Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges

Therese Biedl ${ }^{1(\boxtimes)}$, Timothy M. Chan ${ }^{2}$, Martin Derka ${ }^{1}$, Kshitij Jain ${ }^{1}$, and Anna Lubiw ${ }^{1}$
${ }^{1}$ University of Waterloo, Waterloo, ON N2L 3G1, Canada
\{biedl, mderka, k22jain, alubiw\}@uwaterloo.ca
${ }^{2}$ University of Illinois at Urbana-Champaign, Urbana, IL, USA
tmc@illinois.edu

Abstract

Let T be an n-node tree of maximum degree 4 , and let P be a set of n points in the plane with no two points on the same horizontal or vertical line. It is an open question whether T always has a planar drawing on P such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set P for which such drawings are possible to: $O\left(n^{1.55}\right)$ for maximum degree 4 trees; $O\left(n^{1.22}\right)$ for maximum degree 3 (binary) trees; and $O\left(n^{1.142}\right)$ for perfect binary trees.

Drawing ordered trees with L-shaped edges is harder-we give an example that cannot be done and a bound of $O(n \log n)$ points for Lshaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.

1 Introduction

The problem of drawing a planar graph so that its vertices are restricted to a specified set of points in the plane has been well-studied, both from the perspective of algorithms and from the perspective of bounding the size of the point set and/or the number of bends needed to draw the edges. Throughout this paper we consider the version of the problem where the points are unlabelled, i.e., we may choose to place any vertex at any point.

One basic result is that every planar n-vertex graph has a planar drawing on any set of n points, even with the limitation of at most 2 bends per edge [11]. If every edge must be drawn as a straight-line segment then any n points in general position still suffice for drawing trees [4] and outerplanar graphs [3] but this result does not extend to any non-outerplanar graph [9], and the decision version of the problem becomes NP-complete [5]. Since n points do not always suffice, the next natural question is: How large must a universal point set be, and how many points are needed for any point set to be universal? An upper bound of $O\left(n^{2}\right)$ follows from the 1990 algorithms that draw planar graphs on an $O(n) \times O(n)$ grid $[8,13]$, but the best known lower bound, dating from 1989, is $c \cdot n$ for some $c>1[6]$.

Although orthogonal graph drawing has been studied for a long time, analogous questions of universal point sets for orthogonal drawings have only been explored recently, beginning with Katz et al. [10] in 2010. Since at most 4 edges can be incident to a vertex in an orthogonal drawing, attention is restricted to graphs of maximum degree 4 . Throughout the paper we will restrict attention to point sets in "general orthogonal position" meaning that no two points share the same x - or y-coordinate. We study the simplest type of orthogonal drawings where every edge must be drawn as an orthogonal path of two segments. Such a path is called an "L-shaped edge" and these drawings are called "planar Lshaped drawings". Observe that any planar L-shaped drawing lives in the grid formed by the n horizontal and n vertical lines through the points.

Di Giacomo et al. [7] introduced the problem of planar L-shaped drawings and showed that any tree of maximum degree 4 has a planar L-shaped drawing on any set of $n^{2}-2 n+2$ points (in general orthogonal position, as will be assumed henceforth). Aichholzer et al. [1] improved the bound to $O\left(n^{c}\right)$ with $c=\log _{2} 3 \approx 1.585$. It is an open question whether n points always suffice. Surprisingly, nothing better is known for trees of maximum degree 3 .

The largest subclass of trees for which n points are known to suffice is the class of caterpillars of maximum degree 3 [7]. A caterpillar is a tree such that deleting the leaves gives a path, called the spine. For caterpillars of maximum degree 4 with n nodes, any point set of size $3 n-2$ permits a planar L-shaped drawing [7], and the factor was improved to $5 / 3$ by Scheucher [12].

1.1 Our Results

We give improved bounds as shown in Table 1. A tree of max degree 3 (or 4) is perfect if it is a rooted binary tree (or ternary tree, respectively) in which all leaves are at the same height and all non-leaf nodes have 2 (or 3, respectively) children. Our bounds are achieved by constructing the drawings recursively and analyzing the resulting recurrence relations, which is the same approach used previously by Aichholzer et al. [1]. Our improvements come from more elaborate drawing methods. Results on maximum degree 3 trees are in Sect. 3 and results on maximum degree 4 trees are in Sect. 4 .

Table 1. Previous and new bounds on the number of points sufficient for planar Lshaped drawings of any tree of n nodes. The previous bounds all come from Aichholzer et al. [1].

	Previous	New		
deg 3 perfect	$n^{1.585}$	$n^{1.142}$		
deg 3 general	$n^{1.585}$	$n^{1.22}$		
deg 4 perfect	$n^{1.465 ~ a}$			
deg 4 general	$n^{1.585}$	$n^{1.55}$		a The bound of $n^{1.465}$ is not explicit in [1] but
:---				
will be explained in Sect. 4.				

We also consider the case of ordered trees where the cyclic order of edges incident to each vertex is specified. We give an example of an n-node ordered tree (in fact, a caterpillar) and a set of n points such that the tree has no Lshaped planar drawing on the point set. We also give a positive result about drawing some ordered caterpillars on $O(n \log n)$ points. The caterpillars that can be drawn on such $O(n \log n)$ points include our example that cannot be drawn on a given set of n points. These results are in Sect. 2 .

1.2 Further Background

Katz et al. [10] introduced the problem of drawing a planar graph on a specified set of points in the plane so that each edge is an orthogeodesic path, i.e. a path of horizontal and vertical segments whose length is equal to the L_{1} distance between the endpoints of the path. They showed that the problem of deciding whether an n-vertex planar graph has a planar orthogeodesic drawing on a given set of n points is NP-complete. Subsequently, Di Giacomo et al. [7] showed that any n-node tree of maximum degree 4 has an orthogeodesic drawing on any set of n points where the drawing is restricted to the $2 n \times 2 n$ grid that consists of the "basic" horizontal and vertical lines through the points, plus one extra line between each two consecutive parallel basic lines. If the drawing is restricted to the basic grid, their bounds were $4 n-3$ points for degree- 4 trees, and $3 n / 2$ points for degree-3 trees. These bounds were improved by Scheucher [12] and then by Bárány et al. [2].

2 Ordered Trees-The Case of Caterpillars

All previous work has assumed that trees are unordered, i.e., that we may freely choose the cyclic order of edges incident to a vertex. In this section we show that ordered trees on n vertices do not always have planar L-shaped drawings on n points. Our counterexample is a top-view caterpillar, i.e., a caterpillar such that the two leaves adjacent to each vertex lie on opposite sides of the spine. The main result in this section is that every top-view caterpillar has a planar L-shaped drawing on $c n \log n$ points for some $c>0$.

First the counterexample. We prove the following in the full version:
Lemma 1. The top-view caterpillar C_{14} on $n=14$ nodes shown in Fig. 1(a) cannot be drawn with L-shaped edges on the point set P_{14} of size 14 shown in Fig. 1(c).

It is conceivable that this counter-example is an isolated one-we have been unable to extend it to a family of such examples.

Next we explore the question of how many points are needed for a planar L-shaped drawing of an n-vertex top-view caterpillar. Consider the appearance of the caterpillar's spine (a path) in such a drawing. Each node of the spine, except for the two endpoints, must have its two incident spine edges alignedboth horizontal or both vertical. Define a straight-through drawing of a path to

Fig. 1. The ordered top-view caterpillar C_{14} shown in (a) does not have a planar L-shaped drawing on the point set P_{14} shown in (c). The ordering shown in (b) does.
be a planar L-shaped drawing such that the two incident edges at each vertex are aligned. The best bound we have for the number of points that suffice for a straight-through drawing of a path is obtained when we draw the path in a monotone fashion, i.e. with non-decreasing x-coordinates.

Theorem 1. Any path of n vertices has an x-monotone straight-through drawing on any set of at least $c \cdot n \log n$ points for some constant c.

Proof. We prove that if the number of points satisfies the recurrence $M(n)=$ $2 M\left(\frac{n}{2}\right)+2 n$ then any path of n vertices has an x-monotone straight-through drawing on the points. Observe that this recurrence relation solves to $M(n) \in$ $\Theta(n \log n)$ which will complete the proof. Within a constant factor we can assume without loss of generality that n is a power of 2 .

Order the points by x-coordinate. Recall our assumption that no two points share the same x - or y-coordinate. By induction, the first half of the path has an x-monotone straight-through drawing on the first $M\left(\frac{n}{2}\right)$ points. We add the assumption that the path starts with a horizontal segment.

Let p be the second last point used. Since n is a power of 2 , the path goes through p on a horizontal segment. Let T be the set of points to the right of and above p. Let B be the set of points to the right of and below p. Refer to Fig. 2(a). In T, consider the partial order $\left(x_{1}, y_{1}\right) \prec_{T}\left(x_{2}, y_{2}\right)$ if $x_{1}<x_{2}$ and $y_{1}<y_{2}$. Let T^{\prime} be the set of minimal elements in this partial order. Similarly, in B, let B^{\prime} be the set of elements that are minimal in the ordering $\left(x_{1}, y_{1}\right) \prec_{B}\left(x_{2}, y_{2}\right)$ if $x_{1}<x_{2}$ and $y_{1}>y_{2}$. If T^{\prime} has n or more points, then we can draw the whole path on T^{\prime} with an x-monotone straight-through drawing starting with a horizontal segment. The same holds if B^{\prime} has n or more points. Thus we may assume that $\left|T^{\prime}\right|,\left|B^{\prime}\right|<n$. We now remove T^{\prime} and B^{\prime}; let $R=\left(T-T^{\prime}\right) \cup\left(B-B^{\prime}\right)$. Then $|R| \geq M\left(\frac{n}{2}\right)$.

By induction the second half of the path has an x-monotone straight-through drawing on the set R starting with a horizontal segment. Let r be the first point used for this drawing. Assume without loss of generality that r lies in T. (The other case is symmetric.) Consider the rectangle with opposite corners at p and

Fig. 2. (a) The construction for the proof of Theorem 1. The points of T^{\prime} and B^{\prime} are drawn as hollow red points above p and hollow blue points below p, respectively. (b-c) Examples of point sets of size $2 n$ for which the maximum length of an x-monotone straight-through path is $n+1$. Such paths are shown in grey. In both cases there are non-monotone planar straight-through paths of length $2 n$ (dashed). (Color figure online)
r. Since r is not in T^{\prime}, there is a point $q \in T$ inside the rectangle. We can join the two half paths using a vertical segment through q and the last vertex of the first half path is embedded at q.

We can extend the above result to draw the entire caterpillar (not just its spine) with the same bound on the number of points:

Theorem 2. Any top-view caterpillar of n vertices has a planar L-shaped drawing on any set of $c \cdot n \log n$ points for some constant c.

Proof (outline). Follow the above construction, but in addition to T^{\prime} and B^{\prime}, also take the second and third layers. If any layer has n or more points, we embed the whole caterpillar on it [7]. Otherwise, we remove at most a linear number of points, and embed the second half of the caterpillar by induction on the remaining points. Then, in the rectangle between p and r there must be an increasing sequence of 3 points. Use the middle one for the left-over spine-vertex q and the other two for the leaves of q.

We conjecture that $2 n$ points suffice for an x-monotone straight-through drawing of any n-path. See Fig. 2(b-c) for a lower bound of $2 n$. Do n points suffice if the x-monotone condition is relaxed to planarity? Finally, we mention that the problem of finding monotone straight-through paths is related to a problem about alternating runs in a sequence, as explained in the full paper.

3 Trees of Maximum Degree 3

In this section, we prove bounds on the number of points needed for L-shaped drawings of trees with maximum degree 3 . We treat the trees as rooted and thus,
we refer to them as binary trees. We name the parts of the tree as shown in Fig. 3(a). The root r_{0} has two subtrees T_{1} and T_{2} of size n_{1} and n_{2}, respectively, with $n_{1} \leq n_{2}$. T_{2} 's root, r_{1}, has subtrees of sizes $n_{2,1}$ and $n_{2,2}$ with $n_{2,1} \leq n_{2,2}$.

Fig. 3. The naming conventions for (a) binary and (b) ternary trees. The set-up for (c) f-configurations and (d) g-configurations.

The main idea is to draw a tree T on a set of points in a rectangle Q by partitioning the rectangle into subrectangles in which we recursively draw subtrees. This gives rise to recurrence relations for the number of points needed to draw trees of size n, which we then analyze. We distinguish two subproblems or "configurations." In each, we must draw a tree T rooted at r_{0} in a rectangle Q that currently has no part of the drawing inside it. Furthermore, the parent p of r_{0} has already been drawn, and one or two rays outgoing from p have been reserved for drawing the first segment of edge (p, r_{0}) (without hitting any previous part of the drawing).

In the f-configuration the reserved ray from p goes vertically downward to Q. See Fig. 3(c). Let $f(n)$ be the smallest number of points such that any binary tree with n vertices can be drawn in any rectangle with $f(n)-1$ points in the f configuration ${ }^{1}$. We will give various ways of drawing trees in the f-configuration, each of which gives an upper bound on $f(n)$. Among these choices, the algorithm uses the one that requires the fewest points.

In the g-configuration we reserve a horizontal ray from p, that allows the L-shaped edge $\left(p, r_{0}\right)$ to turn downward $\operatorname{into} Q$ at any point without hitting any previous part of the drawing. In addition, we reserve the vertical ray downward from p in case this ray enters Q. See Fig. 3(d) for the case where the horizontal ray goes to the right. Let $g(n)$ be the smallest number of points such that any binary tree with n vertices can be drawn in any rectangle with $g(n)-1$ points in the g-configuration. Observe that $f(n) \geq g(n)$ since the g-configuration gives us strictly more freedom.

We start with two easy constructions to give the flavour of our methods. f-draw-1. This method, illustrated in Fig. 4(a), applies to an f-configuration. We first describe the construction and then say how many points are required.

[^0]

Fig. 4. Three methods: (a) f-draw-1; (b) g-draw; and (c) f-draw- 2 .

Continue the vertical ray from p downward to a horizontal half-grid line h determined as follows. Partition Q by h and the ray down to h into 3 parts: Q_{B}, the rectangle below $h ; Q_{L}$, the upper left rectangle; and Q_{R}, the upper right rectangle. Choose h to be the highest half-grid line such that Q_{L} or Q_{R} has $f\left(n_{1}\right)$ points. Without loss of generality, assume that Q_{L} has $f\left(n_{1}\right)$ points, and Q_{R} has at most $f\left(n_{1}\right)$ points. Place r_{0} at the bottommost point of Q_{L}. Draw the edge (p, r_{0}) down and left. Start a ray vertically up from r_{0}, and recursively draw T_{1} in f-configuration (rotated 180°) in the subrectangle of Q_{L} above r_{0}, which has $f\left(n_{1}\right)-1$ points. This leaves the leftward and downward rays free at r_{0}, so we can draw T_{2} recursively in g-configuration in Q_{B} so long as there are $g\left(n_{2}\right)-1$ points. The total number of points required is $2 f\left(n_{1}\right)+g\left(n_{2}\right)-1$. Recall that $f(n)$ is 1 more than the number of required points, so this proves:

$$
\begin{equation*}
f(n) \leq 2 f\left(n_{1}\right)+g\left(n_{2}\right) \tag{f-1}
\end{equation*}
$$

Observe that we could have swapped f and g which proves:

$$
f(n) \leq 2 g\left(n_{1}\right)+f\left(n_{2}\right)
$$

The above method can be viewed as a special case of Aichholzer et al.'s method for ternary trees [1] (see Sect. 4). We incorporate two new ideas to improve their result: first, they used only f-configurations, but we notice that one of the above two recursive subproblems is a g-configuration in the binary tree case, and can be solved by a better recursive algorithm; second, their method wasted all the points in Q_{R}, but we will give more involved constructions that allow us to use some of those points.
g-draw. This method applies to a g-configuration where the ray from the parent node p goes to the right. Partition Q at the highest horizontal half-grid line such that the top rectangle Q_{A} has $f\left(n_{1}\right)$ points. We separate into two cases depending whether the rightmost point, q, of Q_{A} is to the right or left of p.

If q is to the right of p, place r_{0} at q, and draw the edge $\left(p, r_{0}\right)$ right and down. See Fig. 4(b). Start a ray leftward from r_{0} and recursively draw T_{1} in f-configuration in the subrectangle of Q_{A} to the left of q. Note that there are $f\left(n_{1}\right)-1$ points here, which is sufficient. The rightward and downward rays at r_{0} are free, so we can draw T_{2} recursively in g-configuration in Q_{B} if there are $g\left(n_{2}\right)-1$ points. The total number of points required is $f\left(n_{1}\right)+g\left(n_{2}\right)-1$.

If all points of Q_{A} lie to the left of p, then place r_{0} at the bottommost point of Q_{A} and observe that we now have the situation of f-draw- 1 with Q_{R} empty, and $f\left(n_{1}\right)+g\left(n_{2}\right)-1$ points suffice.

This proves:

$$
\begin{equation*}
g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right) . \tag{g}
\end{equation*}
$$

We now describe a different f-drawing method that is more efficient than f-draw- 1 above, and will be the key for our bound for binary trees.
f-draw-2. This method applies to an f-configuration. We begin as in f-draw1 , though with the f-drawing and the g-drawing switched. Partition Q by a horizontal half-grid line h and the ray from p down to h into 3 parts: Q_{B}, the rectangle below $h ; Q_{L}$, the upper left rectangle; and Q_{R}, the upper right rectangle. Choose h to be the highest half-grid line such that Q_{L} or Q_{R} has $g\left(n_{1}\right)$ points. Without loss of generality, assume the former. We separate into two cases depending on the size of Q_{R}.

If $\left|Q_{R}\right|<g\left(n_{2,1}\right)$ then we follow the f-draw- 1 method. Let p_{1} be the bottommost point of Q_{L}. Place r_{0} at p_{1}, draw the edge $\left(p, r_{0}\right)$ down and left, recursively draw T_{1} in g-configuration in Q_{L} using leftward/upward rays from r_{0}, and recursively draw T_{2} in f-configuration in Q_{B} using a downward ray from r_{0}. This requires $g\left(n_{1}\right)+g\left(n_{2,1}\right)+f\left(n_{2}\right)-1$ points, where $g\left(n_{2,1}\right)$ accounts for the wasted points in Q_{R}.

If $\left|Q_{R}\right| \geq g\left(n_{2,1}\right)$ then we make use of the points in Q_{R} by drawing subtree $T_{2,1}$ there. Let p_{1} be the bottommost point of Q_{L}, and let p_{2}, p_{3}, \ldots be the points of Q_{B} below p_{1} in decreasing y-order. Let $k \geq 2$ be the smallest index such that either $k=n$ or point p_{k+1} lies to the right of p_{k}. See Fig. 4(c).

We have two subcases. If $k=n$, then p_{1}, \ldots, p_{k} form a monotone chain of length n, i.e., a diagonal point set in the terminology of Di Giacomo et al. [7]. They showed that any tree of n points can be embedded on a diagonal point set, so we simply draw T on these n points. (Note that if this construction is used in the induction step, upward visibility is needed for connecting T to the rest of the tree, and this can be achieved.)

Otherwise $k<n$. Place r_{0} at point p_{k} and r_{1} at p_{k+1}. Draw the edge $\left(p, r_{0}\right)$ down and left, and the edge $\left(r_{0}, r_{1}\right)$ down and right. Recursively draw T_{1} in g-configuration in Q_{L} using leftward/upward rays from r_{0}. Draw $T_{2,2}$ in f configuration in the rectangle below r_{1} using a downward ray from r_{1}. Draw $T_{2,1}$ in g-configuration in Q_{R} using the rightward ray from r_{1}. Observe that if r_{1} lies to the right of p (i.e., below Q_{R} rather than below Q_{L}) then the upward ray
from r_{1} is clear (as required for a g-drawing). The number of points required is at most $2 g\left(n_{1}\right)+n+f\left(n_{2,2}\right)-1$. This accounts for at most $g\left(n_{1}\right)$ points in Q_{R}, and at most n points below h and above r_{1}.

This proves:

$$
\begin{equation*}
f(n) \leq \max \left\{g\left(n_{1}\right)+g\left(n_{2,1}\right)+f\left(n_{2}\right), 2 g\left(n_{1}\right)+f\left(n_{2,2}\right)+n\right\} \tag{f-2}
\end{equation*}
$$

Theorem 3. Any perfect binary tree with n nodes has an L-shaped drawing on any point set of size $c \cdot n^{1.142}$ for some constant c.

Proof. For perfect binary trees we have $n_{1}=n_{2}=\frac{1}{2} n$ and $n_{2,1}=n_{2,2}=\frac{1}{4} n$. We solve the simultaneous recurrence relations for f and g in the full paper.

Theorem 4. Any binary tree has an L-shaped drawing on any point set of size $c \cdot n^{1.22}$ for some constant c.

Proof. For $n_{1} \leq 0.349 n$, we use recursion $(f-1)$. For $n_{2,1} \leq 0.082 n$, we combine recursion $\left(f-1^{\prime}\right)$ and $(f-1)$ to obtain $f(n) \leq 2 g\left(n_{1}\right)+2 f\left(n_{2,1}\right)+g\left(n_{2,2}\right)$. For $n_{1}>$ $0.349 n$ and $n_{2,1}>0.082 n$, we use recursion $(f-2)$. We solve the simultaneous recurrence relations for f and g in the full paper.

4 Trees of Maximum Degree 4

In this section, we prove bounds on the number of points needed for L-shaped drawings of trees with maximum degree 4 . We treat the trees as rooted and refer to them as ternary trees. Given a ternary tree of n nodes, let a_{1}, b_{1} and r_{1} be the three children of the root r_{0}. We use T_{v} to denote the subtree rooted at a node v, and n_{v} to denote the number of nodes in T_{v}. We name the children of the root such that $n_{a_{1}} \leq n_{b_{1}} \leq n_{r_{1}}$. For $i \geq 2$, let a_{i}, b_{i}, r_{i} be the three children of r_{i-1}, named such that $n_{a_{i}} \leq n_{b_{i}} \leq n_{r_{i}}$. See Fig. 3(b).

We will draw ternary trees using only the f-configuration as defined in Sect. 3 (see Fig. 3(c)). In this section (as opposed to the previous one) we define $f(n)$ to be minimum number such that any ternary tree of n nodes can be drawn in f-configuration on any set of $f(n)-1$ points.

As in Sect. 3, we will give various drawing methods, each of which gives a recurrence relation for $f(n)$. We begin with a re-description of Aichholzer et al.'s method [1].
f_{4}-draw-1. Extend the vertical ray from p downward to a horizontal half-grid line h determined as follows. Partition Q by h and the ray down to h into 3 parts: Q_{B}, the rectangle below $h ; Q_{L}$, the upper left rectangle; and Q_{R}, the upper right rectangle. Choose h to be the highest half-grid line such that Q_{L} or Q_{R} has $2 f\left(n_{a_{1}}\right)+2 f\left(n_{b_{1}}\right)$ points. Without loss of generality, assume the former. Partition Q_{L} vertically into two rectangles $Q_{L L}$ and $Q_{L R}$ with at least $f\left(n_{a_{1}}\right)$ points on the left and at least $f\left(n_{b_{1}}\right)$ points on the right respectively, with $Q_{L L}$ to the left of $Q_{L R}$. Place r_{0} at the bottommost point in $Q_{L R}$. Extend a ray upward
from r_{0} and recursively draw $T_{b_{1}}$ on the remaining $f\left(n_{b_{1}}\right)-1$ points in $Q_{L R}$. Extend a ray to the left from r_{0} and recursively draw $T_{a_{1}}$ on the $f\left(n_{a_{1}}\right)$ points in $Q_{L L}$. Finally, extend a ray downward from r_{0} and recursively draw $T_{r_{1}}$ in Q_{B}. See Fig. $5(\mathrm{a})$. The number of points required is $2 f\left(n_{a_{1}}\right)+2 f\left(n_{b_{1}}\right)+f\left(n_{r_{1}}\right)-1$, so this proves:

$$
\begin{equation*}
f(n) \leq 2 f\left(n_{a_{1}}\right)+2 f\left(n_{b_{1}}\right)+f\left(n_{r_{1}}\right) . \tag{4}
\end{equation*}
$$

For example, in the case when T is perfect (with $n_{a_{1}}=n_{b_{1}}=n_{r_{1}}=\frac{n}{3}$), the inequality $\left(f_{4}-1\right)$ becomes $f(n) \leq 5 f(n / 3)$, which resolves to $O\left(n^{\log _{3} 5}\right)$ and $\log _{3} 5 \approx 1.465$. The critical case for this recursion, though, turns out to be when $n_{a_{1}}=0$ and $n_{b_{1}}=n_{r_{1}}=\frac{n}{2}$, which gives $f(n) \leq 3 f(n / 2)$ and leads to Aichholzer et al.'s $O\left(n^{\log _{3} 2}\right)$ result.

(a)

(b)

(c)

Fig. 5. (a) f_{4}-draw-1. (b) Drawing the "small" subtrees in Q_{L}. (c) f_{4}-draw-2A.
f_{4}-draw-2. To improve their result, our idea again is to avoid wasting the points in Q_{R}, and use some of those points in the recursive drawings of subtrees at the next levels. However, simply considering subtrees at the second level is not sufficient for an asymptotic improvement if $T_{a_{2}}$ and $T_{b_{2}}$ are too small. Thus, we consider a more complicated approach that stops at the first level $k \geq 2$ where $n_{r_{k}} \leq 0.9 n_{r_{k-1}}$. Note that for $i=2, \ldots, k-1$, we have $n_{r_{i}}>0.9 n_{r_{i-1}}$ and $n_{a_{i}}, n_{b_{i}} \leq 0.1 n_{r_{i-1}}$, and so $T_{a_{i}}$ and $T_{b_{i}}$ are "small" subtrees. We apply the same idea as above to draw not just $T_{a_{1}}, T_{b_{1}}$ but also all the small subtrees $T_{a_{i}}$ and $T_{b_{i}}, i=2, \ldots, k-1$ in Q_{L} (appropriately defined), and then consider a few cases for how to draw the remaining "big" subtrees $T_{a_{k}}, T_{b_{k}}$, and $T_{r_{k}}$, possibly using some points in Q_{R}. The number of points we will need to reserve for drawing $T_{a_{1}}, T_{b_{1}}, \ldots, T_{a_{k-1}}, T_{b_{k-1}}$ is

$$
Y=f\left(n_{a_{1}}\right)+f\left(n_{b_{1}}\right)+\sum_{i=2}^{k-1}\left(2 f\left(n_{a_{i}}\right)+2 f\left(n_{b_{i}}\right)\right)
$$

Extend the vertical ray from p downward until Q_{L} or Q_{R} has Y points. Without loss of generality, assume the former.

Drawing the Small Subtrees. We draw nodes r_{i} and subtrees $T_{a_{i}}$ and $T_{b_{i}}, i=$ $1, \ldots, k-1$ in Q_{L} as follows. Split Q_{L} horizontally into rectangles L_{1}, \ldots, L_{k-1}. The plan is to draw $r_{i}, T_{a_{i}}$ and $T_{b_{i}}$ in L_{i}, in the same way that $T_{a_{1}}$ and $T_{b_{1}}$ were drawn in f_{4}-draw-1. See Fig. 5(b). Level L_{1} is special because the vertical ray from p is at the right boundary of L_{1}. Thus, we require $f\left(n_{a_{1}}\right)+f\left(n_{b_{1}}\right)$ points. For levels $L_{i}, i=2, \ldots, k-1$ the vertical ray from r_{i-2} may enter L_{i} at any point, so we require $2 f\left(n_{a_{i}}\right)+2 f\left(n_{b_{i}}\right)$ points to follow the plan of f_{4}-draw- 1 , and the L-shaped edge from r_{i-2} to r_{i-1} may turn left or right. The total number of points we need in all levels is Y, which is why we defined Y as we did.

Drawing the Final Three Subtrees. It remains to draw r_{k-1} and its three subtrees $T_{a_{k}}, T_{b_{k}}$, and $T_{r_{k}}$. We will draw $T_{r_{k}}$ on the bottommost $f\left(n_{r_{k}}\right)-1$ points of Q. Call this rectangle Q_{B}. Let E be the "equatorial zone" that lies between Q_{L}, Q_{R} above and Q_{B} below. See Fig. 5(c). If we are lucky, then not too many points are wasted in Q_{R}. Let $Z \leq Y$ be the number of points in Q_{R}.

Case A: $Z<f\left(n_{b_{k}}\right)$. In this case we draw $r_{k-1}, T_{a_{k}}$ and $T_{b_{k}}$ in E as in f_{4}-draw- 1 . See Fig. 5 (c). For this, we need $2 f\left(n_{a_{k}}\right)+2 f\left(n_{b_{k}}\right)$ points in E. The total number of points required in this case is $Y+Z+2 f\left(n_{a_{k}}\right)+2 f\left(n_{b_{k}}\right)+f\left(n_{r_{k}}\right)-1$, so this proves:

$$
\begin{align*}
f(n) & \leq Y+Z+2 f\left(n_{a_{k}}\right)+2 f\left(n_{b_{k}}\right)+f\left(n_{r_{k}}\right) \tag{4}\\
& =f\left(n_{a_{1}}\right)+f\left(n_{b_{1}}\right)+\sum_{i=2}^{k-1}\left(2 f\left(n_{a_{i}}\right)+2 f\left(n_{b_{i}}\right)\right)+2 f\left(n_{a_{k}}\right)+3 f\left(n_{b_{k}}\right)+f\left(n_{r_{k}}\right) .
\end{align*}
$$

We must now deal with the unlucky case when $Z \geq f\left(n_{b_{k}}\right)$. We will require $3 f\left(n_{a_{k}}\right)+f\left(n_{b_{k}}\right)$ points in E. We sum up the total number of points below, but first we describe how to complete the drawing in E. Partition E into three regions: E_{L}, E_{M}, and E_{R}, where E_{L} is the region to the left of r_{k-2}, E_{R} is the region to the right of p, and E_{M} is the region between them. See Fig. 6. Observe that either $\left|E_{L}\right| \geq f\left(n_{a_{k}}\right)+f\left(n_{b_{k}}\right)$, or $\left|E_{M}\right| \geq f\left(n_{a_{k}}\right)$, or $\left|E_{R}\right|>f\left(n_{a_{k}}\right)$. We show how to draw $r_{k-1}, T_{a_{k}}$ and $T_{b_{k}}$ in each of these 3 cases.

Case B1: $\left|E_{L}\right| \geq f\left(n_{a_{k}}\right)+f\left(n_{b_{k}}\right)$. In this case we draw $r_{k-1}, T_{a_{k}}$ and $T_{b_{k}}$ in E_{L} as in f_{4}-draw-1. See Fig. 6(a). Since E_{L} is to the left of the ray down from r_{k-2}, we have sufficiently many points.
Case B2: $\left|E_{M}\right| \geq f\left(n_{a_{k}}\right)$. In this case we place r_{k-1} at the lowest point of E_{M}, draw $T_{a_{k}}$ above it in E_{M}, and $T_{b_{k}}$ to its right in $Q_{R} \cup E_{R}$. See Fig. 6(b). Since $\left|Q_{R}\right|=Z \geq f\left(n_{b_{k}}\right)$, we have enough points to do this.
Case B3: $\left|E_{R}\right|>f\left(n_{a_{k}}\right)$. In this case we place r_{k-1} at the leftmost point of E_{R}, draw $T_{a_{k}}$ to its right in E_{R} and $T_{b_{k}}$ above it in Q_{R}. See Fig. 6(c). Again, there are sufficiently many points.

The total number of points required in each of these three cases is $Y+Z+$ $3 f\left(n_{a_{k}}\right)+f\left(n_{b_{k}}\right)+f\left(n_{r_{k}}\right)-1$, and $Y \leq Z$ which yields:

Fig. 6. The drawings for f_{4}-draw-2B: (a) Case B1, with E_{L} in blue; (b) Case B2, with E_{M} in red; (c) Case B3, with E_{R} in green. (Color figure online)

$$
\begin{aligned}
f(n) & \leq Y+Z+3 f\left(n_{a_{k}}\right)+f\left(n_{b_{k}}\right)+f\left(n_{r_{k}}\right) \\
& =2 f\left(n_{a_{1}}\right)+2 f\left(n_{b_{1}}\right)+\sum_{i=2}^{k-1}\left(4 f\left(n_{a_{i}}\right)+4 f\left(n_{b_{i}}\right)\right)+3 f\left(n_{a_{k}}\right)+f\left(n_{b_{k}}\right)+f\left(n_{r_{k}}\right) .
\end{aligned}
$$

The bound on $f(n)$ obtained from f_{4}-draw- 2 is the maximum of $\left(f_{4}-2 \mathrm{~A}\right)$ and ($f_{4}-2 \mathrm{~B}$).

Theorem 5. Any ternary tree with n nodes has an L-shaped drawing on any point set of size $2 n^{1.55}$.

Proof. For $n_{b_{1}} \leq 0.47 n$, we use recursion $\left(f_{4}-1\right)$. Otherwise, we use $\left(f_{4}-2 \mathrm{~A}\right)$ or $\left(f_{4}-2 \mathrm{~B}\right)$ and take the larger of the two bounds. We solve the recurrence relation for f in the full paper.

5 Conclusions

We have made slight improvements on the exponent t in the bounds that $c \cdot n^{t}$ points always suffice for drawing trees of maximum degree 4, or 3, with L-shaped edges. Improving the bounds to, e.g., $O(n \log n)$ will require a breakthrough. In the other direction, there is still no counterexample to the possibility that n points suffice.

We introduced the problem of drawing ordered trees with L-shaped edges, where many questions remain open. For example: Do $c \cdot n$ points suffice for drawing ordered caterpillars? Can our isolated example be expanded to prove that n points are not sufficient in general?

Acknowledgments. We thank Jeffrey Shallit for investigating the alternating sequences discussed in Sect. 2. This work was done as part of a Problem Session in the Algorithms and Complexity group at the University of Waterloo. We thank the other participants for helpful discussions.

References

1. Aichholzer, O., Hackl, T., Scheucher, M.: Planar L-shaped point set embeddings of trees. In: European Workshop on Computational Geometry (EuroCG) (2016). http://www.eurocg2016.usi.ch/
2. Bárány, I., Buchin, K., Hoffmann, M., Liebenau, A.: An improved bound for orthogeodesic point set embeddings of trees. In: European Workshop on Computational Geometry (EuroCG) (2016). http://www.eurocg2016.usi.ch/
3. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303-312 (2002)
4. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl. 1(2), 1-15 (1997)
5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353-363 (2006)
6. Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. ACM SIGACT News 20(4), 83-86 (1989)
7. Di Giacomo, E., Frati, F., Fulek, R., Grilli, L., Krug, M.: Orthogeodesic point-set embedding of trees. Comput. Geom. 46(8), 929-944 (2013)
8. Fraysseix, H.D., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41-51 (1990)
9. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Am. Math. Monthly 98, 165-166 (1991)
10. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0_21
11. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115-129 (2002)
12. Scheucher, M.: Orthogeodesic point set embeddings of outerplanar graphs. Master's thesis, Graz University of Technology (2015)
13. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138-148 (1990)

[^0]: ${ }^{1}$ Beware: we will use the same notation $f(n)$ in Sect. 4 to refer to ternary trees.

