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Abstract. We study the NodeTrix planarity testing problem for flat
clustered graphs when the maximum size of each cluster is bounded by
a constant k. We consider both the case when the sides of the matrices
to which the edges are incident are fixed and the case when they can be
arbitrarily chosen. We show that NodeTrix planarity testing with fixed

sides can be solved in O(k3k+ 3
2 n3) time for every flat clustered graph

that can be reduced to a partial 2-tree by collapsing its clusters into
single vertices. In the general case, NodeTrix planarity testing with fixed
sides can be solved in O(n3) time for k = 2, but it is NP-complete for
any k ≥ 3. NodeTrix planarity testing remains NP-complete also in the
free side model when k > 4.

1 Introduction

Motivated by the need of visually exploring non-planar graphs, hybrid planarity
is one of the emerging topics in graph drawing (see, e.g., [1–3,9]). A hybrid planar
drawing of a non-planar graph suitably represents in restricted geometric regions
those dense subgraphs for which a classical node-link representation paradigm
would not be visually effective. These regions are connected by edges that do
not cross each other. Different representation paradigms for the dense subgraphs
give rise to different types of hybrid planar drawings.

Angelini et al. [1] consider hybrid planar drawings where dense portions of the
graph are represented as intersection graphs of sets of rectangles and study the
complexity of testing whether a non-planar graph admits such a representation.
In the context of social network analysis, Henry et al. [9] introduce NodeTrix
representations, where the dense subgraphs are represented as adjacency matri-
ces. Batagelj et al. [2] study the question of minimizing the size of the matrices
in a NodeTrix representation of a graph while guaranteeing the planarity of the
edges that connect different matrices. While Batagelj et al. can choose the sub-
graphs to be represented as matrices, Da Lozzo et al. [3] consider the problem
of testing whether a flat clustered graph (i.e. a graph with clusters and no sub-
clusters) admits a NodeTrix planar representation. In the paper of Da Lozzo
et al. each cluster must be represented by a different adjacency matrix and the
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inter-cluster edges are represented as non-intersecting simple Jordan arcs. They
prove that NodeTrix planarity testing for flat clustered graphs is NP-hard even
in the constrained case where for each matrix it is specified which inter-cluster
edges must be incident on the top, or on the left, or on the bottom, or on the
right side.

Motivated by these hardness results, in this paper we study whether NodeTrix
planarity testing can be efficiently solved when the size of the clusters is not
“too big”. More precisely, we consider flat clustered graphs whose clusters have
size bounded by a fixed parameter k and we want to understand whether the
NodeTrix planarity testing problem is fixed parameter tractable, i.e. it can be
solved in time f(k)T (n), where T (n) is a polynomial in n and f(k) is a function
that depends only on k. Our main results can be listed as follows:

– We describe an O(k3k+ 3
2 ·n3)-time algorithm to test NodeTrix planarity with

fixed sides for flat clustered graphs that are partial 2-trees. Informally, a flat
clustered graph G is a partial 2-tree if the graph obtained by collapsing every
cluster of G into a single vertex is a partial 2-tree.

– When the flat clustered graph is not a partial 2-tree, NodeTrix planarity
testing with fixed sides can still be solved in O(n3) time for k = 2, but it
becomes NP-complete for any larger value of k.

– Finally, we extend the above hardness result to the free sides model and show
that NodeTrix planarity testing remains NP-complete when the maximum
cluster dimension is larger than four. This is done by proving that NAE3SAT
is NP-complete even for triconnected Boolean formulas, which may be a result
of independent interest.

Our polynomial-time solution solves a special type of the planarity testing
problem where the order of the edges around each vertex is suitably constrained
to take into account the fact that a vertex of a matrix M has four copies along
the four sides of M . It may be worth recalling that Gutwenger et al. [7] have
considered an apparently similar problem. Namely, they studied planarity testing
where the order of the edges around the vertices may not be arbitrarily permuted.
Unfortunately, not only our problem does not fall in any of the cases addressed
by Gutwenger et al., but it does not seem solvable by introducing a gadget
of polynomial size that models the embedding constraints at each vertex. This
characteristic associates NodeTrix planarity testing with other known variants
of planarity testing, including clustered planarity, where the use of gadgets of
polynomial size has been so far an elusive goal.

The rest of the paper is organized as follows. Preliminary definitions are
in Sect. 2. Sections 3 and 4 describe a polynomial time algorithm for clustered
2-trees with bounded cluster-size. In Sect. 5 we show that for general flat clus-
tered graphs and fixed sides NodeTrix planarity testing can be solved in poly-
nomial time for k = 2 but it is NP-complete for k ≥ 3. In the same section we
extend this completeness result to NodeTrix planarity testing of flat clustered
graphs with free sides. Finally open problems can be found in Sect. 6. For reasons
of space, some proofs are sketched or omitted and can be found in [6].
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2 Preliminaries

We assume familiarity with basic definitions of graph theory and graph drawing
and in particular with the notions of block-cut-vertex tree and of SPQR-tree
(see, e.g., [4,8]).

A flat clustered graph G = (V,E, C) is a simple graph with vertex set V ,
edge set E, and a partition C of V into sets V1, . . . , Vh, called clusters. An edge
(u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster edge if i = j and it is an
inter-cluster edge if i �= j.

A NodeTrix representation of a flat clustered graph G is such that: (i) Each
cluster Vi with |Vi| = 1 (called trivial cluster) is represented as a distinct point
in the plane. (ii) Each cluster Vi with |Vi| > 1 (called non-trivial cluster) is
represented by a symmetric adjacency matrix Mi (with |Vi| rows and columns),
where Mi is drawn in the plane so that its boundary is a square with sides
parallel to the coordinate axes. (iii) There is no intersection between two distinct
matrices or between a point representing a vertex and a matrix. (iv) Each intra-
cluster edge of a cluster Vi is represented by the adjacency matrix Mi. (v) Each
inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is represented by a simple
Jordan arc connecting a point on the boundary of matrix Mi with a point on
the boundary of matrix Mj , where the point on Mi (on Mj) belongs to the
column or to the row of Mi (resp. of Mj) associated with u (resp. with v).

A NodeTrix representation of a flat clustered graph G is planar if there is
no intersection between any two inter-cluster edges (except possibly at common
end-points) nor an intersection between an inter-cluster edge and a matrix. A flat
clustered graph is NodeTrix planar if it admits a planar NodeTrix representation.
Figure 1(a) is an example of a NodeTrix planar representation.

A formal definition of the problem investigated in the paper is as follows. Let
G = (V,E, C) be a flat clustered graph with n vertices and let k be the maximum
cardinality of a cluster in C. Clustered graph G is NodeTrix planar with fixed
sides if it has a NodeTrix planar representation where for each inter-cluster
edge, the sides of matrices it attaches to is specified as part of the input; G is
NodeTrix planar with free sides if the sides of the matrices to which inter-cluster
edges attach can be arbitrarily chosen.

Let Mi be the matrix representing cluster Vi in a NodeTrix representation
of G; let v be a vertex of Vi and let (u, v) be an inter-cluster edge. Edge (u, v)
can intersect the boundary of Mi in four points pv,t, pv,b, pv,l, and pv,r since the
row and column that represent v in Mi intersect the four sides of the boundary
of Mi. We call such points the top copy, bottom copy, left copy, and right copy
of v in Mi, respectively.

A side assignment for Vi ∈ C specifies for each inter-cluster edge whether the
edge must attach to the matrix Mi representing Vi in its top, left, right, or bottom
side. More precisely, a side assignment is a mapping φi:

⋃
j �=i Ei,j → {t,b, l,r},

where Ei,j is the set of inter-cluster edges between the clusters Vi and Vj (Vi

and Vj are adjacent if Ei,j �= ∅). A side assignment for C is a set Φ of side
assignments for each Vi ∈ C.



482 E. Di Giacomo et al.

We denote as G = (V,E, C, Φ) a flat clustered graph G = (V,E, C) with a
given side assignment Φ = {φ1, φ2, . . . , φ|C|}. Let Γ be a NodeTrix representation
of G such that, for every inter-cluster edge e = (u, v) ∈ E with u ∈ Vi and v ∈ Vj ,
the incidence points of e with the matrices Mi and Mj representing Vi and Vj in
Γ are exactly the points pu,φi(e) and pv,φj(e), respectively. We call Γ a NodeTrix
representation of G consistent with Φ. We say that G = (V,E, C, Φ) is NodeTrix
planar if it admits a NodeTrix planar representation consistent with Φ.

An inter-cluster edge is heavy if both its end-vertices belong to non-trivial
clusters. It is light otherwise. A flat clustered graph is light if every inter-
cluster edge is light. A 1-subdivision of a heavy edge e = (u, v) of a flat clus-
tered graph G = (V,E, C) replaces e with a path u0 = u, u1, u2 = v and
defines a new flat clustered graph G′ = (V ′, E′, C′), where V ′ = V ∪ {u1},
E′ = E/e ∪ {(u0, u1), (u1, u2)}, and C′ = C ∪ {u1}. The light reduction of G
is the flat clustered graph G′ obtained by performing a 1-subdivision of every
heavy inter-cluster edge of G. A consequence of Theorem 1 in [5] about the edge
density of NodeTrix planar graphs, is that the light reduction G′ of a NodeTrix
planar flat clustered graph G has O(|V |) vertices and O(|V |) inter-cluster edges.

Property 1. A flat clustered graph G is NodeTrix planar if and only if its light
reduction G′ is NodeTrix planar.

Based on Property 1, in the remainder we shall assume that flat clustered
graphs are always light and we call them clustered graphs, for short.

The frame of a clustered graph G = (V,E, C) is the graph F obtained by
collapsing each cluster Vi ∈ C, with |Vi| > 1, into a single vertex ci of F , called
the representative vertex of Vi in F . Let ci and cj be the two representative
vertices of Vi and Vj in F , respectively. For every inter-cluster edge connecting
a vertex of Vi to a vertex of Vj in G there is an edge in F connecting ci and cj .
Observe that the frame graph F of G is in general a multigraph; however, F is
simple when G is light.

Since the NodeTrix planarity of a clustered graph implies the planarity of
its frame graph, we will test NodeTrix planarity only on those clustered graphs
that have a planar frame.

A 2-tree is a graph recursively defined as follows: (i) an edge is a 2-tree;
(ii) the graph obtained by adding a vertex v to a 2-tree G and by connecting v
to two adjacent vertices of G is a 2-tree. A (planar) graph is a partial 2-tree if it
is a subgraph of a (planar) 2-tree. A biconnected partial 2-tree is a series-parallel
graph. A clustered graph is a partial 2-tree if its frame is a partial 2-tree. We
will sometimes talk about series-parallel clustered graphs when their frames are
series parallel.

3 NodeTrix Representations and Wheel Reductions

The polynomial-time algorithms described in Sects. 4 and 5 are based on decom-
posing the planar frame F of a clustered graph G = (V,E, C, Φ) into its bicon-
nected components and storing them into a block-cut-vertex tree. We process
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each block of F by using an SPQR decomposition tree that is rooted at a ref-
erence edge and visited from the leaves to the root. For each visited node μ of
the decomposition tree of a block of F we test whether the subgraph of G whose
frame is the pertinent graph of μ satisfies the planar constraints imposed by the
side assignment on the inter-cluster edges. A key ingredient to efficiently perform
the test at μ is the notion of wheel replacement.

Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ and
let Vi ∈ C be a cluster with k > 1 vertices. Vi admits k! permutations of
its vertices and we associate a suitable graph to each such permutation. Let
πi = v0, v1, . . . , vk−1 be a permutation of the vertices of Vi. The wheel of Vi con-
sistent with πi is the wheel graph consisting of a vertex v of degree 4k adjacent
to the vertices of an oriented cycle v0,t, v1,t, . . . , vk−1,t, v0,r, v1,r, . . . , vk−1,r,
vk−1,b, vk−2,b, . . . , v0,b, vk−1,l, vk−2,l, . . . , v0,l where each edge of the cycle is ori-
ented forward. Intuitively, this oriented cycle will be embedded clockwise to
encode the constraints induced by a matrix Mi representing Vi when its left-to-
right order of columns is πi. More precisely, a wheel replacement of cluster Vi

consistent with πi is the clustered graph obtained as follows: (i) remove Vi and
all the inter-cluster edges incident to Vi; (ii) insert the wheel Wi of Vi consistent
with πi; and (iii) for each inter-cluster edge e = (u, vj), with vj ∈ Vi, insert edge
(u, vj,φi(e)) incident to Wi. We call edge (u, vj,φi(e)) the image of edge e = (u, vj).

Let G = (V,E, C, Φ,Π) be a clustered graph with side assignment Φ where
Π is a set of permutations {π1, π2, . . . , π|C|}, one for each cluster Vi (with i =
1, . . . , |C|). We call Π the permutation assignment of G and we say that G
is NodeTrix planar with side assignment Φ and permutation assignment Π if
G admits a NodeTrix planar representation with side assignment Φ where for
each matrix Mi the permutation of its columns is πi. The wheel reduction of G
consistent with Π is the graph obtained by performing a wheel replacement of
Vi ∈ C consistent with πi for each i = 1, . . . , |C|.
Theorem 1. Let G = (V,E, C, Φ,Π) be a clustered graph with side assignment
Φ and permutation assignment Π. G is NodeTrix planar if and only if the planar
wheel reduction of G admits a planar embedding where the external oriented cycle
of each wheel Wi is embedded clockwise.

Figure 1(a) and (b) show respectively a NodeTrix planar representation of
a clustered graph G and the corresponding wheel reduction with its planar
embedding.

Based on Theorem 1, we can test the graph G = (V,E, C, Φ) for NodeTrix
planarity by exploring the space of the possible permutation sets Π and corre-
sponding wheel reductions in search of a NodeTrix planar G = (V,E, C, Φ,Π).
Note that, if the maximum size of a cluster is given as a parameter k, every
cluster Vi can be replaced by k! wheel graphs, one for each possible permutation
of the vertices of Vi. In order to test planarity, for any such wheel replacement
Wi, the cyclic order of the inter-cluster edges incident to the same vertex of Wi

can be arbitrarily permuted. While each wheel reduction yields an instance of
constrained planarity testing that can be solved with the linear-time algorithm



484 E. Di Giacomo et al.

Fig. 1. (a) A NodeTrix planar representation of a clustered graph. (b) The planar
embedding of the corresponding wheel reduction. (c) Labeling of the vertices of Wtμ ;
the complete internal and external sequences are highlighted.

described in [7], a brute-force approach that repeats this algorithm on each pos-
sible wheel reduction may lead to testing planarity on |C|k! different instances.
Instead, for each visited node μ of the decomposition tree T we compute a suc-
cinct description of the possible NodeTrix planar representations of the subgraph
Gμ of G represented by the subtree of T rooted at μ. This is done by storing
for the poles of μ those pairs of wheel graphs that are compatible with a Node-
Trix planar representation of Gμ. How to efficiently compute such a succinct
description will be the subject of the next sections.

4 Testing NodeTrix Planarity for Partial 2-Trees

In this section we prove that NodeTrix planarity testing with fixed sides can
be solved in polynomial time for a clustered graph G = (V,E, C, Φ) when the
maximum size of any cluster of C is bounded by a constant and the frame graph
is a partial 2-tree. This contrasts with the NP-hardness of NodeTrix planarity
testing with fixed sides proved in [3] in the case where the size of the clusters is
unbounded.

We first study the case of a clustered graph whose frame graph is a series-
parallel graph, i.e., it is biconnected and its SPQR decomposition tree only has
Q-, P-, and S-nodes. We then consider the case of partial 2-trees, i.e., graphs
whose biconnected components are series-parallel.

4.1 Series-Parallel Frame Graphs

In this section we prove that NodeTrix planarity testing with fixed sides can
be solved in O(k3k+ 3

2 · n2) time for clustered graphs whose frame graphs are
series-parallel and have cluster size at most k.
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Let G = (V,E, C, Φ) be a series-parallel clustered graph with side assignment
Φ and let F be its frame graph. Let T be the SPQ decomposition tree of F
rooted at any Q-node. To simplify the description and without loss of generality,
we assume that every S-node of T has exactly two children. Let μ be a node of
T , and let sμ, tμ be the poles of μ. Consider the pertinent graph Fμ represented
by the subtree of T rooted at μ and let vμ be a pole of μ (vμ ∈ {sμ, tμ}). Pole
vμ in the frame graph F may correspond to a non-trivial cluster Vi of C. In this
case, we call vμ a non-trivial pole of μ and cluster Vi the pertinent cluster of vμ.

The edges of Fμ incident to vμ are the intra-component edges of vμ. The
other edges of F incident to vμ are the extra-component edges of vμ. Each intra-
component (extra-component) edge of vμ corresponds to an inter-cluster edge e′

of G incident to one vertex of the pertinent cluster Vμ of vμ. We call e′ an intra-
component edge (extra-component edge) of Vμ. We associate k! wheel graphs
to each non-trivial pole vμ of μ. Each of them is a wheel replacement of the
pertinent cluster of vμ, consistent with one of the k! permutations of its vertices.

Let vμ be a non-trivial pole of μ, let Vμ be the pertinent cluster of vμ, let πμ

be a permutation of the vertices of Vμ, and let Wμ be the wheel replacement of
Vμ consistent with πμ. Every edge e incident to Wμ such that e is the image of
an inter-cluster edge e′ of G is labeled either int or ext, depending on whether
e′ is an intra-component or an extra-component edge of Vμ. A vertex w of the
external cycle of Wμ is assigned one label of the set {void, int, ext, int-ext}
as follows. Vertex w is labeled void if no edge incident to w is the image of
an inter-cluster edge. Vertex w is labeled int (resp. ext) if we have a label
int (resp. ext) on every edge e incident to w such that e is the image of an
inter-cluster edge. Otherwise, vertex w is labeled int-ext. See Fig. 1(c) for an
example concerning the wheel Wtμ

of Fig. 1(b); the dashed curve of Fig. 1(b)
shows the subgraph of the wheel reduction corresponding to Fμ.

A clockwise sequence v0, v1, . . . , vj of vertices of the external cycle of Wμ is
an external sequence of pole vμ consistent with πμ if v0 and vj are labeled either
ext or int-ext and all the other vertices of the sequence are labeled either
void or ext. An external clockwise sequence of pole vμ is complete if it contains
all the vertices of Wμ that are labeled ext and int-ext. Note that a complete
external sequence may contain many void vertices but no int vertex. Internal
and complete internal sequences of pole vμ are defined analogously. Observe that
a complete internal sequence and a complete external sequence of vμ may not
exist when vertices labeled int and vertices labeled ext alternate more than
twice when traversing clockwise the external cycle of Wμ, or when three vertices
are labeled int-ext. A special case is when Wμ has exactly two vertices w1 and
w2 labeled int-ext and all other vertices are void. In this case, the clockwise
sequence from w1 to w2 and the clockwise sequence from w2 to w1 are both
complete internal and complete external sequences.

In order to test G = (V,E, C, Φ) for NodeTrix planarity, we implicitly take
into account all possible permutation assignments Π by considering, for each
non-trivial pole wμ of each node μ of T , its k! possible wheels and by computing
their complete internal and complete external sequences. We visit the SPQ



486 E. Di Giacomo et al.

decomposition tree T from the leaves to the root and equip each node μ of T with
information regarding the complete internal and complete external sequences of
its non-trivial poles. Let μ be an internal node of T , let vμ be a non-trivial pole
of μ, let πvμ

be a permutation of the pertinent cluster Vμ of vμ, and let Wμ be
the wheel of Vμ consistent with πvμ

. We denote as ISeq(μ, vμ, πvμ
) the complete

internal sequence of vμ consistent with πvμ
in pole μ and as ESeq(μ, vμ, πvμ

) the
complete external sequence of vμ consistent with πvμ

in pole μ. We distinguish
between the different types of nodes of T .

Node μ is a Q-node. Since G is light, at most one of its poles is non-trivial.
Let e be an edge of F that is the pertinent graph of μ. One end-vertex of e is
the representative vertex in F of the pertinent cluster of the non-trivial pole vμ.
In fact, edge e corresponds to an edge e′ = (u, z) of G such that u ∈ Vμ and z
is a trivial cluster. The side assignment φvμ

defines whether e is incident to the
top, bottom, left, or right copy uW of u in the wheel Wμ of Vμ. For any possible
permutation πvμ

we have ISeq(μ, vμ, πvμ
) = uW . If uW is labeled int-ext, then

ESeq(μ, vμ, πvμ
) is the external cycle of Wμ starting at uW and ending at uW .

Otherwise, traverse the external cycle of Wμ starting at uW and following the
direction of the edges; ESeq(μ, vμ, πvμ

) consists of all the encountered vertices
from the first labeled ext to the last labeled ext.

Node μ is a P-node. Let ν0, ν1, . . . , νh−1 be the children of μ. Observe that
vμ is a non-trivial pole also for the children ν0, ν1, . . . , νh−1 of μ. We consider
every permutation πvμ

such that ν0, ν1, . . . , νh−1 have both a complete inter-
nal sequence and a complete external sequence compatible with πvμ

. The com-
plete internal sequence of vμ consistent with πvμ

is the union of the complete
internal sequences of the children ν0, ν1, . . . , νh−1, that is ISeq(μ, vμ, πvμ

) =
∪h−1

i=0 ISeq(νi, vμ, πvμ
).

To determine the complete external sequence of vμ consistent with πvμ
we

consider the intersection of the complete external sequences of the children of
μ. If this intersection consists of exactly one sequence of consecutive vertices,
then ESeq(μ, vμ, πvμ

) = ∩h−1
i=0 ESeq(νi, vμ, πvμ

). Otherwise (i.e., the intersection
is empty or it consists of more than one sequence of consecutive vertices), vμ

does not have a complete external sequence consistent with πvμ
.

Node μ is an S-node. Let ν be the child of μ that shares the pole vμ with μ.
We consider every permutation πvμ

such that ν has both ISeq(ν, vμ, πvμ
) and

ESeq(ν, vμ, πvμ
). The complete internal (external) sequence of vμ consistent with

πvμ
is ISeq(μ, vμ, πvμ

) = ISeq(ν, vμ, πvμ
) (ESeq(μ, vμ, πvμ

) = ESeq(ν, vμ, πvμ
)).

To test G for NodeTrix planarity we execute a bottom-up traversal of T
and, for each node μ with poles sμ and tμ, we check whether each possible pair
(πsμ

, πtμ
) induces complete internal and external sequences for sμ and tμ that

are ‘compatible’ with a planar embedding of the wheel reduction of G. If this is
the case, by Theorem 1, G is NodeTrix planar, otherwise we reject G.

More formally, let πsμ
(πtμ

, respectively) be a permutation such that sμ (tμ,
respectively) has both a complete internal sequence and a complete external
sequence compatible with πsμ

(πtμ
, respectively). We say that (πsμ

, πtμ
) is a
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Fig. 2. (a) A NodeTrix planar representation Γ of G = (V, E, C, Φ). (b) Γ induces
a permutation assignment and a planar embedding of a wheel reduction of G; the
complete internal and external sequences for a pair of poles are also highlighted.

compatible pair of permutations for μ if either one of the poles is a trivial pole
or one of the following cases applies.

Node μ is a Q-node. In this case all k! possible pairs of permutations for sμ

or tμ (recall that only one of them is non-trivial) are compatible for μ.

Node μ is a P-node. Let ν0, ν1, . . . , νh−1 be the children of μ. Consider a pair
of permutations (πsμ

, πtμ
); we recall that, for i = 0, . . . , h−1, each νi has poles sμ

and tμ. A first condition for pair (πsμ
, πtμ

) to be a compatible pair for μ is that
(πsμ

, πtμ
) is also a compatible pair for νi, with i = 0, . . . , h−1. A second condition

asks that the pair (πsμ
, πtμ

) defines opposite orders on the poles of μ. Namely, let
W s

μ (resp., W t
μ) be the wheel of Vsμ

(resp., Vtμ
) consistent with πsμ

(resp., πtμ
).

Traversing clockwise the external cycle of W s
μ starting from the first vertex of

ESeq(μ, sμ, πsμ
), let ISeq(ν0, sμ, πsμ

), ISeq(ν1, sμ, πsμ
), . . . , ISeq(νh−1, sμ, πsμ

)
be the order by which the internal sequences are encountered. Pair (πsμ

, πtμ
)

defines opposite orders on the poles of μ if, traversing clockwise the external
cycle of W t

μ starting from the first vertex of ESeq(μ, tμ, πsμ
), the order by which

we encounter the internal sequences of ν0, ν1, . . . , νh−1 is the opposite one, i.e.,
the order is ISeq(νh−1, tμ, πtμ

), ISeq(νh−2, tμ, πtμ
), . . . , ISeq(ν0, tμ, πtμ

).

Node μ is an S-node. Let ν0 and ν1 be the children of μ such that sν0 = sμ,
tν0 = sν1 , and tν1 = tμ. A pair (πsμ

, πtμ
) is a compatible pair for μ if there exists

a permutation πtν0
such that the pair (πsμ

, πtν0
) is compatible for ν0 and the

pair (πtν0
, πtμ

) is compatible for ν1.
Figure 2 suggests that a NodeTrix planar representation of a clustered graph

G defines a permutation assignment Π such that, for every node μ of T , pair
(πsμ

, πtμ
) is a compatible pair for μ.
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Lemma 1. Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ
and let T be the SPQ decomposition tree of the frame graph of G. Graph G is
NodeTrix planar if and only if there exists a permutation assignment Π such that,
for every node μ of T with poles sμ and tμ, we have that permutation πsμ

∈ Π
and permutation πtμ

∈ Π form a compatible pair of permutations for μ.

Lemma 2. Let G = (V,E, C, Φ) be a series-parallel clustered graph with side
assignment Φ. Let k be the maximum size of any cluster in C and let n be the
cardinality of V . There exists an O(k3k+ 3

2 ·n2)-time algorithm that tests whether
G is NodeTrix planar with side assignment Φ and if so, it computes a NodeTrix
planar representation of G consistent with Φ.

Proof. Let F be the frame graph of G; for any possible choice of an edge e
of F we repeat the following procedure. We construct the SPQ decomposition
tree of G rooted at the Q-node whose pertinent graph is e. We visit T from the
leaves to the root and test whether G has a permutation assignment Π such that
G = (V,E, C, Φ,Π) is NodeTrix planar. We first equip each non-trivial pole vμ

of every node μ of T with its possible complete internal and complete external
sequences. The maximum number of complete internal sequences of vμ is k!. The
same is true for the complete external sequences. If each complete (internal or
external) sequence of pole vμ is encoded by means of its first and last vertex in the
clockwise order around Wvμ

, then each complete internal or external sequence
needs constant space. It follows that the intersection or the union of two complete
internal or external sequences can be computed in constant time. Therefore, all
complete internal and external sequences for each non-trivial pole of T can be
computed in O(k!) time. Hence, the whole bottom-up traversal to equip all
non-trivial poles with every possible complete internal/external sequence can
be executed in O(k! · n) time. We now test whether there exists a permutation
assignment Π such that any node μ of T has a compatible pair of permutations.
To this aim, we look at the complete internal and external sequences for the pair
of poles of the children of μ. For each pair (πsμ

, πtμ
) of permutations of the poles

of μ we equip μ with the information about whether such pair is compatible
for μ. This requires O(k!2) space. If μ is a Q-node, every pair of permutations
(πsμ

, πtμ
) is compatible for μ. It follows that all compatible pairs for μ can be

computed in O(k!) time (recall that one between sμ and tμ is non-trivial) and,
hence, in O(k! · n) time for all the Q-nodes of T . If μ is a P-node with children
ν0, ν1, . . . , νh−1, πsμ

is one of the permutations that equip sμ, and πtμ
is one of the

permutations that equip tμ, testing whether the pair (πsμ
, πtμ

) is a compatible
pair for μ can be executed in O(h) time. It follows that all compatible pairs for μ
can be computed in O(k!2 ·h) time and, hence, in O(k!2 ·n) time for all P-nodes
of T . If μ is an S-node with children ν0 and ν1, πsμ

is one of the permutations
that equip sμ, and πtμ

is one of the permutations that equip tμ, testing whether
the pair (πsμ

, πtμ
) is a compatible pair for μ can be executed in O(k!) time,

corresponding to choosing all possible permutations for the pole shared between
ν0 and ν1. It follows that all compatible pairs for μ can be computed in O(k!3)
time and, hence, in O(k!3 · n) time for all S-nodes of T .
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In conclusion, the time complexity of a bottom-up visit of T rooted at e is
O(k!3 · n). By rooting T at all possible Q-nodes, we obtain an overall time com-
plexity of O(k!3 · n2). By Stirling’s approximation, k! ∼ √

2πk(k
e )k and thus a

series-parallel clustered graph G with n vertices, side assignment Φ, and maxi-
mum cluster size k can be tested for NodeTrix planarity in O(k3k+ 3

2 · n2) time.
Note that the compatible pair of permutations stored at each node μ of T implic-
itly define a planar embedding of a wheel reduction of G. It can be shown that
it is possible to construct a NodeTrix planar representation of G in time propor-
tional to the number of edges of G, which is O(n · k) [5]. The statement of the
lemma follows. ��

4.2 Partial 2-Trees

We now consider clustered graphs whose cluster size is at most k and such that
their frame graph is a partial 2-tree, i.e. it is a planar graph whose biconnected
components are series-parallel. We handle this case by decomposing the frame
graph into its blocks and we store them into a block-cut-vertex tree. The follow-
ing theorem generalizes the result of Lemma 2.

Theorem 2. Let G = (V,E, C, Φ) be a partial 2-tree clustered graph with side
assignment Φ. Let k be the maximum size of any cluster in C and let n be the
cardinality of V . There exists an O(k3k+ 3

2 ·n3)-time algorithm that tests whether
G is NodeTrix planar with side assignment Φ and if so, it computes a NodeTrix
planar representation of G consistent with Φ.

5 General Planar Frame Graphs

In this section we study the problem of extending Theorem 2 to planar frame
graphs that may not be partial 2-trees. We prove that NodeTrix planarity testing
with fixed sides can be solved in polynomial time for maximum cluster size k = 2.
However, the problem becomes NP-complete with fixed sides for k ≥ 3 and it
remains NP-complete even in the free sides scenario for k ≥ 5.

Every block of the frame graph can be decomposed into its triconnected com-
ponents by means of an SPQR decomposition tree. For each block, we adopt the
same approach as for series-parallel graphs and look for a permutation assign-
ment Π such that, for every pair of poles sμ and tμ, (πsμ

, πtμ
) forms a compatible

pair for μ when μ is either a Q-node, a P-node, or an S-node. We extend the
definition of compatible pairs of permutations for an R-node as follows.

Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ, let F be
the frame graph of G, and let T be the SPQR decomposition tree of F . Let μ be
an R-node of T with poles sμ and tμ. A pair of permutations (πsμ

, πtμ
) forms a

compatible pair for μ if there exists a planar embedding of the skeleton skel(μ)
of μ for which the following conditions hold: (i) For each vertex v of skel(μ),
let e0, e1, . . . eh−1 be the virtual edges of skel(μ) incident to v in clockwise order
around v. Each such edge ei is associated with a child νi of μ. There exists
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a permutation πv such that the complete internal sequences ISeq(ν0, v, πv),
ISeq(ν1, v, πv), . . . , ISeq(νh−1, v, πv) appear in this clockwise order around v. (ii)
Every vertex v of skel(μ) can be assigned a permutation πv such that: πv = πsμ

if v = sμ and πv = πsμ
if v = tμ, and for each virtual edge e = (u, v) in skel(μ)

that corresponds to a child ν of μ, the permutation pair (πu, πv) is compatible
for ν.

Observe that, in the case of maximum cluster size k = 2, the possible per-
mutations of the induced cluster Vv of a vertex v of skel(μ) are exactly two,
denoted by π+

v and π−
v . In order to test whether (πsμ

, πtμ
) forms a compatible

pair for μ, we perform a traversal of skel(μ) starting at sμ. Permutation πsμ
and

the clockwise order of the edges incident to sμ can impose to choose only one of
the two permutations π+

w o π−
w available for each vertex w adjacent to sμ and

corresponding to a non-trivial cluster of G. Each such w and its incident edges,
in turn, propagate constraints on the possible permutations to their neighbors,
till tμ is reached. Therefore, testing whether πsμ

and πtμ
form a compatible pair

for μ can be reduced to a suitable problem of labeling the edges and vertices of
skel(μ) and verifying that at the end sμ and tμ are labeled with πtμ

and πsμ
.

Theorem 3. Let G = (V,E, C, Φ) be an n-vertex clustered graph with side
assignment Φ such that the maximum size of any cluster in C is two. There
exists an O(n3)-time algorithm that tests whether G is NodeTrix planar with the
given side assignment and if so, computes a NodeTrix planar representation of
G consistent with Φ.

The proof of the following theorem is based on a reduction from (non-planar)
NAE3SAT.

Theorem 4. NodeTrix planarity testing with fixed sides and cluster size at most
k is NP-complete for any k ≥ 3.

Now, we extend the above hardness result to the free sides model and show
that NodeTrix planarity testing remains NP-complete when the maximum clus-
ter dimension is larger than four. This is done by proving that NAE3SAT is
NP-complete even for triconnected Boolean formulas, which may be a result of
independent interest.

Theorem 5. NAE3SAT is NP-complete for triconnected Boolean formulas.

Theorem 6. NodeTrix planarity testing with free sides and cluster size at most
k is NP-complete for any k ≥ 5.

6 Open Problems

We conclude the paper by listing some open problems that, in our opinion, are
worth investigating. (i) Study the complexity of NodeTrix planarity testing in the
free sides scenario for values of k between 2 and 5. (ii) Study families of clustered
graphs for which NodeTrix planarity testing is fixed parameter tractable in the
free sides scenario. (iii) Determine whether the time complexity of the algorithms
in Theorems 2 and 3 can be improved.
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