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Abstract. We introduce and study the problem Ordered Level Pla-
narity which asks for a planar drawing of a graph such that vertices are
placed at prescribed positions in the plane and such that every edge is
realized as a y-monotone curve. This can be interpreted as a variant of
Level Planarity in which the vertices on each level appear in a pre-
scribed total order. We establish a complexity dichotomy with respect
to both the maximum degree and the level-width, that is, the maximum
number of vertices that share a level. Our study of Ordered Level
Planarity is motivated by connections to several other graph drawing
problems.

Geodesic Planarity asks for a planar drawing of a graph such that
vertices are placed at prescribed positions in the plane and such that
every edge e is realized as a polygonal path p composed of line segments
with two adjacent directions from a given set S of directions symmet-
ric with respect to the origin. Our results on Ordered Level Pla-
narity imply NP-hardness for any S with |S| ≥ 4 even if the given
graph is a matching. Katz, Krug, Rutter and Wolff claimed that for
matchings Manhattan Geodesic Planarity, the case where S con-
tains precisely the horizontal and vertical directions, can be solved in
polynomial time [GD 2009]. Our results imply that this is incorrect
unless P = NP . Our reduction extends to settle the complexity of the
Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer,
Schaefer and Štefankovič.

Ordered Level Planarity turns out to be a special case of T-Level
Planarity, Clustered Level Planarity and Constrained Level
Planarity. Thus, our results strengthen previous hardness results. In
particular, our reduction to Clustered Level Planarity generates
instances with only two non-trivial clusters. This answers a question posed
by Angelini, Da Lozzo, Di Battista, Frati and Roselli.

Due to space constraints, some proofs in this manuscript are only sketched or omitted
entirely. Full proofs of all claims can be found in the appendix of the preprint [17].
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1 Introduction

In this paper we introduce Ordered Level Planarity and study its complex-
ity. We establish connections to several other graph drawing problems, which we
survey in this first section. We proceed from general problems to more and more
constrained ones.

Upward Planarity: An upward planar drawing of a directed graph is a plane
drawing where every edge e = (u, v) is realized as a y-monotone curve that goes
upward from u to v. Such drawings provide a natural way of visualizing a partial
order on a set of items. The problem Upward Planarity of testing whether
a directed graph has an upward planar drawing is NP-complete [10]. However,
if the y-coordinate of each vertex is prescribed, the problem can be solved in
polynomial time [15]. This is captured by the notion of level graphs.

Level Planarity: A level graph G = (G, γ) is a directed graph G = (V,E)
together with a level assignment γ : V → {0, . . . , h} where γ is a surjective map
with γ(u) < γ(v) for every edge (u, v) ∈ E. Value h is the height of G. The vertex
set Vi = {v | γ(v) = i} is called the i-th level of G and λi = |Vi| is its width.
The level-width λ of G is the maximum width of any level in G. A level planar
drawing of G is an upward planar drawing of G where the y-coordinate of each
vertex v is γ(v). The horizontal line with y-coordinate i is denoted by Li. The
problem Level Planarity asks whether a given level graph has a level planar
drawing. The study of the complexity of Level Planarity has a long history
[7,9,13–15], culminating in a linear-time approach [15]. Level Planarity has
been extended to drawings of level graphs on surfaces different from the plane
such as standing cylinder, a rolling cylinder or a torus [1,3,4].

An important special case are proper level graphs, that is, level graphs in
which γ(v) = γ(u)+1 for every edge (u, v) ∈ E. Instances of Level Planarity
can be assumed to be proper without loss of generality by subdividing long
edges [7,15]. However, in variations of Level Planarity where we impose
additional constraints, the assumption that instances are proper can have a
strong impact on the complexity of the respective problems [2].

Level Planarity with Various Constraints:Clustered Level Planarity
is a combination of Cluster Planarity and Level Planarity. The task is
to find a level planar drawing while simultaneously visualizing a given cluster
hierarchy according to the rules of Cluster Planarity. The problem is NP-
complete in general [2], but efficiently solvable for proper instances [2,8].

T-Level Planarity is a consecutivity-constrained version of Level Pla-
narity: every level Vi is equipped with a tree Ti whose set of leaves is Vi. For
every inner node u of Ti the leaves of the subtree rooted at u have to appear con-
secutively along Li. The problem is NP-complete in general [2], but efficiently
solvable for proper instances [2,18]. The precise definitions of both problems and
a longer discussion about the related work can be found in [17].

Very recently, Brückner and Rutter [6] explored a variant of Level Pla-
narity in which the left-to-right order of the vertices on each level has to
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be a linear extension of a given partial order. They refer to this problem as
Constrained Level Planarity and they provide an efficient algorithm for
single-source graphs and show NP-completeness of the general case.

A Common Special Case - Ordered Level Planarity: We introduce a
natural variant of Level Planarity that specifies a total order for the vertices
on each level. An ordered level graph G is a triple (G = (V,E), γ, χ) where (G, γ)
is a level graph and χ : V → {0, . . . , λ − 1} is a level ordering for G. We require
that χ restricted to domain Vi bijectively maps to {0, . . . , λi − 1}. An ordered
level planar drawing of an ordered level graph G is a level planar drawing of (G, γ)
where for every v ∈ V the x-coordinate of v is χ(v). Thus, the position of every
vertex is fixed. The problem Ordered Level Planarity asks whether a given
ordered level graph has an ordered level planar drawing.

In the above definitions, the x- and y-coordinates assigned via χ and γ merely
act as a convenient way to encode total and partial orders respectively. In terms
of realizability, the problems are equivalent to generalized versions where χ and γ
map to the reals. In other words, the fixed vertex positions can be any points
in the plane. All reductions and algorithms in this paper carry over to these
generalized versions, if we pay the cost for presorting the vertices according to
their coordinates. Ordered Level Planarity is also equivalent to a relaxed
version where we only require that the vertices of each level Vi appear along Li

according to the given total order without insisting on specific coordinates. We
make use of this equivalence in many of our figures for the sake of visual clarity.

Geodesic Planarity: Let S ⊂ Q2 be a finite set of directions symmetric with
respect to the origin, i.e. for each direction s ∈ S, the reverse direction −s is
also contained in S. A plane drawing of a graph is geodesic with respect to S
if every edge is realized as a polygonal path p composed of line segments with
two adjacent directions from S. Two directions of S are adjacent if they appear
consecutively in the projection of S to the unit circle. Such a path p is a geodesic
with respect to some polygonal norm that corresponds to S. An instance of the
decision problem Geodesic Planarity is a 4-tuple G = (G = (V,E), x, y, S)
where G is a graph, x and y map from V to the reals and S is a set of directions
as stated above. The task is to decide whether G has a geodesic drawing, that
is, G has a geodesic drawing with respect to S in which every vertex v ∈ V is
placed at (x(v), y(v)).

Katz et al. [16] study Manhattan Geodesic Planarity, which is the
special case of Geodesic Planarity where the set S consists of the two hor-
izontal and the two vertical directions. Geodesic drawings with respect to this
set of direction are also referred to as orthogeodesic drawings [11,12]. Katz et
al. [16] show that a variant of Manhattan Geodesic Planarity in which
the drawings are restricted to the integer grid is NP-hard even if G is a per-
fect matching. The proof is by reduction from 3-Partition and makes use of
the fact the number of edges that can pass between two vertices on a grid line
is bounded. In contrast, they claim that the standard version of Manhattan
Geodesic Planarity is polynomial-time solvable for perfect matchings [16,
Theorem 5]. To this end, they sketch a plane sweep algorithm that maintains
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a linear order among the edges that cross the sweep line. When a new edge is
encountered it is inserted as low as possible subject to the constraints implied
by the prescribed vertex positions. When we asked the authors for more details,
they informed us that they are no longer convinced of the correctness of their
approach. Theorem 2 of our paper implies that the approach is indeed incorrect
unless P = NP.

Bi-Monotonicity: Fulek et al. [9] present a Hanani-Tutte theorem for y-
monotone drawings, that is, upward drawings in which all vertices have distinct
y-coordinates. They accompany their result with a simple and efficient algorithm
for Y-Monotonicity, which is equivalent to Level Planarity restricted to
instances with level-width λ = 1. They propose the problem Bi-Monotonicity
and leave its complexity as an open problem. The input of Bi-Monotonicity
is a triple G = (G = (V,E), x, y) where G is a graph and x and y injectively
map from V to the reals. The task is to decide whether G has a bi-monotone
drawing, that is, a plane drawing in which edges are realized as curves that are
both y-monotone and x-monotone and in which every vertex v ∈ V is placed
at (x(v), y(v)).

Main Results: In Sect. 3 we study the complexity of Ordered Level Pla-
narity. While Upward Planarity is NP-complete [10] in general but
becomes polynomial-time solvable [15] for prescribed y-coordinates, we show
that prescribing both x-coordinates and y-coordinates renders the problem NP-
complete. We complement our result with efficient approaches for some special
cases of ordered level graphs and, thereby, establish a complexity dichotomy with
respect to the level-width and the maximum degree.

Theorem 1. Ordered Level Planarity is NP-complete, even for maxi-
mum degree Δ = 2 and level-width λ = 2. For level-width λ = 1 or Δ+ = Δ− = 1
or proper instances Ordered Level Planarity can be solved in linear time,
where Δ+ and Δ− are the maximum in-degree and out-degree respectively.

Ordered Level Planarity restricted to instances with λ = 2 and Δ = 2
is an elementary problem. We expect that it may serve as a suitable basis for
future reductions. As a proof of concept, the remainder of this paper is devoted
to establishing connections between Ordered Level Planarity and several
other graph drawing problems. Theorem 1 serves as our key tool for settling
their complexity. In Sect. 2 we study Geodesic Planarity and obtain:

Theorem 2. Geodesic Planarity is NP-hard for any set of directions S
with |S| ≥ 4 even for perfect matchings in general position.

Observe the aforementioned discrepancy between Theorem 2 and the claim by
Katz et al. [16] that Manhattan Geodesic Planarity for perfect matchings
is in P. Bi-Monotonicity is closely related to a special case of Manhattan
Geodesic Planarity. With a simple corollary we settle the complexity of
Bi-Monotonicity and, thus, answer the open question by Fulek et al. [9].
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Theorem 3. Bi-Monotonicity is NP-hard even for perfect matchings.

Ordered Level Planarity is an immediate and very constrained spe-
cial case of Constrained Planarity. Further, we establish Ordered Level
Planarity as a special case of both Clustered Level Planarity and
T-Level Planarity by providing the following reductions.

Theorem 4. Ordered Level Planarity with maximum degree Δ = 2 and
level-width λ = 2 reduces in linear time to T-Level Planarity with maximum
degree Δ′ = 2 and level-width λ′ = 4.

Theorem 5. Ordered Level Planarity with maximum degree Δ = 2 and
level-width λ = 2 reduces in quadratic time to Clustered Level Planarity
with maximum degree Δ′ = 2, level-width λ′ = 2 and κ′ = 3 clusters.

Angelini et al. [2] propose the complexity of Clustered Level Planarity
for clustered level graphs with a flat cluster hierarchy as an open question. The-
orem 5 answers this question by showing that NP-hardness holds for instances
with only two non-trivial clusters.

2 Geodesic Planarity and Bi-Monotonicity

In this section we establish that deciding whether an instance G = (G, x, y, S) of
Geodesic Planarity has a geodesic drawing is NP-hard even if G is a perfect
matching and even if the coordinates assigned via x and y are in general position,
that is, no two vertices lie on a line with a direction from S. The NP-hardness
of Bi-Monotonicity for perfect matchings follows as a simple corollary. Our
results are obtained via a reduction from Ordered Level Planarity.

Lemma 1. Let S ⊂ Q2 with |S| ≥ 4 be a finite set of directions symmetric with
respect to the origin. Ordered Level Planarity with maximum degree Δ = 2
and level-width λ = 2 reduces to Geodesic Planarity such that the resulting
instances are in general position and consist of a perfect matching and direction
set S. The reduction can be carried out using a linear number of arithmetic
operations.

Proof Sketch. In this sketch, we prove our claim only for the classical case that
S contains exactly the four horizontal and vertical directions. Our reduction is
carried out in two steps. Let Go = (Go = (V,E), γ, χ) be an Ordered Level
Planarity instance with maximum degree Δ = 2 and level-width λ = 2.
In Step (i) we turn Go into an equivalent Geodesic Planarity instance
G′

g = (Go, x
′, γ, S). In Step (ii) we transform G′

g into an equivalent Geodesic
Planarity instance Gg = (Gg, x, y, S) where Gg is a perfect matching and the
vertex positions assigned via x and y are in general position.

Step (i): In order to transform Go into G′
g we apply a shearing transformation.

We translate the vertices of each level Vi by 3i units to the right, see Fig. 1(a)
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Fig. 1. (a), (b) and (c): Illustrations of Step (i). (d) The two gadget squares of each
level. Grid cells have size 1/48 × 1/48. (e) Illustration of Step (ii). Turning a drawing
of Gg into a drawing of G′

g (f) and vice versa (g).

and (b). Clearly, every geodesic drawing of G′
g can be turned into an ordered

level planar drawing of Go. On the other hand, consider an ordered level planar
drawing Γo of Go. Without loss of generality we can assume that in Γo all edges
are realized as polygonal paths in which bend points occur only on the horizontal
lines Li through the levels Vi where 0 ≤ i ≤ h. Further, we may assume that
all bend points have x-coordinates in the open interval (−1, 2). We shear Γo

by translating the bend points and vertices of level Vi by 3i units to the right
for 0 ≤ i ≤ h, see Fig. 1(b). In the resulting drawing Γ ′

o, the vertex positions
match those of G′

g. Furthermore, all edge-segments have a positive slope. Thus,
since the maximum degree is Δ = 2 we can replace all edge-segments with
L1-geodesic rectilinear paths that closely trace the segments and we obtain a
geodesic drawing Γ ′

g of G′
g, see Fig. 1(c).

Step (ii): In order to turn G′
g = (Go = (V,E), x′, γ, S) into the equivalent

instance Gg = (Gg, x, y, S) we transform Go into a perfect matching. To this
end, we split each vertex v ∈ V by replacing it with a small gadget that fits
inside a square rv centered on the position pv = (x′(v), γ(v)) of v, see Fig. 1(e).
We call rv the square of v and use ptr

v , ptl
v , pbr

v and pbl
v to denote the top-

right, top-left, bottom-right and bottom-left corner of rv, respectively. We use
two different sizes to ensure general position. The size of the gadget square is
1/4 × 1/4 if χ(v) = 0 and it is 1/8 × 1/8 if χ(v) = 1. The gadget contains
a degree-1 vertex for every edge incident to v. In the following we explain the
gadget construction in detail, for an illustration see Fig. 1(d). Let {v, u} be an
edge incident to v. We create an edge {v1, u} where v1 is a new vertex which
is placed at ptr

v − (1/48, 1/48) if u is located to the top-right of v and it is
placed at pbl

v + (1/48, 1/48) if u is located to the bottom-left of v. Similarly,
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if v is incident to a second edge {v, u′}, we create an edge {v2, u
′} where v2 is

placed at ptr
v − (1/24, 1/24) or pbl

v +(1/24, 1/24) depending on the position of u′.
Finally, we create a blocking edge {vtl, vbr} where vtl is placed at ptl

v and vbr is
placed at pbr

v . The thereby assigned coordinates are in general position and the
construction can be carried out in linear time.

Assume that Gg has a geodesic drawing Γg. By construction, all blocking
edges have a top-left and a bottom-right endpoint. On the other hand, all other
edges have a bottom-left and a top-right endpoint. As a result, a non-blocking
edge e = {u, v} can not pass through any gadget square rw, except the squares ru

or rv since e would have to cross the blocking edge of rw. Accordingly, it is
straight-forward to obtain a geodesic drawing of Γ ′

g: We remove the blocking
edges, reinsert the vertices of V according to the mappings x′ and γ and connect
them to the vertices of their respective gadgets in a geodesic fashion. This can
always be done without crossings. Figure 1(f) shows one possibility. If the edge
from v2 passes to the left of v1, we may have to choose a reflected version. Finally,
we remove the vertices v1 and v2 which now act as subdivision vertices.

On the other hand, let Γ ′
g be a geodesic planar drawing of G′

g. Without loss of
generality, we can assume that each edge {u, v} passes only through the squares
of u and v. Furthermore, for each v ∈ V we can assume that its incident edges
intersect the boundary of rv only to the top-right of ptr

v − (1/48, 1/48) or to the
bottom-left of pbl

v + (1/48, 1/48), see Fig. 1(g). Thus, we can simply remove the
parts of the edges in the interior of the gadget squares and connect the gadget
vertices to the intersection points of the edges with the gadget squares in a
geodesic fashion. ��

The bit size of the numbers involved in the calculations of our reduction is
linearly bounded in the bit size of the directions of S. Together with Theorem 1
we obtain the proof of Theorem 2. The instances generated by Lemma 1 are in
general position. In particular, this means that the mappings x and y are injec-
tive. We obtain an immediate reduction to Bi-Monotonicity. The correctness
follows from the fact that every L1-geodesic rectilinear path can be transformed
into a bi-monotone curve and vice versa. Thus, we obtain Theorem 3.

3 Ordered Level Planarity

To show NP-hardness of Ordered Level Planarity we reduce from
a 3-Satisfiability variant described in this paragraph. A monotone 3-
Satisfiability formula is a Boolean 3-Satisfiability formula in which each
clause is either positive or negative, that is, each clause contains either exclu-
sively positive or exclusively negative literals respectively. A planar 3SAT for-
mula ϕ = (U , C) is a Boolean 3-Satisfiability formula with a set U of variables
and a set C of clauses such that its variable-clause graph Gϕ = (U 	C, E) is pla-
nar. The graph Gϕ is bipartite, i.e. every edge in E is incident to both a clause
vertex from C and a variable vertex from U . Furthermore, edge {c, u} ∈ E if
and only if a literal of variable u ∈ U occurs in c ∈ C. Planar Monotone
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3-Satisfiability is a special case of 3-Satisfiability where we are given a
planar and monotone 3-Satisfiability formula ϕ and a monotone rectilinear
representation R of the variable-clause graph of ϕ. The representation R is a
contact representation on an integer grid in which the variables are represented
by horizontal line segments arranged on a line 	. The clauses are represented
by E-shapes turned by 90◦ such that all positive clauses are placed above 	
and all negative clauses are placed below 	, see Fig. 2a. Planar Monotone
3-Satisfiability is NP-complete [5]. We are now equipped to prove the core
lemma of this section.

Lemma 2. Planar Monotone 3-Satisfiability reduces in polynomial time
to Ordered Level Planarity. The resulting instances have maximum
degree Δ = 2 and all vertices on levels with width at least 3 have out-degree
at most 1 and in-degree at most 1.

Fig. 2. (a) Representation R of ϕ with negative clauses (u1 ∨ u4 ∨ u5), (u1 ∨ u3 ∨ u4)
and (u1 ∨ u2 ∨ u3) and positive clauses (u1 ∨ u4 ∨ u5) and (u1 ∨ u2 ∨ u3) and (b) its
modified version R′ in Lemma 2. (c) Tier T0.

Proof Sketch. We perform a polynomial-time reduction from Planar Mono-
tone 3-Satisfiability. Let ϕ = (U , C) be a planar and monotone
3-Satisfiability formula with C = {c1, . . . , c|C|}. Let Gϕ the variable-clause
graph of ϕ. Let R be a monotone rectilinear representation of Gϕ. We con-
struct an ordered level graph G = (G, γ, χ) such that G has an ordered level
planar drawing if and only if ϕ is satisfiable. In this proof sketch we omit some
technical details such as precise level assignments and level orderings.

Overview: The ordered level graph G has l3 + 1 levels which are partitioned
into four tiers T0 = {0, . . . , l0}, T1 = {l0 + 1, . . . , l1}, T2 = {l1 + 1, . . . , l2}
and T3 = {l2 + 1, . . . , l3}. Each clause ci ∈ C is associated with a clause
edge ei = (cs

i , c
t
i) starting with cs

i in tier T0 and ending with ct
i in tier T2.

The clause edges have to be drawn in a system of tunnels that encodes the
3-Satisfiability formula ϕ. In T0 the layout of the tunnels corresponds directly
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to the rectilinear representation R, see Fig. 2c. For each E-shape there are three
tunnels corresponding to the three literals of the associated clause. The bottom
vertex cs

i of each clause edge ei is placed such that ei has to be drawn inside one
of the three tunnels of the E-shape corresponding to ci. This corresponds to the
fact that in a satisfying truth assignment every clause has at least one satisfied
literal. In tier T1 we merge all the tunnels corresponding to the same literal.
We create variable gadgets that ensure that for each variable u edges of clauses
containing u can be drawn in the tunnel associated with either the negative or
the positive literal of u but not both. This corresponds to the fact that every
variable is set to either true or false. Tiers T2 and T3 have a technical purpose.

We proceed by describing the different tiers in detail. Recall that in terms
of realizability, Ordered Level Planarity is equivalent to the generalized
version where γ and χ map to the reals. For the sake of convenience we will begin
by designing G in this generalized setting. It is easy to transform G such that it
satisfies the standard definition in a polynomial-time post processing step.

Fig. 3. (a) The E-shape and (b) the clause gadget of clause ci. The thick gray lines
represent the gates of ci.

Tier 0 and 2, Clause Gadgets: The clause edges ei = (cs
i , c

t
i) end in tier T2.

It is composed of l2 − l1 = |C| levels each of which contains precisely one vertex.
We assign γ(ct

i) = l1 + i. Observe that this imposes no constraint on the order
in which the edges enter T2.

Tier T0 consists of a system of tunnels that resembles the monotone rectilinear
representation R of Gϕ = (U 	 C, E), see Fig. 2c. Intuitively it is constructed as
follows: We take the top part of R, rotate it by 180◦ and place it to the left of the
bottom part such that the variables’ line segments align, see Fig. 2b. We call the
resulting representation R′. For each E-shape in R′ we create a clause gadget,
which is a subgraph composed of 11 vertices that are placed on a grid close
to the E-shape, see Fig. 3. The red vertex at the bottom is the lower vertex cs

i

of the clause edge ei of the clause ci corresponding to the E-shape. Without
loss of generality we assume the grid to be fine enough such that the resulting
ordered level graph can be drawn as in Fig. 2c without crossings. Further, we
assume that the y-coordinates of every pair of horizontal segments belonging to
distinct E-shapes differ by at least 3. This ensures that all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1 as stated in
the lemma.
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Fig. 4. (a) The variable gadget of uj in (b) positive and (c) negative state.

The clause gadget (without the clause edge) has a unique ordered level planar
drawing in the sense that for every level Vi the left-to-right sequence of vertices
and edges intersected by the horizontal line Li through Vi is identical in every
ordered level planar drawing. This is due to the fact that the order of the top-
most vertices v′

1, v6, v′
2, v7, v′

3 and v8 is fixed. We call the line segments v′
1v6,

v′
2v7 and v′

3v8 the gates of ci. Note that the clause edge ei has to intersect one
of the gates of ci. This corresponds to the fact the at least one literal of every
clause has to be satisfied.

The subgraph G0 induced by T0 (without the clause edges) has a unique
ordered level planar drawing. In tier T1 we bundle all gates that belong to one
literal together by creating two long paths for each literal. These two paths form
the tunnel of the corresponding literal. All clause edges intersecting a gate of
some literal have to be drawn inside the literal’s tunnel, see Fig. 2c. To this end,
for j = 1, . . . , |U| we use N0

j (n0
j ) to refer to the left-most (right-most) vertex

of a negative clause gadget placed on a line segment of R′ representing uj ∈ U .
The vertices N0

j and n0
j are the first vertices of the paths forming the negative

tunnel Tn
j of the negative literal of variable uj . Analogously, we use P 0

j (p0j ) to
refer to the left-most (right-most) vertex of a positive clause gadget placed on a
line segment of R′ representing uj . The vertices P 0

j and p0j are the first vertices
of the paths forming the positive tunnel T p

j of the positive literal of variable uj . If
for some j the variable uj is not contained both in negative and positive clauses,
we artificially add two vertices N0

j and n0
j or P 0

j and p0j on the corresponding
line segments in order to avoid having to treat special cases in the remainder of
the construction.

Tier 1 and 3, Variable Gadgets: Recall that every clause edge has to pass
through a gate that is associated with some literal of the clause, and, thus,
every edge is drawn in the tunnel of some literal. We need to ensure that it is
not possible to use tunnels associated with the positive, as well as the negative
literal of some variable simultaneously. To this end, we create a variable gadget
with vertices in tier T1 and tier T3 for each variable. The variable gadget of
variable uj is illustrated in Fig. 4a. The variable gadgets are nested in the sense
that they start in T1 in the order u1, u2, ..., u|U|, from bottom to top and they end
in the reverse order in T3, see Fig. 5. We force all tunnels with index at least j to
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be drawn between the vertices ua
j and ub

j . This is done by subdividing the tunnel
edges on this level, see Fig. 4b. The long edge (us

j , u
t
j) has to be drawn to the

left or right of uc
j in T3. Accordingly, it is drawn to the left of ua

j or to the right
of ub

j in T1. Thus, it is drawn either to the right (Fig. 4b) of all the tunnels or to
the left (Fig. 4c) of all the tunnels. As a consequence, the blocking edge (us

j , u
p
j )

is also drawn either to the right or the left of all the tunnels. Together with the
edge (uq

j , u
p
j ) it prevents clause edges from being drawn either in the positive

tunnel T p
j or negative tunnel Tn

j of variable uj which end at level γ(uq
j) because

they can not reach their endpoints in T2 without crossings. We say T p
j or Tn

j are
blocked respectively.

The construction of the ordered level graph G can be carried out in polyno-
mial time. Note that maximum degree is Δ = 2 and that all vertices on levels
with width at least 3 have out-degree at most 1 and in-degree at most 1 as
claimed in the lemma.

Correctness: It remains to show that G has an ordered level planar drawing if
and only if ϕ is satisfiable. Assume that G has an ordered level planar drawing Γ .
We create a satisfying truth assignment for ϕ. If Tn

j is blocked we set uj to true,
otherwise we set uj to false for j ∈ 1, . . . , |U|. Recall that the subgraph G0

induced by the vertices in tier T0 has a unique ordered level planar drawing.
Consider a clause ci and let f, g, j be the indices of the variables whose literals
are contained in ci. Clause edge ei = (es

i , e
t
i) has to pass level l0 through one of

the gates of ci. More precisely, it has to be drawn between either N0
f and n0

f ,

Fig. 5. Nesting structure of the variable gadgets.
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N0
g and n0

g or N0
j and n0

j if ci is negative or between either P 0
f and p0f , P 0

g and
p0g or P 0

j and p0j if ci is positive, see Fig. 2c. First, assume that ci is negative
and assume without loss of generality that it traverses l0 between N0

j and n0
j . In

this case clause edge ei has to be drawn in Tn
j . Recall that this is only possible

if Tn
j is not blocked, which is the case if uj is false, see Fig. 4c. Analogously, if ci

is positive and ei traverses w.l.o.g. between pP
j and pp

j , then uj is true, Fig. 4b.
Thus, we have established that one literal of each clause in C evaluates to true
for our truth assignment and, hence, formula ϕ is satisfiable.

Now assume that ϕ is satisfiable and consider a satisfying truth assignment.
We create an ordered level planar drawing Γ of G. It is clear how to create the
unique subdrawing of G0. The variable gadgets are drawn in a nested fashion, see
Fig. 5. For j = 1, . . . , |U| − 1 we draw edge (ua

j , uc
j) to left of ua

j+1 and us
j+1 and

edge (ub
j , u

c
j) to right of ub

j+1 and us
j+1. In other words, the pair ((ua

j , uc
j), (u

b
j , u

c
j))

is drawn between all such pairs with index smaller than j. Recall that the vertices
ua

j , ub
j , us

j , up
j and uq

j are located on higher levels than the according vertices
of variables with index smaller than j and that ut

j and uc
j are located on lower

levels than the according vertices of variables with index smaller than j.
For j = 1, . . . , |U| if uj is positive we draw the long edge (us

j , u
t
j) to the right

of ub
j and uc

j and, accordingly, we have to draw all tunnels left of us
j and uq

j

(except for Tn
j , which has to be drawn to the left of us

j and end to the right
of uq

j), see Fig. 4b. If uj is negative we draw the long edge (us
j , u

t
j) to the left

of ub
j and uc

j and, accordingly, we have to draw all tunnels right of us
j and uq

j

(except for T p
j , which has to be drawn to the right of us

j and end to the left of uq
j),

see Fig. 4c. We have to draw the blocking edge (us
j , u

p
j ) to the right of nj+1

j if uj

is positive and to the left of P j+1
j if uj is negative.

It remains to describe how to draw the clause edges. Let ci be a clause. There
is at least one true literal in ci. Let k be the index of the corresponding variable.
We describe the drawing of clause edge ei = (cs

i , c
t
i) from bottom to top. We

start by drawing ei in the tunnel T p
k (Tn

k ) if ci is positive (negative). After the
variable gadget of uk the edge ei leaves its tunnel and is drawn to the left (right)
of all gadgets of variables with higher index, see Fig. 5. ��

We obtain NP-hardness for instances with maximum degree Δ = 2. In fact,
we can restrict our attention to instances level-width λ = 2. To this end, we split
levels with width λi > 2 into λi − 1 levels containing exactly two vertices each.

Lemma 3. An instance G = (G = (V,E), γ, χ) of Ordered Level Pla-
narity with maximum degree Δ ≤ 2 can be transformed in linear time into an
equivalent instance G′ = (G′ = (V ′, E′), γ′, χ′) of Ordered Level Planarity
with level-width λ′ ≤ 2 and maximum degree Δ′. If in G all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1, then Δ′ ≤ 2.
Otherwise, Δ′ ≤ Δ + 1.

The reduction in Lemma 2 requires degree-2 vertices. With Δ = 1, the prob-
lem becomes polynomial-time solvable. In fact, even if Δ = 2 one can easily
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solve it as long as the maximum in-degree and the maximum out-degree are
both bounded by 1. Such instances consists of a set P of y-monotone paths.

We write p ≺ q, meaning that p ∈ P must be drawn to the left of q ∈ P , if p
and q have vertices vp and vq that lie adjacent on a common level. If ≺ is acyclic,
we can draw G according to a linear extension of ≺, otherwise there exists no
solution.

Lemma 4. Ordered Level Planarity restricted to instances with maxi-
mum in-degree Δ− = 1 and maximum out-degree Δ+ = 1 can be solved in
linear time.

For λ = 1 Ordered Level Planarity is solvable in linear time since
Level Planarity can be solved in linear time [15]. Proper instances can be
solved in linear-time via a sweep through every level. The problem is obviously
contained in NP. The results of this section establish Theorem 1.

Acknowledgements. We thank the authors of [16] for providing us with unpub-
lished information regarding their plane sweep approach for Manhattan Geodesic
Planarity.
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