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Abstract. We study planar drawings of directed graphs in the
L-drawing standard. We provide necessary conditions for the existence
of these drawings and show that testing for the existence of a planar
L-drawing is an NP-complete problem. Motivated by this result, we focus
on upward-planar L-drawings. We show that directed st-graphs admit-
ting an upward- (resp. upward-rightward-) planar L-drawing are exactly
those admitting a bitonic (resp. monotonically increasing) st-ordering.
We give a linear-time algorithm that computes a bitonic (resp. monoton-
ically increasing) st-ordering of a planar st-graph or reports that there
exists none.

1 Introduction

In an L-drawing of a directed graph each vertex v is assigned a point in the
plane with exclusive integer x- and y-coordinates, and each directed edge (u, v)
consists of a vertical segment exiting u and of a horizontal segment entering v [1].
The drawings of two edges may cross and partially overlap, following the model
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Fig. 1. (a) A bitonic st-orientation of the octahedron that admits an upward planar
L-drawing (b). (c) The corresponding drawing in the Kandinsky model. (d) An upward
planar st-graph U that does not admit an upward-planar L-drawing

of [17]. The ambiguity among crossings and bends is resolved by replacing bends
with small rounded junctions. An L-drawing in which edges possibly overlap,
but do not cross, is a planar L-drawing; see, e.g., Fig. 1b. A planar L-drawing is
upward planar if its edges are y-monotone, and it is upward-rightward planar if
its edges are simultaneously x-monotone and y-monotone.

Planar L-drawings correspond to drawings in the Kandinsky model [12] with
exactly one bend per edge and with some restrictions on the angles around each
vertex; see Fig. 1c. It is NP-complete [4] to decide whether a multigraph has a
planar embedding that allows a Kandinsky drawing with at most one bend per
edge [5]. On the other hand, every simple planar graph has a Kandinsky drawing
with at most one bend per edge [5]. Bend-minimization in the Kandinsky-model
is NP-complete [4] even if a planar embedding is given, but can be approximated
by a factor of two [2,11]. Heuristics for drawings in the Kandinsky model with
empty faces and few bends have been discussed by Bekos et al. [3].

Bitonic st-orderings were introduced by Gronemann for undirected planar
graphs [14] as an alternative to canonical orderings. They were recently extended
to directed plane graphs [16]. In a bitonic st-ordering the successors of any
vertex must form an increasing and then a decreasing sequence in the given
embedding. More precisely, a planar st-graph is a directed acyclic graph with a
single source s and a single sink t that admits a planar embedding in which s
and t lie on the boundary of the same face. A planar st-graph always admits an
upward-planar straight-line drawing [8]. An st-ordering of a planar st-graph is
an enumeration π of the vertices with distinct integers, such that π(u) < π(v)
for every edge (u, v) ∈ E. Given a plane st-graph, i.e., a planar st-graph with
a fixed upward-planar embedding E , consider the list S(v) = 〈v1, v2, . . . , vk〉 of
successors of v in the left-to-right order in which they appear around v. The
list S(v) is monotonically decreasing with respect to an st-ordering π if π(vi) >
π(vi+1) for i = 1, . . . , k − 1. It is bitonic with respect to π if there is a vertex
vh in S(v) such that π(vi) < π(vi+1), i = 1, . . . , h − 1 and π(vi) > π(vi+1),
i = h, . . . , k − 1. For an upward-planar embedding E , an st-ordering π is bitonic
or monotonically decreasing, respectively if the successor list of each vertex is
bitonic or monotonically decreasing, respectively. Here, 〈E , π〉 is called a bitonic
pair or monotonically decreasing pair, respectively, of G.
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Gronemann used bitonic st-orderings to obtain on the one hand upward-
planar polyline grid drawings in quadratic area with at most |V | − 3 bends
in total [16] and on the other hand contact representations with upside-down
oriented T-shapes [15]. A bitonic st-ordering for biconnected undirected planar
graphs can be computed in linear time [14] and the existence of a bitonic st-
ordering for plane (directed) st-graphs can also be decided in linear time [16].
However, in the variable embedding scenario no algorithm is known to decide
whether an st-graph G admits a bitonic pair. Bitonic st-orderings turn out
to be strongly related to upward-planar L-drawings of st-graphs. In fact, the
y-coordinates of an upward-planar L-drawing yield a bitonic st-ordering.

In this work, we initiate the investigation of planar and upward-planar
L-drawings. In particular, our contributions are as follows. (i) We prove that
deciding whether a directed planar graph admits a planar L-drawing is NP-
complete. (ii) We characterize the planar st-graphs admitting an upward
(upward-rightward, resp.) planar L-drawing as the st-graphs admitting a bitonic
(monotonic decreasing, resp.) st-ordering. (iii) We provide a linear-time algo-
rithm to compute an embedding, if any, of a planar st-graph that allows for
a bitonic st-ordering. This result complements the analogous algorithm pro-
posed by Gronemann for undirected graphs [14] and extends the algorithm pro-
posed by Gronemann for planar st-graphs in the fixed embedding setting [16].
(iv) Finally, we show how to decide efficiently whether there is a planar L-drawing
for a plane directed graph with a fixed assignment of the edges to the four ports
of the vertices.

Due to space limitations, full proofs are provided in [6].

2 Preliminaries

We assume familiarity with basic graph drawing concepts and in particular with
the notions of connectivity and SPQR-trees (see also [6,9]).

A (simple, finite) directed graph G = (V,E) consists of a finite set V of
vertices and a finite set E ⊆ {(u, v) ∈ V ×V ;u �= v} of ordered pairs of vertices.
If (u, v) is an edge then v is a successor of u and u is a predecessor of v. A
graph is planar if it admits a drawing in the plane without edge crossings. A
plane graph is a planar graph with a fixed planar embedding, i.e., with fixed
circular orderings of the edges incident to each vertex—determined by a planar
drawing—and with a fixed outer face.

Given a planar embedding and a vertex v, a pair of consecutive edges incident
to v is alternating if they are not both incoming or both outgoing. We say that
v is k-modal if there exist exactly k alternating pairs of edges in the cyclic order
around v. An embedding of a directed graph G is k-modal, if each vertex is at
most k-modal. A 2-modal embedding is also called bimodal. An upward-planar
drawing determines a bimodal embedding. However, the existence of a bimodal
embedding is not a sufficient condition for the existence of an upward-planar
drawing. Deciding whether a directed graph admits an upward-planar (straight-
line) drawing is an NP-hard problem [13].
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L-Drawings. A planar L-drawing determines a 4-modal
embedding. This implies that there exist planar directed
graphs that do not admit planar L-drawings. A 6-wheel whose
central vertex is incident to alternating incoming and outgo-
ing edges is an example of a graph that does not admit any
4-modal embedding, and therefore any planar L-drawing.

On the other hand, the existence of a 4-modal embedding is not sufficient
for the existence of a planar L-drawing. E.g., the octahedron depicted in the
figure on the right does not admit a planar L-drawing. Since the octahedron is
triconnected, it admits a unique combinatorial embedding (up to a flip). Each
vertex is 4-modal. However, the rightmost vertex in a planar L-drawing must be
1-modal or 2-modal.

Any upward-planar L-drawing of an st-graph G can be modified to obtain an
upward-planar drawing of G: Redraw each edge as a y-monotone curve arbitrar-
ily close to the drawing of the corresponding 1-bend orthogonal polyline while
avoiding crossings and edge-edge overlaps. However, not every upward-planar
graph admits an upward-planar L-drawing. E.g., the graph in Fig. 1d contains a
subgraph that does not admit a bitonic st-ordering [16]. In Sect. 4 (Theorem 3),
we show that this means it does not admit an upward planar L-drawing.

The Kandinsky Model. In the Kandinsky model [12], vertices are drawn as
squares of equal sizes on a grid and edges—usually undirected—are drawn as
orthogonal polylines on a finer grid; see Fig. 1c. Two consecutive edges in the
clockwise order around a vertex define a face and an angle in {0, π/2, π, 3π/2, 2π}
in that face. In order to avoid edges running through other vertices, the Kandin-
sky model requires the so called bend-or-end property : There is an assignment of
bends to vertices with the following three properties. (a) Each bend is assigned
to at most one vertex. (b) A bend may only be assigned to a vertex to which
it is connected by a segment (i.e., it must be the first bend on an edge). (c) If
e1, e2 are two consecutive edges in the clockwise order around a vertex v that
form a 0 angle inside face f , then a bend of e1 or e2 forming a 3π/2 angle inside
f must be assigned to v. Further, the Kandinsky model requires that there are
no empty faces.

Given a planar L-drawing, consider a vertex v and all edges incident to one of
the four ports of v. By assigning to v all bends on these edges—except the bend
furthest from v—we satisfy the bend-or-end property. This implies the following
lemma, which is proven in [6].

Lemma 1. A graph has a planar L-drawing if and only if it admits a drawing in
the Kandinsky model with the following properties: (i) Each edge bends exactly
once; (ii) at each vertex, the angle between any two outgoing (or between any
two incoming) edges is 0 or π; and (iii) at each vertex, the angle between any
incoming edge and any outgoing edge is π/2 or 3π/2.

3 General Planar L-Drawings

We consider the problem of deciding whether a graph admits a planar L-drawing.
In Sect. 3.1, we show that the problem is NP-complete if no planar embedding
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Fig. 2. 4-wheel graph W and two planar L-drawings of W .

is given. In the fixed embedding setting (Sect. 3.2) the problem can be described
as an ILP. It is solvable in linear time if we also fix the ports.

3.1 Variable Embedding Setting

As a central building block for our hardness reduction we use a directed graph
W that can be constructed starting from a 4-wheel with central vertex c and
rim (u, v, w, z). We orient the edges of W so that v and z (the V-ports of W )
are sinks and u and w (the H-ports of W ) are sources. Finally, we add directed
edges (v, c), (z, c), (c, w), and (c, u); see Fig. 2. We now provide Lemma 2 which
describes the key property of planar L-drawings of W .

Lemma 2. In any planar L-drawing of W with cycle (u, v, w, z) as the outer
face the edges of the outer face form a rectangle (that contains vertex c).

We are now ready to give the main result of the section.

Theorem 1. It is NP-complete to decide whether a directed graph admits a
planar L-drawing.

Sketch of proof. We reduce from the NP-complete problem of HV-rectilinear pla-
narity testing [10]. In this problem, the input is a biconnected degree-4 planar
graph G with edges labeled either H or V, and the goal is to decide whether G
admits an HV-drawing, i.e., a planar drawing such that each H-edge (V-edge)
is drawn as a horizontal (vertical) segment. Starting from G, we construct a
graph G′ by replacing: (i) vertices with 4-wheels as in Fig. 2; (ii) V-edges with
the gadget shown in Fig. 3a; and (iii) H-edges with an appropriately rotated and
re-oriented version of the V-edge gadget. If (u, v) is a V-edge, the two vertices
labeled u and v of its gadget are identified with a V-port of the respective ver-
tex gadgets. Otherwise, they are identified with an H-port. Figure 3b shows a
vertex gadget with four incident edges. The proof that G′ and G are equivalent
is somewhat similar to Brückner’s hardness proof in [5, Theorem 3] and exploits
Lemma 2. Refer to [6] for the full details. ��
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Fig. 3. (a) Edge gadget for a V-edge. (b) Connections among gadgets.

3.2 Fixed Embedding and Port Assignment

In this section, we show how to decide efficiently whether there is a planar
L-drawing for a plane directed graph with a fixed assignment of the edges to
the four ports of the vertices. Using Lemma 1 and the ILP formulation of Barth
et al. [2], we first set up linear inequalities that describe whether a plane 4-modal
graph has a planar L-drawing. Using these inequalities, we then transform our
decision problem into a matching problem that can be solved in linear time.

We call a vertex v an in/out-vertex on a face f if v is incident to both,
an incoming edge and an outgoing edge on f . Let xvf ∈ {0, 1, 2} describe the
angle in a face f at a vertex v: the angle between two outgoing or two incoming
edges is xvf · π and the angle between an incoming and an outgoing edge is
xvf · π + π/2. Let xv

fe ∈ {0, 1} be 1 if there is a convex bend in face f on edge e
assigned to a vertex v to fulfill the bend-or-end property. There is a planar
L-drawing with these parameters if and only if the following four conditions
are satisfied (see [6] for details): (1) The angles around a vertex v sum to 2π.
(2) Each edge has exactly one bend. (3) The number of convex angles minus
the number of concave angles is 4 in each inner face and −4 in the outer face.
(4) The bend-or-end property is fulfilled, i.e., for any two edges e1 and e2 that
are consecutive around a vertex v and that are both incoming or both outgoing,
and for the faces f1, f , and f2 that are separated by e1 and e2 (in the cyclic
order around v), it holds that xvf +xv

f1e1
+xv

f2e2
≥ 1. Let e = (v, w) be incident

to faces f and h, Condition (2) implies −xv
he − xw

he = xv
fe + xw

fe − 1. Hence, (3)
yields

(3′)
∑

e=(v,w) incident to f

(xv
fe + xw

fe) −
∑

v on f

xvf = ±2 + (# in/out-vertices on f − deg f)/2.

Observe that the number of in/out-vertices on a face f is odd if and only
if deg f is odd. Moreover, if we omit the bend-or-end property, we can for-
mulate the remaining conditions as an uncapacitated network flow problem.
The network has three types of nodes: one for each vertex, face, and edge
of the graph. It has two types of edges: from vertices to incident faces and
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from faces to incident edges. The supplies are 
 4−k
2 � for the k-modal vertices,

±2 + 1/2 · (#in/out-vertices − deg f) for a face f , and −1 for the edges.

Theorem 2. Given a directed plane graph G and labels out(e) ∈ {top,bottom}
and in(e) ∈ {right, left} for each edge e, it can be decided in linear time whether
G admits a planar L-drawing in which each edge e leaves its tail at out(e) and
enters its head at in(e).

Sketch of proof. First, we have to check whether the cyclic order of the edges
around a vertex is compatible with the labels. The labels determine the bends
and the angles around the vertices, i.e., xv

fe + xw
fe for each edge e = (v, w) and

each incident face f , and xvf for each vertex v and each incidence to a face f .
We check whether these values fulfill Conditions 1, 2, and 3′. In order to also
check Condition 4, we first assign for each port of a vertex v, all but the middle
edges to v (where a middle edge of a port is the last edge in clockwise order
bending to the left or the first edge bending to the right). We check whether
we thereby assign an edge more than once. Assigning the middle edges can be
reduced to a matching problem in a bipartite graph of maximum degree 2 where
the nodes on one side are the ports with two middle edges and the nodes on the
other side are the unassigned edges. ��

4 Upward- and Upward-Rightward Planar L-Drawings

In this section, we characterize (see Theorem 3) and construct (see Theorem 6)
upward-planar and upward-rightward planar L-drawings.

4.1 A Characterization via Bitonic st-Orderings

Characterizing the plane directed graphs that admit an L-drawing is an elusive
goal. However, we can characterize two natural subclasses of planar L-drawings
via bitonic st-orderings.

Theorem 3. A planar st-graph admits an upward- (upward-rightward-) planar
L-drawing if and only if it admits a bitonic (monotonically decreasing) pair.

Sketch of proof. “⇒”: Let G = (V,E) be an st-graph with n vertices. The
y-coordinates of an upward- (upward-rightward-) planar L-drawing of G yield a
bitonic (monotonically decreasing) st-ordering.
“⇐”: Given a bitonic (monotonically decreasing) st-ordering π of G = (V,E),
we construct an upward- (upward-rightward-) planar L-drawing of G using an
idea of Gronemann [16]. For each vertex v, we use π(v) as its y-coordinate.

For the x-coordinates we use a linear extension of a partial order ≺. Let
v1, . . . , vn be the vertices of G in the ordering given by π. Let Gi be the subgraph
of G induced by Vi = {v1, . . . , vi}. To construct ≺, we augment Gi to Gi in such
a way that the outer face fGi

of Gi is a simple cycle and all vertices on fGi

are comparable: We start with a triangle on v1 and two new vertices v−1 and
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Fig. 4. How to turn a bitonic st-ordering into a planar L-drawing.

v−2, with y-coordinates −1 and −2, respectively, and set v−2 ≺ v1 ≺ v−1. For
i = 2, . . . , n, let u1, . . . , uk be the predecessors of vi in ascending order with
respect to ≺. If π is monotonically decreasing or if k = 1, we add an edge e
with head vi. The tail of e is the right neighbor r of uk or the left neighbor �
of u1 on fGi

, respectively, if the maximum successor smax of u1 is to the left
(or equal to) or the right of vi, respectively; see Fig. 4a. Now let u1, . . . , uk be
the predecessors of vi in the possibly augmented graph; see Fig. 4b. We add the
condition uk−1 ≺ vi ≺ uk. ��

Corollary 1. Any undirected planar graph can be oriented such that it admits
an upward-planar L-drawing.

Proof. Triangulate the graph G and construct a bitonic st-ordering for undi-
rected graphs [14]. Orient the edges from smaller to larger st-numbers. ��

4.2 Bitonic st-Orderings in the Variable Embedding Setting

By Theorem 3, testing for the existence of an upward- (upward-rightward-) pla-
nar L-drawing of a planar st-graph G reduces to testing for the existence of a
bitonic (monotonically decreasing) pair 〈E , π〉 for G. In this section, we give a
linear-time algorithm to test an st-graph for the existence of a bitonic pair 〈E , π〉.

The following lemma is proved in [6].

Lemma 3. Let G = (V,E) be a planar st-graph with source s, sink t, and (s, t) /∈
E. Then there exists a supergraph G′ = (V ′, E′) of G, where V ′ = V ∪ {s′} and
E′ = E∪{(s′, s), (s′, t)}, such that (i) G′ is an st-graph with source s′ and sink t,
and (ii) G′ admits a bitonic (resp., monotonically increasing) st-ordering if and
only if G does.

By Lemma 3, in the following we assume that an st-graph G always contains
edge (s, t). Hence, either G coincides with edge (s, t), which trivially admits a
bitonic st-ordering, or it is biconnected.

A path p from u to v in a directed graph is monotonic increasing (monotonic
decreasing) if it is exclusively composed of forward (backward) edges. A path
p is monotonic if it is either monotonic increasing or monotonic decreasing. A
path p with endpoints u and v is bitonic if it consists of a monotonic increasing
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path from u to w and of a monotonic decreasing path from w to v; if u �= w and
v �= w, then the path p is strictly bitonic and w is the apex of p. An st-graph G is
v-monotonic, v-bitonic, or strictly v-bitonic if the subgraph of G induced by the
successors of v is, after the removal of possible transitive edges, a monotonic,
bitonic, or strictly-bitonic path p, respectively. The apex of p, if any, is also
called the apex of v in G. If p is monotonic and it is directed from u to w, then
vertices u and w are the first successor of v in G and the last successor of v in
G, respectively. If p is strictly bitonic, then its endpoints are the first successors
of v in G. If p consists of a single vertex, then such a vertex is both the first
and the last successor of v in G. Let G be an st-graph and let G∗ be an st-graph
obtained by augmenting G with directed edges. We say that the pair 〈G,G∗〉
is v-monotonic, v-bitonic, or strictly v-bitonic if the subgraph of G∗ induced
by the successors of v in G is, after the removal of possible transitive edges, a
monotonic, bitonic, or strictly-bitonic path, respectively.

Although Gronemann [16] didn’t state this explicitly, the following theorem
immediately follows from the proof of his Lemma 4.

Theorem 4 ([16]). A plane st-graph G = (V,E) admits a bitonic st-ordering
if and only if it can be augmented with directed edges to a planar st-graph G∗

such that, for each vertex v ∈ V , the pair 〈G,G∗〉 is v-bitonic. Further, any
st-ordering of G∗ is a bitonic st-ordering of G.

In the remainder of the section, we show how to test in linear-time whether
it is possible to augment a biconnected st-graph G to an st-graph G∗ in such
a way that the pair 〈G,G∗〉 is v-bitonic, for any vertex v of G. By virtue of
Theorem 4, this allows us to test the existence of a bitonic pair 〈E , π〉 for G. We
perform a bottom-up visit of the SPQR-tree T of G rooted at the reference edge
(s, t) and show how to compute an augmentation for the pertinent graph of each
node μ ∈ T together with an embedding of it, if any exists.

Note that each vertex in an st-graph is on a directed path from s to t. Further,
by the choice of the reference edge, neither s nor t are internal vertices of the
pertinent graph of any node of T . This leads to the next observation.

Observation 1. For each node μ ∈ T with poles u and v, the pertinent graph
pert(μ) of μ is an st-graph whose source and sink are u and v, or vice versa.

Let e be a virtual edge of skel(μ) corresponding to a node ν whose pertinent
graph is an st-graph with source sν and sink tν . By Observation 1, we say that
e exits sν and enters tν .

The outline of the algorithm is as follows. Consider a node μ ∈ T and sup-
pose that, for each child μi of μ, we have already computed a pair 〈pert∗(μi), E∗

i 〉
such that pert∗(μi) is an augmentation of pert(μi), E∗

i is an embedding of
pert∗(μi), and 〈pert(μi),pert∗(μi)〉 is v-bitonic, for each vertex v of pert(μi).
We show how to compute a pair 〈pert∗(μ), E∗〉 > for node μ, such that (i) the
pair 〈pert(μ),pert∗(μ)〉 is v-bitonic for each vertex v in pert(μ), and (ii) the
restriction of E∗ to pert∗(μi) is E∗

i , up to a flip. In the following, for the sake of
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Fig. 5. Illustration for Lemma 4.

clarity, we first describe an overall quadratic-time algorithm. We will refine this
algorithm to run in linear time at the end of the section.

For a node μ ∈ T , we say that the pair 〈pert(μ),pert∗(μ)〉 is of Type B
if it is strictly sμ-bitonic and it is of Type M if it is sμ-monotonic. For sim-
plicity, we also say that node μ is of Type B or of Type M when, during the
traversal of T , we have constructed an augmentation pert∗(μ) for μ such that
〈pert(μ),pert∗(μ)〉 is of Type B or of Type M, respectively. Figure 5 shows an
example where an augmentation G∗ of G contains an augmentation pert∗(μ) for
μ which is replaced with an augmentation pert+(μ) such that 〈pert(μ),pert∗(μ)〉
is of Type B, 〈pert(μ),pert+(μ)〉 is of Type M, and G∗ admits a bitonic st-
ordering if and only if it still does after this replacement. The following lemma
formally shows that this type of replacement is always possible.

Lemma 4. Let G be a biconnected st-graph and let G∗ be an augmentation of G
such that 〈G,G∗〉 is v-bitonic, for each vertex v of G. Consider a node μ of the
SPQR-tree of G and let pert∗(μ) be the subgraph of G∗ induced by the vertices
of pert(μ). Suppose that 〈pert(μ),pert∗(μ)〉 is of Type B and that pert(μ) also
admits an augmentation pert+(μ) such that 〈pert(μ),pert+(μ)〉 is of Type M and
it is v-bitonic, for each vertex v of pert(μ). There exists an augmentation G+

of G such that 〈G,G+〉 is v-bitonic, for each vertex v of G, and such that the
subgraph of G+ induced by the vertices of pert(μ) is pert+(μ).

Consider a node μ of the SPQR-tree T of G. We now show how to test the
existence of a pair 〈pert∗(μ), E∗〉 such that (i) μ is of Type M or, secondarily, of
Type B, or report that no such a pair exists, and (ii) E∗ is a planar embedding
of pert∗(μ). In fact, by Lemma 4, an embedding of μ of Type M would always
be preferable to an embedding of Type B.

In any planar embedding E of pert(μ) in which the poles are on the outer
face fout of E , we call left path (right path) of E the path that consists of the
edges encountered in a clockwise traversal (in a counter-clockwise traversal) of
the outer face of E from sμ to tμ.

The following observation will prove useful to construct embedding E∗.

Observation 2. Let 〈pert∗(μ), E∗〉 be a pair such that 〈pert(μ),pert∗(μ)〉 is sμ-
bitonic and E∗ is a planar embedding of pert∗(μ) in which sμ and tμ lie on the
external face. We have that:
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(i) If μ is of Type M, then the first and the last successors of sμ in pert∗(μ) lie
one on the left path and the other on the right path of E∗. In particular, if
the first and the last successor of μ are the same vertex, then such a vertex
belongs to both the left path and the right path of E∗.

(ii) If μ is of Type B, then the two first successors of sμ in pert∗(μ) lie one on
the left path and the other on the right path of E∗.

We distinguish four cases based on whether node μ is an S-, P-, Q-, or R-node.

Q-node. Here, 〈pert(μ),pert(μ)〉 is trivially of Type M, i.e., pert∗(μ) = pert(μ).

S-node. Let e1, . . . , ek be the virtual edges of skel(μ) in the order in which they
appear from the source sμ to the target tμ of skel(μ), and let μ1, . . . , μk be the
corresponding children of μ, respectively. We obtain pert∗(μ) by replacing each
virtual edge ei in skel(μ) with pert∗(μi). Also, we obtain the embedding E∗ by
arbitrarily selecting a flip for each embedding E∗

i of pert∗(μi). Clearly, node μ is
of Type M if and only if μ1 is of Type M and it is of Type B, otherwise.

P-node. Let e1, . . . , ek be the virtual edges of skel(μ) and let μ1, . . . , μk be the
corresponding children of μ, respectively.

First, observe that if there exists more than one child of μ that is of Type B,
then node μ does not admit an augmentation pert∗(μ) where 〈pert(μ),pert∗(μ)〉
is sμ-bitonic. In fact, if there exist two such nodes μi and μj , then both the
subgraphs of pert∗(μi) and pert∗(μj) induced by the successors of sμ in pert(μi)
and in pert(μj), respectively, contain an apex vertex. This implies that sμ would
have more than one apex.

Second, observe that if there exists a child μi of μ of Type B and the edge
(sμ, tμ) belongs to pert(μ), then node μ does not admit an augmentation pert∗(μ)
such that 〈pert(μ),pert∗(μ)〉 is sμ-bitonic. In fact, pert∗(μi) contains a apex of
sμ different from tμ; this is due to the fact that edge (sμ, tμ) /∈ pert∗(μi). Also,
vertex tμ must be an apex of sμ in any augmentation pert∗(μ) of pert(μ) such
that 〈pert(μ),pert∗(μ)〉 is v-bitonic, for each vertex v of pert(μ). Namely, any
augmentation pert∗(μ) of pert(μ) yields an st-graph with source sμ and sink tμ
and, as such, no directed path exits from tμ in pert∗(μ). As for the observation
in the previous paragraph, this implies that sμ would have more than one apex.

We construct pert∗(μ) as follows. We embed skel(μ) in such a way that the
edge (sμ, tμ), if any, or the virtual edge corresponding to the unique child of
μ that is of Type B, if any, is the right-most virtual edge in the embedding.
Let e1, . . . , ek be the virtual edges of skel(μ) in the order in which they appear
clockwise around sμ in skel(μ). Then, for each child μi of μ, we choose a flip of
embedding E∗

i such that a first successor of sμ in pert∗(μi) lies along the left path
of E∗

i . Now, for i = 1, . . . , k − 2, we add an edge connecting the last successor of
sμ in pert∗(μi) and the first successor of sμ in pert∗(μi+1). Finally, we possibly
add an edge connecting the last successor vl of sμ in pert∗(μk−1) and a suitable
vertex in pert∗(μk). Namely, if a node μk is of Type B, then we add an edge
between vl and the first successor of sμ in pert∗(μk) that lies along the left path
of E∗

k . If μk is of Type M and it is not a Q-node, then we add an edge between
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vl and the first successor of sμ in pert∗(μk). Otherwise pert∗(μk) = (sμ, tμ) and
we add the edge (vl, tμ) if no such an edge belongs to pert∗(μk−1).

Observe that, the added edges do not introduce any directed cycle as there
exists no directed path from a vertex in pert∗(μi+1) to a vertex in pert∗(μi).
Further, by Observation 2 the added edges do not disrupt planarity. Therefore,
the obtained augmentation pert∗(μ) of pert(μ) is, in fact, a planar st-graph.

Finally, we have that node μ is of Type M if and only if μk is of Type M.

R-node. The case of an R-node μ is detailed in [6]. For each node v of skel(μ),
we have to consider the virtual edges e1, . . . , ek of skel(μ) exiting v and the
corresponding children μ1, . . . , μk of μ, respectively. Similarly to the P-node case,
we pursue an augmentation of pert(μ) by inserting edges that connect pert(μi)
with pert(μi+1), with i = 1, . . . , k−1. Differently from the P-node case, however,
more than one pert(μi) may contain an edge between the poles of μi. Further,
also the faces of skel(μ) may play a role, introducing additional constraints on
the existence and the choice of the augmentation.

We have the following theorem.

Theorem 5. It is possible to decide in linear time whether a planar st-graph G
admits a bitonic pair 〈E , π〉.
Proof. Let ρ be the root of the SPQR-tree of G. The algorithm described above
computes a pair 〈pert∗(ρ), E∗〉 for G, if any exists, such that (i) the st-graph
pert∗(ρ) is an augmentation of G, (ii) for any vertex v of G, 〈pert(ρ),pert∗(ρ)〉 is
v-bitonic, and (iii) E∗ is a planar embedding of pert∗(ρ). Let E be the restriction
of E∗ to G. By Theorem 4, any st-ordering π of pert∗(ρ) is a bitonic st-ordering
of G with respect to E . Hence, 〈E , π〉 is a bitonic pair of G.

We first show that the described algorithm has a quadratic running time.
Then, we show how to refine it in order to run in linear time. For each node μ of T ,
the algorithm stores a pair 〈pert∗(μ), E〉. Processing a node takes O(|pert∗(μ)|)
time. Since |pert∗(μ)| ∈ O(|pert(μ)|), the overall running time is O(|G|2).

To achieve a linear running time, observe that we do not need to compute the
embeddings of the augmented pertinent graphs pert∗(μ), for each node μ of T ,
during the bottom-up traversal of T . In fact, any embedding E∗ of pert∗(ρ) yields
an embedding E of G such that π is bitonic with respect to E . To determine the
endpoints of the augmenting edges, we only need to associate a constant amount
of information with the nodes of T . Namely, for each node μ in T , we maintain
(i) whether μ is of Type B or of Type M, (ii) if μ is of Type M, the first successor
and the last successor of sμ in pert∗(μ), and (iii) if μ is of Type B, the two first
successors of sμ in pert∗(μ). Therefore, processing a node takes O(| skel(μ)|)
time. Since the sum of the sizes of the skeletons of the nodes in T is linear in
the size of G [7], the overall running time is linear. ��
Corollary 2. It is possible to decide in linear time whether a planar st-graph G
admits a monotonically decreasing pair 〈E , π〉.
Proof. The statement immediately follows from the fact that, in the algorithm
described in this section, when computing a pair 〈pert∗(μ), E∗〉 for each node μ
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in T , a pair 〈pert(μ),pert∗(μ)〉 of Type M is built whenever possible. Therefore,
rejecting instances for which a pair 〈pert(μ),pert∗(μ)〉 of Type B is needed yields
the desired algorithm. ��

In conclusion, we have the following main result.

Theorem 6. It can be tested in linear time whether a planar st-graph admits an
upward- (upward-rightward-) planar L-drawing, and if so, such a drawing can be
constructed in linear time.

Proof. We first test in linear time whether a planar st-graph admits a bitonic pair
(Theorem 5) or a monotonically decreasing pair (Corollary 2). Then, Theorem 3
shows how to construct in linear time an upward- (upward-rightward-) planar
L-drawing from a bitonic (monotonically decreasing) pair. ��

5 Open Problems

Several interesting questions are left open: Can we efficiently test whether a
directed plane graph admits a planar L-drawing? Can we efficiently recognize
the directed graphs that are edge maximal subject to having a planar L-drawing
(they have at most 4n−6 edges where n is the number of vertices—see [6]? Does
every upward-planar graph have a (not necessarily upward-) planar L-drawing?
Can we extend the algorithm for computing a bitonic pair in the variable embed-
ding setting to single-source multi-sink di-graphs? Does every bimodal graph
have a planar L-drawing?
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