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Abstract. Let T be an n-node tree of maximum degree 4, and let P be
a set of n points in the plane with no two points on the same horizontal
or vertical line. It is an open question whether T always has a planar
drawing on P such that each edge is drawn as an orthogonal path with
one bend (an “L-shaped” edge). By giving new methods for drawing
trees, we improve the bounds on the size of the point set P for which
such drawings are possible to: O(n1.55) for maximum degree 4 trees;
O(n1.22) for maximum degree 3 (binary) trees; and O(n1.142) for perfect
binary trees.

Drawing ordered trees with L-shaped edges is harder—we give an
example that cannot be done and a bound of O(n logn) points for L-
shaped drawings of ordered caterpillars, which contrasts with the known
linear bound for unordered caterpillars.

1 Introduction

The problem of drawing a planar graph so that its vertices are restricted to a
specified set of points in the plane has been well-studied, both from the perspec-
tive of algorithms and from the perspective of bounding the size of the point set
and/or the number of bends needed to draw the edges. Throughout this paper
we consider the version of the problem where the points are unlabelled, i.e., we
may choose to place any vertex at any point.

One basic result is that every planar n-vertex graph has a planar drawing on
any set of n points, even with the limitation of at most 2 bends per edge [11].
If every edge must be drawn as a straight-line segment then any n points in
general position still suffice for drawing trees [4] and outerplanar graphs [3] but
this result does not extend to any non-outerplanar graph [9], and the decision
version of the problem becomes NP-complete [5]. Since n points do not always
suffice, the next natural question is: How large must a universal point set be,
and how many points are needed for any point set to be universal? An upper
bound of O(n2) follows from the 1990 algorithms that draw planar graphs on an
O(n) × O(n) grid [8,13], but the best known lower bound, dating from 1989, is
c · n for some c > 1 [6].
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Although orthogonal graph drawing has been studied for a long time, anal-
ogous questions of universal point sets for orthogonal drawings have only been
explored recently, beginning with Katz et al. [10] in 2010. Since at most 4 edges
can be incident to a vertex in an orthogonal drawing, attention is restricted to
graphs of maximum degree 4. Throughout the paper we will restrict attention
to point sets in “general orthogonal position” meaning that no two points share
the same x- or y-coordinate. We study the simplest type of orthogonal drawings
where every edge must be drawn as an orthogonal path of two segments. Such
a path is called an “L-shaped edge” and these drawings are called “planar L-
shaped drawings”. Observe that any planar L-shaped drawing lives in the grid
formed by the n horizontal and n vertical lines through the points.

Di Giacomo et al. [7] introduced the problem of planar L-shaped drawings
and showed that any tree of maximum degree 4 has a planar L-shaped drawing
on any set of n2 − 2n + 2 points (in general orthogonal position, as will be
assumed henceforth). Aichholzer et al. [1] improved the bound to O(nc) with
c = log2 3 ≈ 1.585. It is an open question whether n points always suffice.
Surprisingly, nothing better is known for trees of maximum degree 3.

The largest subclass of trees for which n points are known to suffice is the
class of caterpillars of maximum degree 3 [7]. A caterpillar is a tree such that
deleting the leaves gives a path, called the spine. For caterpillars of maximum
degree 4 with n nodes, any point set of size 3n − 2 permits a planar L-shaped
drawing [7], and the factor was improved to 5/3 by Scheucher [12].

1.1 Our Results

We give improved bounds as shown in Table 1. A tree of max degree 3 (or 4)
is perfect if it is a rooted binary tree (or ternary tree, respectively) in which all
leaves are at the same height and all non-leaf nodes have 2 (or 3, respectively)
children. Our bounds are achieved by constructing the drawings recursively and
analyzing the resulting recurrence relations, which is the same approach used
previously by Aichholzer et al. [1]. Our improvements come from more elaborate
drawing methods. Results on maximum degree 3 trees are in Sect. 3 and results
on maximum degree 4 trees are in Sect. 4.

Table 1. Previous and new bounds on the number of points sufficient for planar L-
shaped drawings of any tree of n nodes. The previous bounds all come from Aichholzer
et al. [1].

Previous New

deg 3 perfect n1.585 n1.142

deg 3 general n1.585 n1.22

deg 4 perfect n1.465 a

deg 4 general n1.585 n1.55

aThe bound of n1.465 is not explicit in [1] but

will be explained in Sect. 4.
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We also consider the case of ordered trees where the cyclic order of edges
incident to each vertex is specified. We give an example of an n-node ordered
tree (in fact, a caterpillar) and a set of n points such that the tree has no L-
shaped planar drawing on the point set. We also give a positive result about
drawing some ordered caterpillars on O(n log n) points. The caterpillars that
can be drawn on such O(n log n) points include our example that cannot be
drawn on a given set of n points. These results are in Sect. 2.

1.2 Further Background

Katz et al. [10] introduced the problem of drawing a planar graph on a specified
set of points in the plane so that each edge is an orthogeodesic path, i.e. a path
of horizontal and vertical segments whose length is equal to the L1 distance
between the endpoints of the path. They showed that the problem of deciding
whether an n-vertex planar graph has a planar orthogeodesic drawing on a given
set of n points is NP-complete. Subsequently, Di Giacomo et al. [7] showed that
any n-node tree of maximum degree 4 has an orthogeodesic drawing on any set
of n points where the drawing is restricted to the 2n × 2n grid that consists of
the “basic” horizontal and vertical lines through the points, plus one extra line
between each two consecutive parallel basic lines. If the drawing is restricted
to the basic grid, their bounds were 4n − 3 points for degree-4 trees, and 3n/2
points for degree-3 trees. These bounds were improved by Scheucher [12] and
then by Bárány et al. [2].

2 Ordered Trees—The Case of Caterpillars

All previous work has assumed that trees are unordered, i.e., that we may freely
choose the cyclic order of edges incident to a vertex. In this section we show
that ordered trees on n vertices do not always have planar L-shaped drawings
on n points. Our counterexample is a top-view caterpillar, i.e., a caterpillar such
that the two leaves adjacent to each vertex lie on opposite sides of the spine.
The main result in this section is that every top-view caterpillar has a planar
L-shaped drawing on cn log n points for some c > 0.

First the counterexample. We prove the following in the full version:

Lemma 1. The top-view caterpillar C14 on n = 14 nodes shown in Fig. 1(a)
cannot be drawn with L-shaped edges on the point set P14 of size 14 shown in
Fig. 1(c).

It is conceivable that this counter-example is an isolated one—we have been
unable to extend it to a family of such examples.

Next we explore the question of how many points are needed for a planar
L-shaped drawing of an n-vertex top-view caterpillar. Consider the appearance
of the caterpillar’s spine (a path) in such a drawing. Each node of the spine,
except for the two endpoints, must have its two incident spine edges aligned—
both horizontal or both vertical. Define a straight-through drawing of a path to
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(c)(b)

(a)

Fig. 1. The ordered top-view caterpillar C14 shown in (a) does not have a planar
L-shaped drawing on the point set P14 shown in (c). The ordering shown in (b) does.

be a planar L-shaped drawing such that the two incident edges at each vertex
are aligned. The best bound we have for the number of points that suffice for
a straight-through drawing of a path is obtained when we draw the path in a
monotone fashion, i.e. with non-decreasing x-coordinates.

Theorem 1. Any path of n vertices has an x-monotone straight-through draw-
ing on any set of at least c · n log n points for some constant c.

Proof. We prove that if the number of points satisfies the recurrence M(n) =
2M(n2 ) + 2n then any path of n vertices has an x-monotone straight-through
drawing on the points. Observe that this recurrence relation solves to M(n) ∈
Θ(n log n) which will complete the proof. Within a constant factor we can assume
without loss of generality that n is a power of 2.

Order the points by x-coordinate. Recall our assumption that no two points
share the same x- or y-coordinate. By induction, the first half of the path has
an x-monotone straight-through drawing on the first M(n2 ) points. We add the
assumption that the path starts with a horizontal segment.

Let p be the second last point used. Since n is a power of 2, the path goes
through p on a horizontal segment. Let T be the set of points to the right of and
above p. Let B be the set of points to the right of and below p. Refer to Fig. 2(a).
In T , consider the partial order (x1, y1) ≺T (x2, y2) if x1 < x2 and y1 < y2. Let
T ′ be the set of minimal elements in this partial order. Similarly, in B, let B′

be the set of elements that are minimal in the ordering (x1, y1) ≺B (x2, y2) if
x1 < x2 and y1 > y2. If T ′ has n or more points, then we can draw the whole path
on T ′ with an x-monotone straight-through drawing starting with a horizontal
segment. The same holds if B′ has n or more points. Thus we may assume that
|T ′|, |B′| < n. We now remove T ′ and B′; let R = (T − T ′) ∪ (B − B′). Then
|R| ≥ M(n2 ).

By induction the second half of the path has an x-monotone straight-through
drawing on the set R starting with a horizontal segment. Let r be the first point
used for this drawing. Assume without loss of generality that r lies in T . (The
other case is symmetric.) Consider the rectangle with opposite corners at p and
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p

q

r

T

B

(b)

(c)

(a)

Fig. 2. (a) The construction for the proof of Theorem 1. The points of T ′ and B′ are
drawn as hollow red points above p and hollow blue points below p, respectively. (b-c)
Examples of point sets of size 2n for which the maximum length of an x-monotone
straight-through path is n + 1. Such paths are shown in grey. In both cases there
are non-monotone planar straight-through paths of length 2n (dashed). (Color figure
online)

r. Since r is not in T ′, there is a point q ∈ T inside the rectangle. We can join
the two half paths using a vertical segment through q and the last vertex of the
first half path is embedded at q. ��

We can extend the above result to draw the entire caterpillar (not just its
spine) with the same bound on the number of points:

Theorem 2. Any top-view caterpillar of n vertices has a planar L-shaped draw-
ing on any set of c · n log n points for some constant c.

Proof (outline). Follow the above construction, but in addition to T ′ and B′,
also take the second and third layers. If any layer has n or more points, we
embed the whole caterpillar on it [7]. Otherwise, we remove at most a linear
number of points, and embed the second half of the caterpillar by induction on
the remaining points. Then, in the rectangle between p and r there must be an
increasing sequence of 3 points. Use the middle one for the left-over spine-vertex
q and the other two for the leaves of q. ��

We conjecture that 2n points suffice for an x-monotone straight-through
drawing of any n-path. See Fig. 2(b-c) for a lower bound of 2n. Do n points
suffice if the x-monotone condition is relaxed to planarity? Finally, we mention
that the problem of finding monotone straight-through paths is related to a
problem about alternating runs in a sequence, as explained in the full paper.

3 Trees of Maximum Degree 3

In this section, we prove bounds on the number of points needed for L-shaped
drawings of trees with maximum degree 3. We treat the trees as rooted and thus,
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we refer to them as binary trees. We name the parts of the tree as shown in
Fig. 3(a). The root r0 has two subtrees T1 and T2 of size n1 and n2, respectively,
with n1 ≤ n2. T2’s root, r1, has subtrees of sizes n2,1 and n2,2 with n2,1 ≤ n2,2.

p

Q

p

Q

f

g

f(n)

g(n)

r0

r1T
1

n1

n2,1 n2,2

a1 b1 r1

rk−2

r0

rk−1

rk

b2

bk−1

bk

a2

ak−1

ak

Ta1 1bT

(a) (b)

(c)

(d)

na1 1bn

Fig. 3. The naming conventions for (a) binary and (b) ternary trees. The set-up for
(c) f -configurations and (d) g-configurations.

The main idea is to draw a tree T on a set of points in a rectangle Q by par-
titioning the rectangle into subrectangles in which we recursively draw subtrees.
This gives rise to recurrence relations for the number of points needed to draw
trees of size n, which we then analyze. We distinguish two subproblems or “con-
figurations.” In each, we must draw a tree T rooted at r0 in a rectangle Q that
currently has no part of the drawing inside it. Furthermore, the parent p of r0
has already been drawn, and one or two rays outgoing from p have been reserved
for drawing the first segment of edge (p, r0) (without hitting any previous part
of the drawing).

In the f -configuration the reserved ray from p goes vertically downward to
Q. See Fig. 3(c). Let f(n) be the smallest number of points such that any binary
tree with n vertices can be drawn in any rectangle with f(n)−1 points in the f -
configuration1. We will give various ways of drawing trees in the f -configuration,
each of which gives an upper bound on f(n). Among these choices, the algorithm
uses the one that requires the fewest points.

In the g-configuration we reserve a horizontal ray from p, that allows the
L-shaped edge (p, r0) to turn downward into Q at any point without hitting any
previous part of the drawing. In addition, we reserve the vertical ray downward
from p in case this ray enters Q. See Fig. 3(d) for the case where the horizontal
ray goes to the right. Let g(n) be the smallest number of points such that any
binary tree with n vertices can be drawn in any rectangle with g(n) − 1 points
in the g-configuration. Observe that f(n) ≥ g(n) since the g-configuration gives
us strictly more freedom.

We start with two easy constructions to give the flavour of our methods.
f -draw-1. This method, illustrated in Fig. 4(a), applies to an f -configuration.
We first describe the construction and then say how many points are required.
1 Beware: we will use the same notation f(n) in Sect. 4 to refer to ternary trees.
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Fig. 4. Three methods: (a) f -draw-1; (b) g-draw; and (c) f -draw-2.

Continue the vertical ray from p downward to a horizontal half-grid line h deter-
mined as follows. Partition Q by h and the ray down to h into 3 parts: QB , the
rectangle below h; QL, the upper left rectangle; and QR, the upper right rect-
angle. Choose h to be the highest half-grid line such that QL or QR has f(n1)
points. Without loss of generality, assume that QL has f(n1) points, and QR has
at most f(n1) points. Place r0 at the bottommost point of QL. Draw the edge
(p, r0) down and left. Start a ray vertically up from r0, and recursively draw T1

in f -configuration (rotated 180◦) in the subrectangle of QL above r0, which has
f(n1) − 1 points. This leaves the leftward and downward rays free at r0, so we
can draw T2 recursively in g-configuration in QB so long as there are g(n2) − 1
points. The total number of points required is 2f(n1) + g(n2) − 1. Recall that
f(n) is 1 more than the number of required points, so this proves:

f(n) ≤ 2f(n1) + g(n2). (f -1)

Observe that we could have swapped f and g which proves:

f(n) ≤ 2g(n1) + f(n2). (f -1’)

The above method can be viewed as a special case of Aichholzer et al.’s method
for ternary trees [1] (see Sect. 4). We incorporate two new ideas to improve their
result: first, they used only f -configurations, but we notice that one of the above
two recursive subproblems is a g-configuration in the binary tree case, and can
be solved by a better recursive algorithm; second, their method wasted all the
points in QR, but we will give more involved constructions that allow us to use
some of those points.

g-draw. This method applies to a g-configuration where the ray from the parent
node p goes to the right. Partition Q at the highest horizontal half-grid line such
that the top rectangle QA has f(n1) points. We separate into two cases depending
whether the rightmost point, q, of QA is to the right or left of p.
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If q is to the right of p, place r0 at q, and draw the edge (p, r0) right and
down. See Fig. 4(b). Start a ray leftward from r0 and recursively draw T1 in
f -configuration in the subrectangle of QA to the left of q. Note that there are
f(n1) − 1 points here, which is sufficient. The rightward and downward rays at
r0 are free, so we can draw T2 recursively in g-configuration in QB if there are
g(n2) − 1 points. The total number of points required is f(n1) + g(n2) − 1.

If all points of QA lie to the left of p, then place r0 at the bottommost point
of QA and observe that we now have the situation of f -draw-1 with QR empty,
and f(n1) + g(n2) − 1 points suffice.

This proves:

g(n) ≤ f(n1) + g(n2). (g)

We now describe a different f -drawing method that is more efficient than
f -draw-1 above, and will be the key for our bound for binary trees.

f -draw-2. This method applies to an f -configuration. We begin as in f -draw-
1, though with the f -drawing and the g-drawing switched. Partition Q by a
horizontal half-grid line h and the ray from p down to h into 3 parts: QB ,
the rectangle below h; QL, the upper left rectangle; and QR, the upper right
rectangle. Choose h to be the highest half-grid line such that QL or QR has
g(n1) points. Without loss of generality, assume the former. We separate into
two cases depending on the size of QR.

If |QR| < g(n2,1) then we follow the f -draw-1 method. Let p1 be the bot-
tommost point of QL. Place r0 at p1, draw the edge (p, r0) down and left, recur-
sively draw T1 in g-configuration in QL using leftward/upward rays from r0, and
recursively draw T2 in f -configuration in QB using a downward ray from r0.
This requires g(n1) + g(n2,1) + f(n2) − 1 points, where g(n2,1) accounts for the
wasted points in QR.

If |QR| ≥ g(n2,1) then we make use of the points in QR by drawing subtree
T2,1 there. Let p1 be the bottommost point of QL, and let p2, p3, . . . be the points
of QB below p1 in decreasing y-order. Let k ≥ 2 be the smallest index such that
either k = n or point pk+1 lies to the right of pk. See Fig. 4(c).

We have two subcases. If k = n, then p1, . . . , pk form a monotone chain of
length n, i.e., a diagonal point set in the terminology of Di Giacomo et al. [7].
They showed that any tree of n points can be embedded on a diagonal point set,
so we simply draw T on these n points. (Note that if this construction is used
in the induction step, upward visibility is needed for connecting T to the rest of
the tree, and this can be achieved.)

Otherwise k < n. Place r0 at point pk and r1 at pk+1. Draw the edge (p, r0)
down and left, and the edge (r0, r1) down and right. Recursively draw T1 in
g-configuration in QL using leftward/upward rays from r0. Draw T2,2 in f -
configuration in the rectangle below r1 using a downward ray from r1. Draw
T2,1 in g-configuration in QR using the rightward ray from r1. Observe that if r1
lies to the right of p (i.e., below QR rather than below QL) then the upward ray
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from r1 is clear (as required for a g-drawing). The number of points required is
at most 2g(n1) + n + f(n2,2) − 1. This accounts for at most g(n1) points in QR,
and at most n points below h and above r1.

This proves:

f(n) ≤ max{g(n1) + g(n2,1) + f(n2), 2g(n1) + f(n2,2) + n}. (f -2)

Theorem 3. Any perfect binary tree with n nodes has an L-shaped drawing on
any point set of size c · n1.142 for some constant c.

Proof. For perfect binary trees we have n1 = n2 = 1
2n and n2,1 = n2,2 = 1

4n.
We solve the simultaneous recurrence relations for f and g in the full paper. ��
Theorem 4. Any binary tree has an L-shaped drawing on any point set of size
c · n1.22 for some constant c.

Proof. For n1 ≤ 0.349n, we use recursion (f -1). For n2,1 ≤ 0.082n, we combine
recursion (f -1’) and (f -1) to obtain f(n) ≤ 2g(n1)+2f(n2,1)+g(n2,2). For n1 >
0.349n and n2,1 > 0.082n, we use recursion (f -2). We solve the simultaneous
recurrence relations for f and g in the full paper. ��

4 Trees of Maximum Degree 4

In this section, we prove bounds on the number of points needed for L-shaped
drawings of trees with maximum degree 4. We treat the trees as rooted and refer
to them as ternary trees. Given a ternary tree of n nodes, let a1, b1 and r1 be
the three children of the root r0. We use Tv to denote the subtree rooted at a
node v, and nv to denote the number of nodes in Tv. We name the children of
the root such that na1 ≤ nb1 ≤ nr1 . For i ≥ 2, let ai, bi, ri be the three children
of ri−1, named such that nai

≤ nbi ≤ nri . See Fig. 3(b).
We will draw ternary trees using only the f -configuration as defined in Sect. 3

(see Fig. 3(c)). In this section (as opposed to the previous one) we define f(n)
to be minimum number such that any ternary tree of n nodes can be drawn in
f -configuration on any set of f(n) − 1 points.

As in Sect. 3, we will give various drawing methods, each of which gives a
recurrence relation for f(n). We begin with a re-description of Aichholzer et al.’s
method [1].

f4-draw-1. Extend the vertical ray from p downward to a horizontal half-grid
line h determined as follows. Partition Q by h and the ray down to h into 3
parts: QB , the rectangle below h; QL, the upper left rectangle; and QR, the
upper right rectangle. Choose h to be the highest half-grid line such that QL or
QR has 2f(na1)+2f(nb1) points. Without loss of generality, assume the former.
Partition QL vertically into two rectangles QLL and QLR with at least f(na1)
points on the left and at least f(nb1) points on the right respectively, with QLL to
the left of QLR. Place r0 at the bottommost point in QLR. Extend a ray upward
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from r0 and recursively draw Tb1 on the remaining f(nb1) − 1 points in QLR.
Extend a ray to the left from r0 and recursively draw Ta1 on the f(na1) points
in QLL. Finally, extend a ray downward from r0 and recursively draw Tr1 in QB .
See Fig. 5(a). The number of points required is 2f(na1) + 2f(nb1) + f(nr1) − 1,
so this proves:

f(n) ≤ 2f(na1) + 2f(nb1) + f(nr1). (f 4-1)

For example, in the case when T is perfect (with na1 = nb1 = nr1 = n
3 ),

the inequality (f4-1) becomes f(n) ≤ 5f(n/3), which resolves to O(nlog3 5) and
log3 5 ≈ 1.465. The critical case for this recursion, though, turns out to be when
na1 = 0 and nb1 = nr1 = n

2 , which gives f(n) ≤ 3f(n/2) and leads to Aichholzer
et al.’s O(nlog3 2) result.

Q
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Fig. 5. (a) f4-draw-1. (b) Drawing the “small” subtrees in QL. (c) f4-draw-2A.

f4-draw-2. To improve their result, our idea again is to avoid wasting the points
in QR, and use some of those points in the recursive drawings of subtrees at
the next levels. However, simply considering subtrees at the second level is not
sufficient for an asymptotic improvement if Ta2 and Tb2 are too small. Thus, we
consider a more complicated approach that stops at the first level k ≥ 2 where
nrk ≤ 0.9nrk−1 . Note that for i = 2, . . . , k − 1, we have nri > 0.9nri−1 and
nai

, nbi ≤ 0.1nri−1 , and so Tai
and Tbi are “small” subtrees. We apply the same

idea as above to draw not just Ta1 , Tb1 but also all the small subtrees Tai
and

Tbi , i = 2, . . . , k−1 in QL (appropriately defined), and then consider a few cases
for how to draw the remaining “big” subtrees Tak

, Tbk , and Trk , possibly using
some points in QR. The number of points we will need to reserve for drawing
Ta1 , Tb1 , . . . , Tak−1 , Tbk−1 is

Y = f(na1) + f(nb1) +
k−1∑

i=2

(2f(nai
) + 2f(nbi)).

Extend the vertical ray from p downward until QL or QR has Y points. Without
loss of generality, assume the former.
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Drawing the Small Subtrees. We draw nodes ri and subtrees Tai
and Tbi , i =

1, . . . , k − 1 in QL as follows. Split QL horizontally into rectangles L1, . . . , Lk−1.
The plan is to draw ri, Tai

and Tbi in Li, in the same way that Ta1 and Tb1 were
drawn in f4-draw-1. See Fig. 5(b). Level L1 is special because the vertical ray
from p is at the right boundary of L1. Thus, we require f(na1) + f(nb1) points.
For levels Li, i = 2, . . . , k − 1 the vertical ray from ri−2 may enter Li at any
point, so we require 2f(nai

)+2f(nbi) points to follow the plan of f4-draw-1, and
the L-shaped edge from ri−2 to ri−1 may turn left or right. The total number of
points we need in all levels is Y , which is why we defined Y as we did.

Drawing the Final Three Subtrees. It remains to draw rk−1 and its three
subtrees Tak

, Tbk , and Trk . We will draw Trk on the bottommost f(nrk) − 1
points of Q. Call this rectangle QB . Let E be the “equatorial zone” that lies
between QL, QR above and QB below. See Fig. 5(c). If we are lucky, then not
too many points are wasted in QR. Let Z ≤ Y be the number of points in QR.

Case A: Z < f(nbk). In this case we draw rk−1, Tak
and Tbk in E as in f4-draw-1.

See Fig. 5(c). For this, we need 2f(nak
)+2f(nbk) points in E. The total number

of points required in this case is Y + Z + 2f(nak
) + 2f(nbk) + f(nrk) − 1,

so this proves:

f(n) ≤ Y + Z + 2f(nak ) + 2f(nbk ) + f(nrk ) (f 4-2A)

= f(na1 ) + f(nb1) +

k−1∑

i=2

(
2f(nai ) + 2f(nbi)

)
+ 2f(nak ) + 3f(nbk ) + f(nrk ).

We must now deal with the unlucky case when Z ≥ f(nbk). We will require
3f(nak

) + f(nbk) points in E. We sum up the total number of points below,
but first we describe how to complete the drawing in E. Partition E into three
regions: EL, EM , and ER, where EL is the region to the left of rk−2, ER is the
region to the right of p, and EM is the region between them. See Fig. 6. Observe
that either |EL| ≥ f(nak

) + f(nbk), or |EM | ≥ f(nak
), or |ER| > f(nak

). We
show how to draw rk−1, Tak

and Tbk in each of these 3 cases.

Case B1: |EL| ≥ f(nak
)+f(nbk). In this case we draw rk−1, Tak

and Tbk in EL

as in f4-draw-1. See Fig. 6(a). Since EL is to the left of the ray down from
rk−2, we have sufficiently many points.

Case B2: |EM | ≥ f(nak
). In this case we place rk−1 at the lowest point of EM ,

draw Tak
above it in EM , and Tbk to its right in QR ∪ER. See Fig. 6(b). Since

|QR| = Z ≥ f(nbk), we have enough points to do this.
Case B3: |ER| > f(nak

). In this case we place rk−1 at the leftmost point of
ER, draw Tak

to its right in ER and Tbk above it in QR. See Fig. 6(c). Again,
there are sufficiently many points.

The total number of points required in each of these three cases is Y + Z +
3f(nak

) + f(nbk) + f(nrk) − 1, and Y ≤ Z which yields:
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Fig. 6. The drawings for f4-draw-2B: (a) Case B1, with EL in blue; (b) Case B2, with
EM in red; (c) Case B3, with ER in green. (Color figure online)

f(n) ≤ Y + Z + 3f(nak ) + f(nbk) + f(nrk) (f 4-2B)

= 2f(na1) + 2f(nb1) +

k−1∑

i=2

(4f(nai) + 4f(nbi)) + 3f(nak ) + f(nbk ) + f(nrk ).

The bound on f(n) obtained from f4-draw-2 is the maximum of (f4-2A) and
(f4-2B).

Theorem 5. Any ternary tree with n nodes has an L-shaped drawing on any
point set of size 2n1.55.

Proof. For nb1 ≤ 0.47n, we use recursion (f4-1). Otherwise, we use (f4-2A) or
(f4-2B) and take the larger of the two bounds. We solve the recurrence relation
for f in the full paper. ��

5 Conclusions

We have made slight improvements on the exponent t in the bounds that c · nt

points always suffice for drawing trees of maximum degree 4, or 3, with L-shaped
edges. Improving the bounds to, e.g., O(n log n) will require a breakthrough. In
the other direction, there is still no counterexample to the possibility that n
points suffice.

We introduced the problem of drawing ordered trees with L-shaped edges,
where many questions remain open. For example: Do c · n points suffice for
drawing ordered caterpillars? Can our isolated example be expanded to prove
that n points are not sufficient in general?
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