
Drawing Big Graphs Using Spectral
Sparsification

Peter Eades, Quan Nguyen(B), and Seok-Hee Hong

The School of Information Technologies, University of Sydney, Sydney, Australia
{peter.eades,quan.nguyen,seokhee.hong}@sydney.edu.au

Abstract. Spectral sparsification is a general technique developed by
Spielman et al. to reduce the number of edges in a graph while retaining
its structural properties. We investigate the use of spectral sparsifica-
tion to produce good visual representations of big graphs. We evaluate
spectral sparsification approaches on real-world and synthetic graphs.
We show that spectral sparsifiers are more effective than random edge
sampling. Our results lead to guidelines for using spectral sparsification
in big graph visualization.

1 Introduction

The problem of drawing very large graphs is challenging and has motivated a
large body of research (see [15] for a survey). As the number of vertices and
edges becomes larger, layout algorithms become less effective. Further, runtime
is increased both at the layout stage and at the rendering stage. Recent work
(for example [20]) approaches the problem by replacing the original graph with
a “proxy graph”. The proxy graph is typically much smaller than the original
graph, and thus layout and rendering is easier. The challenge for the proxy
graph approach is to ensure that the proxy graph is a good representation of the
original graph; for visualization, we want the drawing of the proxy graph to be
faithful [21] to the original graph.

In this paper we examine a specific proxy graph approach using spectral spar-
sification as introduced by Spielman et al. [1]: roughly speaking, the spectrum
(that is, the eigenvalues of the Laplacian; see [10]) of the proxy graph approxi-
mates the spectrum of the original graph. Since the spectrum is closely related
to graph-theoretic properties that are significant for graph drawing, this kind of
proxy seems to promise faithful drawings.

We report results of an empirically investigation of the application of spec-
tral sparsification to graph drawing. Specifically, we consider two closely related
spectral sparsification techniques, one deterministic and one stochastic. We con-
sider the quality of drawings so produced, using real-world and synthetic data
sets. Quality is evaluated using the shape-based proxy graph metrics [20]. The
results of spectral sparsification are compared to sparsifications obtained by sim-
ple random edge sampling. Our investigation confirms the promise of spectral
sparsification, and shows that (overall) it is better than simple random edge
sampling.
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 272–286, 2018.
https://doi.org/10.1007/978-3-319-73915-1_22

Drawing Big Graphs Using Spectral Sparsification 273

Section 2 recalls the proxy graph approach, and shape-based quality metrics
for large graph drawing. Section 3 describes the application of spectral sparsifi-
cation to graph visualization. Section 4 presents our experiments with spectral
sparsification. The results of these experiments are presented and discussed in
Sect. 5. Section 6 concludes.

2 Background

Proxy Graphs and Sparsification. The proxy graph approach is described
in Fig. 1: for a given input graph G, a proxy graph G′ and a drawing D′ of G′

are computed. The proxy graph represents G but is simpler and/or smaller than
G in some sense. The user sees the drawing D′ of G′, and does not see a drawing
of the original graph G. However, if G′ is a “good” representation of G, then D′

is an adequate visualization of G in that the user can see all the structure of G
in the drawing D′.

Fig. 1. In the proxy graph approach, the user sees a “proxy” of the original graph.

If G′ is a subgraph of G, and the edge density of G′ is smaller than the edge
density of G, then we say that G′ is a sparsification of G. Sparsification is the
most common kind of proxy.

Sparsification has been extensively investigated in Graph Mining [9,16,19]
(see survey [14]). Typically, sparsification is achieved by some kind of stochastic
sampling. The most basic sparsification method is random edge sampling (RE) :
each edge is chosen independently with probability p [23]. This and many other
simple stochastic strategies have been empirically investigated in the context of
visualization of large graphs [20,29]. In this paper we apply a more sophisticated
graph sparsification approach to visualization: the spectral sparsification work
of Spielman et al. [1,25,26].

Shape-Based Quality Metrics. Traditional graph drawing metrics such as
edge bends, edge crossings, and angular resolution are based on the readability
of graphs; these metrics are good for small scale visualisation but become mean-
ingless beyond a few hundred nodes [22]. For large graphs, faithfulness metrics
are more important: informally, a drawing D of a graph G is faithful insofar as
D determines G, that is, insofar as the mapping G → D is invertible.

Here we use shape-based faithfulness metrics [7]. The aim of these metrics is
to measure how well the “shape” of the drawing represents the graph. For large
graphs, such as in Fig. 2, the shape of the drawing is more significant than the
number of edge bends and edge crossings. To make this notion more precise, we

274 P. Eades et al.

(a) (b) (c)

Fig. 2. The graphs can 144, cN1031M22638, and gN733M62509, drawn using FM3.
Note that each has a distinctive shape.

use “shape graphs”. Given a set P of n points, a shape graph S(P) is a graph with
vertex set P such that the edge of S(P) define the “shape” of P in some sense.
Examples of shape graphs are the Euclidean minimum spanning tree (EMST),
the relative neighbourhood graph (RNG), and the Gabriel graph (GG) [27].

Suppose that G = (V,E) is a graph and P is a set of points in the plane,
and each vertex u ∈ V is associated with a point p(u) ∈ P . Denote the set of
neighbours of u in G by NG(u), and the set of neighbours of p(u) in the shape
graph S(P) by NS(P)(p(u)). We say that

Jaccard(S(P), G) =
1

|V |
∑

u∈V

|NG(u) ∩ NS(P)(p(u))|
|NG(u) ∪ NS(P)(p(u))|

is the Jaccard similarity between the shape graph S(P) and G. If D is a drawing
of G then the (shape-based) quality of D is Q(D,G) = Jaccard(P,G), where P
is the set of vertex locations in the drawing D. Similarly, if D′ is a drawing of a
sparsification G′ of G, then the (shape-based) (proxy) quality of D′ is Q(D′, G) =
Jaccard(P ′, G), where P ′ is the set of vertex locations in the drawing D′. Note
that if u does not occur in D′, we consider that N ′(u) = ∅. For more details,
see [8].

3 The Spectral Sparsification Approach to Large Graph
Drawing

First we describe some of the terminology and concepts of spectral graph theory.
More details are in standard texts; for example, [5,10]1. The adjacency matrix
of an n-vertex graph G = (V,E) is the n × n matrix A, indexed by V, such that
Auv = 1 if (u, v) ∈ E and Auv = 0 otherwise. The degree matrix D of G is the
diagonal matrix with where Duu is the degree of vertex u. The Laplacian of G
is L = D − A. The spectrum of G is the list λ1, λ2, . . . , λn of eigenvalues of L. It
can be shown that L has real nonnegative eigenvalues [5], and we assume that
λ1 ≤ λ2 ≤ . . . ≤ λn; straightforward computation shows that λ1 = 0.
1 Beware: much of the terminology in spectral graph theory is not standardised.

Drawing Big Graphs Using Spectral Sparsification 275

The spectrum of a graph is closely related to many structural properties of
the graph:

Connectivity: The number of connected components of G is largest value of i
for which λi = 0 [5]. Roughly speaking, a larger value of λ2 indicates a more
highly connected graph and is related to the diameter of the graph. If λ2 > 0
then it is called the algebraic connectivity of G [11].

Clusters: Spectral clustering involves the projection of the graph using its small-
est eigenvalues. Spectral clustering solves a relaxation of the ratio cut prob-
lem, that is, the problem of dividing a graph into clusters to minimise the
ratio between the number of inter-cluster edges and the cluster size [28].
Informally, the ratio cut problem seeks to find clusters of similar size so that
the coupling between clusters is minimised.

Stress: The spectrum solves a kind of constrained stress problem for the graph.
More specifically, the Courant-Fischer theorem (see [5]) implies that

λi = min
x∈Xi

∑

(u,v)∈E

(xu − xv)2, (1)

where Xi is the set of unit vectors orthogonal to the first (i−1) eigenvectors.
The minimum is achieved when x is an eigenvalue corresponding to λi. Note
that the right hand side of Eq. (1) is a kind of stress function.

Commute distance: The average time that a random walker takes to travel
from vertex u to vertex v and return is the commute distance between u
and v. Eigenvalues are related to random walks in the graph, and thus to
commute distances (see [17]).

Spielman and Teng [26], following Benczur and Karger [3], first introduced the
concept of “spectral approximation”. Suppose that G is an n-vertex graph with
Laplacian L, and G′ is an n-vertex subgraph of G with Laplacian L′. If there is
an ε > 0 such that for every x ∈ Rn,

(1 − ε)
xT L′x
xT x

≤ xT Lx

xT x
≤ (1 + ε)

xT L′x
xT x

, (2)

then G′ is an ε-spectral approximation of G. Using the Courant-Fischer
Theorem [5] with (2), one can show that if G′ is an ε-spectral approximation
of G then the eigenvalues and eigenvectors of G′ are close to those of G. The
importance of this is that spectral approximation preserves the structural prop-
erties listed above.

Spielman and Teng first showed that every n-vertex graph has a spectral
approximation with O(n log n) edges [26]. The following theorem is one such
result:

Theorem 1 ([26]). Suppose that G is an n-vertex graph and 1√
n

≤ ε ≤ 1.
Then with probability at least 1

2 , there is an ε-spectral approximation G′ of G
with O(1ε n log n) edges.

276 P. Eades et al.

Further research of Spielman et al. refines and improves spectral sparsification
methods (see [1]). These results have potential for resolving scale issues in graph
visualisation by reducing the size of the graph while retaining its (spectral)
structure. However, the practical impact of these results for graph visualization
is not clear, because of large constants involved.

The proof of Theorem 1 is essentially a stochastic sampling method, using the
concept of “effective resistance”. Suppose that we regard a graph G = (V,E) as
an electrical network where each edge is a 1−Ω resistor, and a current is applied.
The voltage drop over an edge (u, v) is the effective resistance ruv of (u, v).
Effective resistance in a graph is closely related to commute distance, and can
be computed simply from the Moore-Penrose inverse [2] of the Laplacian. If L† is
the Moore-Penrose inverse of L and (u, v) ∈ E, then ruv = L†

uu + L†
vv − 2L†

uv.
We next describe two graph drawing algorithms, both variants of algorithms

of Spielman et al. [1]. Each takes a graph G and an integer m′, and computes a
sparsification G′ with m′ edges, then draws G′.

SSS (Stochastic Spectral Sparsification) randomly selects edges with probability
proportional to their resistance value. Let E′ be the edge set from m′ random
selections. Let G′ be the subgraph of G induced by E′; draw G′.

DSS (Deterministic Spectral Sparsification). Let E′ consist of the m′ of largest
effective resistance. Let G′ be the subgraph of G induced by E′; draw G′.

In both DSS and SSS, the sparsified graph can be drawn with any large-graph
layout algorithm.

4 The Experiments

The driving hypothesis for this paper is that for large graphs, spectral sparsifica-
tion gives good proxy graphs for visualization. To be more precise, we define the
relative density of the sparsification G′ for a graph G to be m′

m , where G has m
edges and G′ has m′ edges. Note that a proxy with higher relative density should
be a better approximation to the original graph; thus we expect that drawings
of the proxy with higher relative density should have better quality.

Since spectral sparsification (approximately) preserves the eigenvalues, we
hypothesize that both SSS and DSS are better than RE. Further, we expect that
the difference becomes smaller when the relative density is larger. To state this
precisely, let D′

SSS (respectively D′
RE) denote the drawing obtained by SSS (respec-

tively RE). We say that Q(D′
SSS,G)

Q(D′
RE,G) is the quality ratio of SSS; similarly define the

quality ratio of DSS. We expect that the quality ratio of both SSS and DSS is
greater than 1. Further, we expect that the quality ratio for both algorithms
tends to 1 as relative density tends to 1.

We implemented DSS, SSS and RE in Java, on top of the OpenIMAJ
toolkit [13]. In particular, we used OpenIMAJ to compute the Moore-Penrose
inverse. The experiments were performed on a Dell XPS 13 laptop, with an i7
Processor, 16 GB memory and 512 GB SSD. The laptop was running Ubuntu
16.04 with 20 GB swap memory. The computation of the Moore-Penrose inverse

Drawing Big Graphs Using Spectral Sparsification 277

used Java 8, with a specified 16 GB heap. We used multiple threads to speed up
the resistance computation.

We used three data sets. The first set of graphs is taken from “defacto-
benchmark” graphs, including the Hachul library, Walshaw’s Graph Partition-
ing Archive, the sparse matrices collection [6] and the network repository [24].
These include two types of graphs that have been extensively studied in graph
drawing research: grid-like graphs and scale-free graphs. The second set is the
GION data set [18]; this consists of RNA sequence graphs that are used for the
analysis of repetitive sequences in sequencing data; these graphs have been used
in previous experiments. They are locally dense and globally sparse, and gener-
ally have distinctive shapes. The third set consists of randomly generated graphs
that contain interesting structures that are difficult to model with sparsification.
Specifically, we generated a number of “black-hole graphs”, each of which con-
sists of one or more large and dense parts (so-called “black holes”), and these
parts connect with the rest of the graph by relatively few edges. These rela-
tively few edges outside the “black holes” determine the structure of the graph.
Such graphs are difficult to sparsify because sampling strategies tend to take
edges from the dense “black holes” and miss the structurally important edges.
Tuesday, December 19, 2017 at 9:06 am Figures 2(b) and (c) are black-hole
graphs. Details of the graphs that we used are in Table 1.

Table 1. Data sets

graph |V | |E| type
can 144 144 576 grid
G 15 1785 20459 scalef
G 2 4970 7400 grid
G 3 2851 15093 grid
G 4 2075 4769 scalef
mm 0 3296 6432 grid
nasa1824 1824 18692 grid
facebook01 4039 88234 scalef
oflights 2939 15677 scalef
soc h 2426 16630 scalef
yeastppi 2361 7182 scalef

(a) Benchmark graphs

graph |V | |E|
graph 1 5452 118404
graph 2 1159 6424
graph 3 7885 427406
graph 4 5953 186279
graph 5 1748 13957
graph 6 1785 20459
graph 7 3010 41757
graph 8 4924 52502

(b) GION graphs

graph |V | |E|
cN377M4790 377 4790
cN823M14995 823 14995
cN1031M226386 1031 22638
gN285M2009 285 2009
gN733M62509 733 62509
gN1080M17636 1080 17636
gN4784M38135 4784 38135

(c) Black-hole graphs

We sparsify these input graphs to a range of relative density values: from
small (1%, 2%, 3%, 4%, 5%, 10%) to medium and large (15%, 20%, · · · , 100%),
using SSS, DSS, and RE.

For layout, we use the FM 3 algorithm [12], as implemented in OGDF [4].
However, we also confirmed our results using FM3 variants (see Sect. 5.1).

We measured quality of the resulting visualizations by proxy quality metrics
Q(D,G) described in Sect. 2. For shape graphs, we used GG, RNG, and EMST ;

278 P. Eades et al.

the results for these three shape graphs are very similar, and here we report the
results for GG.

5 Results from the Experiments

First we describe typical examples of the results of our experiments, using the
graphs illustrated in Fig. 2; these are a relatively small defacto-benchmark graph
can 144, and two black-hole graphs cN1031M22638 and gN733M62509.

Sparsifications of cN1031M22638 using RE, DSS, and SSS at relative densities
of 3% and 15% are in Fig. 3. At relative density of 3%, both RE and SSS give
poor results; the drawings do not show the structure of the graph. However,
DSS gives a good representation. At relative density 15%, both DSS and SSS are
good, while RE remains poor. A similar example, with relative densities of 1%
and 10% for the black-hole graph gN733M62509, is in Fig. 4.

(a) RE 3% (b) DSS 3% (c) SSS 3%

(d) RE 15% (e) DSS 15% (f) SSS 15%

Fig. 3. Sparsifications of the graph cN1031M22638 at relative densities 3% and 15%.

While the results for cN1031M22638 and gN733M62509 are typical, some
results did not fit this mold. For can 144, see Fig. 5; here RE and SSS give poor
representations, even at very high relative density (40%). However, all three
algorithms give good representations at relative density 50%.

5.1 Quality: Results and Observations

Figure 6 shows the quality metrics for the three data sets for all three algorithms.
The x-axis shows relative densities from 1% to 95%; the y-axis shows quality
measures of the proxies.

We make the following five observations from the results.

Drawing Big Graphs Using Spectral Sparsification 279

(a) RE 1% (b) DSS 1% (c) SSS 1%

(d) RE 10% (e) DSS 10% (f) SSS 10%

Fig. 4. Sparsifications of the graph gN733M62509 at relative densities 1% and 10%.

(a) RE 40% (b) DSS 40% (c) SSS 40%

(d) RE 50% (e) DSS 50% (f) SSS 50%

Fig. 5. Sparsifications of the graph can 144 at relative densities 40% and 50%.

1. Quality increases with relative density. In general, quality increases as
relative density increases. For many graphs there is a more interesting pattern:
quality mostly increases up to a limit, achieved at a relative density between
10% and 30%, and then stays steady. Some of the defacto-benchmark graphs
do not show this pattern: they show close to linear improvement in quality
with density all the way up to 95%.

2. Spectral sparsification is better than random edge sampling. Figure 7
depicts the quality ratio (y-axis) for DSS and SSS for each data set, over

280 P. Eades et al.

(a) QDSS - Benchmark graphs (b) QSSS - Benchmark graphs

(c) QDSS - GION graphs (d) QSSS - GION graphs

(e) QDSS - Black-hole graphs (f) QSSS - Black-hole graphs

Fig. 6. Proxy quality metrics of output of DSS, SSS and RE: (a) and (b) defacto-
benchmark graphs, (c) and (d) GION graphs, (e) and (f) black-hole graphs. The metrics
use FM3 layout and GG shape graphs. (Color figure online)

relative density from 1% to 95%. Note that the quality ratio is significant in
most cases, especially at low relative density. For example, DSS metrics are
around 200 times better than RE, and sometimes much more (for the yeast
dataset it is about 400).
For most of the graphs, the quality ratio decreases as the relative density
increases. Quality ratio is best for relative density smaller than 10%. When
the relative density is more than 15%, RE may be slightly better than DSS for
a few graphs, such as defacto-benchmark graphs mm 0 graph (light blue),
and G 2 (red). Interestingly, soc h and oflights show a peak at around 10%
and 15% before a drop for larger relative density.

3. Sparsification is better for grid-like graphs than for scale-free
graphs. Figure 8(a) shows the quality change for DSS, SSS, and REwith den-
sity, over the grid-like and scale-free defacto-benchmark graphs. Note that
average values for DSS and SSS are better than the average value for RE when
the relative density is less than 35%. When relative density is greater than

Drawing Big Graphs Using Spectral Sparsification 281

(a) QDSS/QRE - Benchmark graphs (b) QSSS/QRE - Benchmark graphs

(c) QDSS/QRE - GION graphs (d) QSSS/QRE - GION graphs

(e) QDSS/QRE - Black-hole graphs (f) QSSS/QRE - Black-hole graphs

Fig. 7. Proxy quality ratio for DSS and SSS, for (a) and (b) defacto-benchmark graphs,
(c) and (d) GION graphs, (e) and (f) black hole graphs. The y-axis shows the quality
ratio. (Color figure online)

40%, there are fluctuations between SSS and DSS. For grid-like graphs, the
DSS and SSS proxies give better average proxy measures than RE proxies for
relative density less than 20%. For relative density greater than 35%, RE prox-
ies improve. For scale-free graphs, DSS and SSS outperformed when relative
density is under 80%.
Figure 8(b) shows the ratio of the quality average between DSS over RE and
SSS over RE. Overall, the quality ratios decline when relative density increase.
The ratios are good from 1.2 to 3 times better for relative density up to 20%.
For both types of graphs, DSS gives best quality, then SSS comes second.

4. Deterministic spectral sparsification is better. We compared the aver-
age of quality metrics for DSS, SSS and RE sparsification. Figure 9 shows the
average quality values for the three data sets. As expected, average values
increase when the relative density increases. Note that DSS gives the best
average and SSS is the second best.
Figure 10 shows the quality ratios QDSS/QRE and QSSS/QRE for all the data
sets. Again, DSS gives an overall larger improvement over RE than SSS.
The improvement of DSS over RE is good when relative density is less than
35%; SSS shows in improvement over RE as well, but it is not so dramatic.

282 P. Eades et al.

(a) Average quality metrics (b) Average quality ratio

Fig. 8. Comparison of proxy quality metrics of defacto-benchmark graphs: (1) Average
quality measures, (2) Average of quality ratio. The values are computed by graph types
for scale-free graphs (scalef), grid-like (grid) graphs, and overall (avg). QDSS/QRE.

(a) Benchmark graphs (b) GION graphs (c) Black-hole graphs

Fig. 9. Average quality metrics of DSS, SSS and RE over all data sets.

(a) Benchmark graphs (b) GION graphs (c) Black-hole graphs

Fig. 10. Quality ratios of DSS/RE and SSS/RE over all data sets.

When relative density is beyond 35%, the ratio becomes small (close to 1) or
even becomes smaller than 1. Further note from Fig. 10(a)–(c) that DSS and
SSS give better quality ratios for black-hole graphs than for GION graphs
and defacto-benchmark graphs.

5. Quality results are consistent across different layout algorithms. The
results reported above use FM3 for layout. However, we found that results
using other layout algorithms were very similar. We measured the quality
ratios using FM 3, Fast, Nice and NoTwist layouts from OGDF. For example,
Fig. 11 shows the quality ratio of DSS. As depicted from the graphs, the
improvement of DSS over RE is consistent across different layout algorithms.
The differences in the ratios is very small.

Drawing Big Graphs Using Spectral Sparsification 283

(a) GION graphs (b) Black-hole graphs

Fig. 11. Comparison of average quality ratio of DSS over RE between FM3, Fast, Nice
and NoTwist layouts. The y-axis shows the average quality ratio QDSS/QRE.

5.2 Runtime

Although the main purpose of our investigation was to evaluate the effectiveness
of spectral sparsification, some remarks about runtime are in order.

Figure 12(a) illustrates runtimes. The x-axis shows the number of edges,
and the y-axis shows the computation time in minutes. Figure 12(b) shows the
amount of time for (parallel) computing resistance values. The x-axis shows the
number of edges, and the y-axis shows the computation time in seconds.

(a) Inverse time (b) Resistance computation time

Fig. 12. The running time of computing Moore-Penrose inverse (in minutes) and resis-
tance values of all edges (in seconds).

The dominant part of runtime is the computation of the Moore-Penrose
inverse (and thus effective resistance); for this we used standard software [13].
For the defacto-benchmark graphs, computing the Moore-Penrose inverse takes
10.42 min on average. Graph can 144 takes minimum time for the Moore-
Penrose inverse calculation (0.0003 min), and graph graph 3 takes the longest
time (115 min).

284 P. Eades et al.

6 Concluding Remarks

This paper describes the first empirical study of the application of spectral spar-
sification in graph visualization.

Our experiments suggest that spectral sparsification approaches (DSS and
SSS) are better than random edge approach. Further, the results suggest some
guidelines for using spectral sparsification:

– DSS works better than SSS in practice.
– DSS and SSS give better quality metrics for grid-like graphs than for scale-free

graphs.
– For sparsifications with low relative density (1% to 20%), DSS and SSS are

considerably better than edge sampling. For relative density larger than 35%,
RE may be more practical, because it is simpler, faster, and produces similar
results to DSS and SSS.

Future work includes the following:

– Improve the runtime of these methods. For example, Spielman and
Srivastava [25] present a nearly-linear time algorithm that builds a data struc-
ture from which we can query the approximate effective resistance between
any two vertices in a graph in O(log n) time. This would allow testing spectral
sparsification for larger graphs.

– More extensive evaluation: our experiments compare spectral sparsification
with random edge sampling, but not with the wide range of sampling strate-
gies above. Further, extension to larger data sets would be desirable.

– In our experiments, quality is measured using an objective shape-based met-
ric. It would be useful to measure quality subjectively as well, using graph
visualization experts as subjects in an HCI-style experiment.

References

1. Batson, J.D., Spielman, D.A., Srivastava, N., Teng, S.: Spectral sparsification of
graphs: theory and algorithms. Commun. ACM 56(8), 87–94 (2013)

2. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol.
15. Springer Science & Business Media, New York (2003)

3. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 47–55 (1996)

4. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
Open Graph Drawing Framework (OGDF). CRC Press, Boca Raton (2012)

5. Chung, F.: Spectral Graph Theory. American Maths Society (1997)
6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM

Trans. Math. Softw. 38(1), 1:1–1:25 (2011)
7. Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large

graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017). https://doi.
org/10.7155/jgaa.00405

https://doi.org/10.7155/jgaa.00405
https://doi.org/10.7155/jgaa.00405

Drawing Big Graphs Using Spectral Sparsification 285

8. Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large
graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017)

9. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: a
case study of unbiased sampling of OSNs. In: Proceedings of the 29th Conference
on Information Communications, INFOCOM 2010 pp. 2498–2506. IEEE Press,
Piscataway (2010)

10. Godsil, C.D., Royle, G.F.: Algebraic Graph Theory. Graduate Texts in Mathemat-
ics. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

11. Gross, J., Yellen, J.: Handbook of Graph Theory. CRC Press, Boca Raton (2004)
12. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel

algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

13. Hare, J.S., Samangooei, S., Dupplaw, D.: OpenIMAJ and ImageTerrier: Java
libraries and tools for scalable multimedia analysis and indexing of images. In:
Proceedings of the 19th International Conference on Multimedia 2011, pp. 691–
694 (2011)

14. Hu, P., Lau, W.C.: A survey and taxonomy of graph sampling. CoRR
abs/1308.5865 (2013)

15. Hu, Y., Shi, L.: Visualizing large graphs. WIREs Comput. Stat. 7(2), 115–136
(2015). https://doi.org/10.1002/wics.1343

16. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 631–636. ACM (2006)

17. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi,
T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai
Mathematical Society (1996)

18. Marner, M.R., Smith, R.T., Thomas, B.H., Klein, K., Eades, P., Hong, S.-H.:
GION: interactively untangling large graphs on wall-sized displays. In: Duncan, C.,
Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 113–124. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45803-7 10

19. Morstatter, F., Pfeffer, J., Liu, H., Carley, K.: Is the sample good enough? Com-
paring data from Twitter’s streaming API with Twitter’s firehose, pp. 400–408.
AAAI press (2013)

20. Nguyen, Q.H., Hong, S.H., Eades, P., Meidiana, A.: Proxy graph: visual quality
metrics of big graph sampling. IEEE Trans. Visual Comput. Graphics 23(6), 1600–
1611 (2017)

21. Nguyen, Q., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations.
In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 566–568.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 55

22. Nguyen, Q.H., Eades, P., Hong, S.: On the faithfulness of graph visualizations.
In: IEEE Pacific Visualization Symposium, PacificVis 2013, 27 February–1 March
2013, Sydney, NSW, Australia, pp. 209–216 (2013). https://doi.org/10.1109/
PacificVis.2013.6596147

23. Rafiei, D., Curial, S.: Effectively visualizing large networks through sampling. In:
16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, 23–28
October 2005, pp. 375–382 (2005)

24. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

25. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. CoRR
abs/0803.0929 (2008). http://arxiv.org/abs/0803.0929

https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1002/wics.1343
https://doi.org/10.1007/978-3-662-45803-7_10
https://doi.org/10.1007/978-3-642-36763-2_55
https://doi.org/10.1109/PacificVis.2013.6596147
https://doi.org/10.1109/PacificVis.2013.6596147
http://networkrepository.com
http://arxiv.org/abs/0803.0929

286 P. Eades et al.

26. Spielman, D.A., Teng, S.: Spectral sparsification of graphs. SIAM J. Comput.
40(4), 981–1025 (2011)

27. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recogn. 12(4), 261–268 (1980). https://doi.org/10.1016/0031-3203(80)90066-7

28. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

29. Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., Cui, W.: Evaluation of graph
sampling: a visualization perspective. IEEE Trans. Visual Comput. Graphics 23(1),
401–410 (2017)

https://doi.org/10.1016/0031-3203(80)90066-7

	Drawing Big Graphs Using Spectral Sparsification
	1 Introduction
	2 Background
	3 The Spectral Sparsification Approach to Large Graph Drawing
	4 The Experiments
	5 Results from the Experiments
	5.1 Quality: Results and Observations
	5.2 Runtime

	6 Concluding Remarks
	References

