the nested neighboring regions of P ; they intersect the same edges
as they would when they were represented by multiple vertices.

To prove that all possible connections in P , which can occur in a painting
Π, can be replicated in a spiderweb gadget W , we define bridging paths: let u
and v be two vertices on level 0 in W that represent two blue regions that are
connected by a painting Π through P . Assume that the clockwise distance from
u to v is not greater than k, that is, if u has label x then v has label (x + 2i)
mod 2k for some 1 ≤ i ≤ 	k/2
. To connect u and v with a bridging path, we
start from u, go to level 2	(i + 1)/2
 along the spoke x, take a shortest path
within the level 2	(i + 1)/2
 from the vertex with label x to the vertex with
label (x + 2i) mod 2k, and move along the spoke (x + 2i) mod 2k to vertex v.
If there are two possible shortest paths, we take the clockwise path.

The same kind of path can be constructed for a pair of red vertices, but
starting from level 1, going to level 2	i/2
 + 1, and moving back to level 1. We
now show that connecting different blue and red regions using bridging paths
within the spiderweb gadgets results in blue trees and red trees, such that no
pair of a blue and a red edge intersect (see Fig. 5 for an example).

By performing a case analysis on the possible red and blue pairs of adjacent
regions to be connected, we can prove that the following lemma holds.

Lemma 3. Consider a painting Π in which two blue and two red regions, adja-
cent to a purple region P , are connected through P . The corresponding vertices
in the spiderweb gadget W of P can be connected by non-intersecting bridging
paths.

With spiderweb gadgets and the above lemma, we now strengthen Lemma 2
to the following lemma, without a condition on κ, and prove it in a similar way.

Lemma 4. A 2-colored grid Γ in which each purple region has no holes admits
a painting if and only if the corresponding Gr and Gb are each other’s exact
duals.
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Fig. 6. An annulus-type purple
region with adjacent blue and red
regions, both inside and outside.
(Color figure online)

Fig. 7. By adding edges (vin, yin) and
(uout, xout) we reconnect the disconnected
subpolygons formed be removing cross-
annulus connections γv and γx. (Color
figure online)

3.3 Purple Regions with Holes

We may also have purple regions with holes (see Fig. 6). We show that the
number of holes can be reduced without affecting the solvability. For simplic-
ity of explanation we assume a region with a single hole (an annulus); regions
with more holes can be reduced by considering only connections to the outer
boundary.

Let P be a purple annulus. Any painting subdivides P into a number of
colored simple components. Each component of color c connects one or more
regions of color c on the boundary of P . The existence of a painting is defined
only by the connectivity structure of these components. The connectivity of a
component can be represented (transitively) using a set of non-intersecting sim-
ple paths (connections) each connecting two regions on the boundary. Let a
cross-annulus connection γx be a connection between a region xin on the inside
of the annulus and a region xout on the outside of the annulus. A (connectivity)
structure is a maximal set of (pairwise non-intersecting) connections in P that
can be extended to a valid painting. Let CS be the set of cross-annulus connec-
tions in a given structure S. We assume the annulus is not degenerate, so red
and blue regions exist both inside and outside the annulus.

Lemma 5. If a structure S exists with two adjacent cross-annulus connections
γx and γy of the same color, possibly separated by non-crossing connections, then
there also exists a structure S′ where CS′ = CS \ {γy}.

Lemma 6. If there exists a structure S with |CS | > 3 and all cross-annulus
connections are alternating in color, then there also exists a structure S′ with
|CS | − 2 cross-annulus connections.

Proof. Let γu, γv, γx, and γy be four consecutive cross-annulus connections.
W.l.o.g., assume γu and γx are red and γv and γy are blue. We remove γv and
γx from the structure separating both the red and blue into two components.
For both colors one component is still connected to the remaining cross-annulus
connection γu, respectively γy. The disconnected components cannot both be
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Fig. 8. (a) Initial configuration with several connections covering rout. (b) Rerouting
the blue connections, introducing γz, and rerouting the intersecting red connection
leaves only one intersecting (blue) connection. (c) As the blue disconnected component
cannot be covered by the new red connection, we can always connect it back to γx.
(Color figure online)

on the outside (inside) of the annulus. If so, the connection γu to γx must be
connected through xin, and γv to γy through vin. However, as there is no cross-
annulus connection between γu and γy, any connection from γu to xin separates
γy and vin. Hence, both connections cannot exist at the same time. The red and
blue disconnected components are thus on different sides of the annulus and we
connect them to γu respectively γy without mutually interfering (see Fig. 7). ��
Corollary 1. If a structure exists, then a structure also exists that has exactly
one red and one blue connection across each annulus.

Lemma 7. If a structure exists, then there also exists a structure with exactly
one red and one blue cross-annulus connection starting from any two regions on
the inner annulus and connecting to any two regions on the outer annulus.

Proof. Let an interval be a maximal arc of the same color on the boundary.
By Corollary 1 we know there exists a structure with exactly one red and one
blue connection across the annulus. Let γx be the blue cross-annulus connection
and γy the red cross-annulus connection. We show that each of the endpoints
of the cross-annulus connection can freely be moved. W.l.o.g., assume that γx

is not counter-clockwise adjacent to γy on the outside of the annulus. Let kout,
lout, and mout be three intervals in clockwise order on the outer boundary of the
annulus. We say a clockwise connection through the annulus from kout to mout

covers lout.
Let bout be the blue interval that is counter-clockwise adjacent to yout and

rout the red interval that is counter-clockwise adjacent to bout. Interval bout may
have several incoming blue connections that cover rout (see Fig. 8(a)). We can
rewire the blue connections inside the annulus to connect the blue intervals in
sorted order around the annulus, resulting in only one blue connection γb that
covers rout. Similarly we can also rewire the red connections covering rout, and
ending at yout, to ensure only one red connection γr covers rout.

Remove γy and insert a new red cross-annulus connection γz = (yin, rout).
The connection γz can only intersect γr and γb. Removing γr results in two red
components, one of which contains γz. Assume w.l.o.g. that yout is in the same
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connected component as γz. As γr intersected γz, the disconnected component
can be connected to γz while only intersecting γb (see Fig. 8(b)).

Removing γb results in two blue components, one of which contains γx. We
prove that bout must be part of the blue component not containing γx. Assume to
the contrary that bout is still connected to γx. Interval rout must be connected to
yout outside of the annulus as there was only one red cross-annulus connection
and γb blocked any connection through the inside of the annulus. Similarly,
interval bout must have been connected through the outside of the annulus, as it
is separated from any other region inside the annulus by γy and γz. However, they
cannot both be connected through the outside of the annulus, as the connection
rout to yout separates bout and xout on the outside of the annulus. Contradiction.

Therefore, we can safely reconnect the disconnected blue component through
the annulus to γx (see Fig. 8(c)). Repeatedly moving the end-point of one of the
cross-annulus connections allows the creation of any configuration of the two red
and blue cross-annulus connections without invalidating the structure. ��

Lemma 7 implies that we can cut the annulus open to reduce the number of
holes of a purple region by one without changing the solvability of the problem.
Together with Lemma 4, this then implies Theorem 1.

4 Optimizing Panels

Fig. 9. Panels with complex-
ity 3 and 5 respectively. (Color
figure online)

As shown, not all colored grids admit a paint-
ing. Here we investigate the design of the panels
themselves, assuming that some painting is pos-
sible. To this end, we define the complexity of
a panel as the number of pieces of maximal red
and blue areas in the panel, see Fig. 9. The com-
plexity of a painting is the maximal complexity
of any of its panels. A t-panel (t-painting) has
complexity t.

Assuming some painting exists, we prove in this section that a 5-painting
exists in general and that even a 2-painting exists if there are no white cells.

4.1 Ensuring a 5-Painting

We prove here that a 5-painting can always be realized. To this end, we show
that a valid painting for a colored grid can be redrawn to include no more than
three colored intervals along each side of all panels.

Lemma 8. If a 2-colored grid admits a painting, then it admits a painting where
each panel π has at most 3 intervals of alternating red and blue along each side.

Proof (sketch). Assume that a panel π has at least 4 intervals of alternating
red and blue on the left-side of π. As the painting is valid, both blue (/red)
intervals are connected in the painting. For each interval we identify whether
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Fig. 10. Reducing the number of intervals along a side of
panel π, where there are at least four. (b) The two middle
directions cannot be the same, as we cannot connect them
with nonintersecting paths. (c) Shortcutting inside π reduces
the number of intervals while maintaining a painting. (Color
figure online)

Fig. 11. A panel with
six pieces can always
be reduced to have
five, using either dot-
ted line. (Color figure
online)

the path exiting or entering π connects to the other interval of the same color
(see Fig. 10(a)). The red and blue path cannot leave or exit the border of π in
the same direction for the middle two intervals (see Fig. 10(b)). To reduce the
number of intervals, we recolor the interval by shortcutting both the blue and
the red piece inside π (see Fig. 10(c)). ��
Theorem 2. If a partially 2-colored grid admits a painting, then it admits a
5-painting.

Proof. By Lemma 8 there are at most three alternatingly colored intervals along
each side of π. If a red and blue interval meet in a corner, we extend one in π around
the corner to get four intervals and use Lemma 8 to reduce it back to at most three.
If we have more than five pieces, a piece that has only one interval in π can be
removed while maintaining a painting. Each remaining piece connects at least two
intervals: with k intervals, the number of pieces is at most 	k/2
. A 6-panel thus
requires 12 intervals: four equal-color (red) corners and a middle interval (blue)
along each side. This enforces two pieces between the blue intervals, and one in
each corner. However, we can now reduce the number of pieces to five, connecting
either two blue pieces or two red corners (Fig. 11). ��

This bound is tight as a 5-panel may be required when the grid includes
white cells (Fig. 12(a)). A 5-panel with at least two pieces of each color is never
required—though such a 4-panel may be necessary (Fig. 12(b)). The above proof
implies that there is only one option to create such a 5-panel: it has only two
ways to connect the two blue pieces; both can be simplified to a 4-panel (Fig. 13).

4.2 Ensuring a 2-Painting

We show that a fully 2-colored grid (rectangular and without white cells) even
admits a 2-painting, provided it admits any painting. As an intermediate step,
we first prove that a painting exists that uses only one blue piece in any panel.

Lemma 9. If a fully 2-colored grid admits a painting, then it admits a painting
in which each panel has at most one blue piece.
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Fig. 12. Examples requiring complex panels. (a) A colored grid requiring a 5-panel.
(b) A colored grid requiring a 4-panel with two pieces of both colors in the same cell.
(Color figure online)

Fig. 13. There are two configurations for a 5-panel where both colors have at least two
pieces. Both possible configuration can be simplified to a 4-panel. (Color figure online)

Proof (sketch). Since the grid admits a painting, we show how to modify the
painting of each purple region P to ensure that the lemma holds. We first create
a blue spanning forest in the panels of P that connects the panel-centers of
adjacent panels. This ensures that each panel has exactly one blue piece inside,
but may result in a disconnected blue polygon. However, since we know that a
painting exists and the current solution maps to some forest in Gb, Lemma 1
implies that its dual Gr has a cycle around some tree in the forest. Hence, we
can add connections between unconnected subpolygons to create a single blue
polygon again, without disconnecting the red polygon. ��

The above construction relies on the alternation of the blue and red intervals
along the boundary of P . As there are no white cells we can guarantee this
alternating pattern. Indeed, the higher complexity with white cells is caused by
long connections along a purple region’s boundary that are needed to achieve
this alternating pattern for a partially colored grid (e.g., Fig. 12).

Theorem 3. If a fully 2-colored grid admits a painting, then it admits a 2-
painting.

Proof (sketch). Since the fully 2-colored grid admits a painting, Lemma 9 implies
that there is a painting Π where the panel for every purple cell contains only a
single blue piece. For any purple cell with more than one red piece, we remove
red pieces that only connect to one neighboring panel and recolor red corners
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Fig. 14. Reducing panel complexity when there are two red corners along the same
panel side. (a) The corners are connected via adjacent (or the same) sides of the panel:
connect r1 and r2, and recolor r3 to blue. (b) The corners are connected via opposite
sides: recolor r1 to blue and connect r3 and r4 as well as b1 and b2. (Color figure online)

Fig. 15. Two diagonally positioned red corners. The complexity of the panel can be
reduced by introducing a red L-shape that connects all the red. (a) Reducing complexity
if either p1 or p2 was blue. (b) Reducing complexity if both p1 and p2 were red. (Color
figure online)

to blue if the other three cells incident to that corner have a red corner as well.
Now, the pattern of the panel matches one of the following four cases.

1. There are two red corners r1 and r2 on the same side of the panel. The
connecting path exits the current panel via the same side and enters either
on the same or adjacent side (see Fig. 14(a)).

2. There are two red corners r1 and r2 on the same side of the panel. The
connecting path exits the panel via opposite sides of the panel (see Fig. 14(b)).
The blue piece connects only downwards in the panel below.

3. There are two red corners r1 and r2 that do not share a common side of
the panel. In this case the other corners are blue, otherwise one of the two
previous cases applies (see Fig. 15(a)). Furthermore, either p1 or p2 is blue.

4. There are two red corners r1 and r2 that do not share a common side of the
panel (see Fig. 15(b)). Furthermore, both p1 and p2 are red.

We design a reduction rule for each case, as sketched in Figs. 14 and 15.
Repeated application of the reduction rules, interlaced with the reduction of the
number of red pieces in a panel, results in a 2-painting. ��

5 Conclusion

We took the first steps towards investigating a disjoint-polygons representa-
tion for visualizing set memberships (hypergraphs). We investigated the 2-color
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version in which each element is positioned as a cell in a (unit-)grid. We showed
how to test whether a disjoint-polygons representation is possible for a given 2-
colored grid. Moreover, we proved that if such a representation is possible, then
we can also bound the complexity of the corresponding “panels” (the coloring
of a single cell). Each panel requires at most five colored pieces, and even only
two pieces are sufficient when no white cells are present in the grid.

There are myriad options for further exploration. As not all grids admit
a painting, we could study minimizing the number of polygons of the same
color. We have not touched upon variants with more colors: does our approach
readily generalize? However, considering the restrictions already in the studied
2-color variant, it seems likely that many practical instances do not admit a
painting. If we allow rearranging elements, the 2-color variant becomes trivial,
but is particularly interesting for multiple colors. Finally, we may consider the
situation where some cells have no assigned set of colors but may be painted
using any subset of the colors. Given enough such cells, the disjoint-polygons
encoding can then represent more than Zykov-planar hypergraphs but cannot
represent all planar supports.

Acknowledgments. The authors would like to thank Jason Dykes for fruitful discus-
sions at an early stage of this research.
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