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Abstract. We show that any outerplanar graph admits a planar
straight-line drawing such that the length ratio of the longest to the
shortest edges is strictly less than 2. This result is tight in the sense
that for any ε > 0 there are outerplanar graphs that cannot be drawn
with an edge-length ratio smaller than 2 − ε. We also show that every
bipartite outerplanar graph has a planar straight-line drawing with edge-
length ratio 1, and that, for any k ≥ 1, there exists an outerplanar graph
with a given combinatorial embedding such that any planar straight-line
drawing has edge-length ratio greater than k.

1 Introduction

The problem of computing a planar straight-line drawing with prescribed edge
lengths has been addressed by several authors, partly for its theoretical interest
and partly for its application in different areas, including VLSI, wireless sensor
networks, and computational geometry (see for example [6,7,9,13]). Deciding
whether a graph admits a straight-line planar drawing with prescribed edge
lengths was shown to be NP-hard by Eades and Wormald for 3-connected pla-
nar graphs [8]. In the same paper, the authors show that it is NP-hard to deter-
mine whether a 2-connected planar graph has a unit-length planar straight-line
drawing; that is, a drawing in which all edges have the same length. Cabello et
al. extend this last result by showing that it is NP-hard to decide whether a
3-connected planar graph admits a unit-length planar straight-line drawing [3].
In addition, Bhatt and Cosmadakis prove that deciding whether a degree-4 tree
has a planar drawing such that all edges have the same length and the vertices
are at integer grid points is also NP-hard [2].

These hardness results have motivated the study of relaxations and variants
of the problem of computing straight-line planar drawings with constraints on the
edge lengths. For example, Aichholzer et al. [1] study the problem of computing
straight-line planar drawings where, for each pair of edges of the input graph G,
it is specified which edge must be longer. They characterize families of graphs
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that are length universal, i.e. they admit a planar straight-line drawing for any
given total order of their edge lengths.

Perhaps one of the most natural variants of the problem in the context of
graph drawing is that where, instead of imposing constraints on the edge lengths,
one aims at computing planar straight-line drawings where the variance of the
lengths of the edges is minimized. See for example [5], where this optimization
goal is listed among the most relevant aesthetics that impact the readability
of a drawing of a graph. Computing straight-line drawings where the ratio of
the longest to the shortest edge is close to 1 also arises in the approximation
of unit disk graph representations, a problem of interest in the area of wireless
communication networks (see, e.g. [4,11]).

Discouragingly, Eades and Wormald observe in their seminal paper that the
NP-hardness of computing 2-connected planar straight-line drawings with unit
edge lengths persists even when a small tolerance (independent of the problem
size) in the length of the edges is allowed. To our knowledge, little progress has
been made on bounding the ratio between the longest and shortest edge lengths
in planar straight-line drawings. We recall the work of Hoffmann et al. [10],
who compare different drawing styles according to different quality measures
including the edge-length variance.

In this paper we study planar straight-line drawings of outerplanar graphs
that bound the ratio of the longest to the shortest edge lengths from above by
a constant. We define the planar edge-length ratio of a planar graph G as the
smallest ratio between the longest and the shortest edge lengths over all planar
straight-line drawings of G. The main result of the paper is the following.

Theorem 1. The planar edge-length ratio of an outerplanar graph is strictly less
than 2. Also, for any given real positive number ε, there exists an outerplanar
graph whose planar edge-length ratio is greater than 2 − ε.

Informally, Theorem 1 establishes that 2 is a tight bound for the planar
edge-length ratio of outerplanar graphs. The upper bound is proved by using
a suitable decomposition of an outerplanar graph into subgraphs called strips,
then drawing the graph strip by strip. The lower bound is proved by taking into
account all possible planar embeddings of a maximal outerplanar graph whose
maximum vertex degree is a function of ε. Theorem 1 naturally suggests some
interesting questions that are discussed in Sect. 3.

We shall assume familiarity with basic definitions of graph planarity and
of graph drawing [5] and introduce only the terminology and notation that is
strictly needed for our proofs.

2 Proof of Theorem 1

It suffices to establish the result for maximal outerplanar graphs. To show that
the edge-length ratio of a maximal outerplanar graph is always less than 2,
we imagine decomposing the dual G∗ of G into a set of disjoint paths, which
we call chains. Each chain corresponds to some sequence of pairwise-adjacent
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triangles of G. The set of chains inherits a tree structure from G∗, and we use
this structure to direct an algorithm that draws each of the chains proceeding
from the root of this tree down to its leaves. We formally define a chain to be
a sequence Ts, Ts+1, . . . , Tt of triangles of G where s ≤ 0 ≤ t, and such that
(i) T0 consists of an outer edge of G whose vertices are labeled with 0, along
with a third vertex labeled 1, (ii) for each i : 1 ≤ i ≤ t, the vertices of Ti are
labeled by {i − 1, i, i + 1} so that Ti and Ti−1 share the edge having vertices
labeled i and i−1, and (iii) for each i : −1 ≥ i ≥ s, the vertices of Ti are labeled
by {i, i + 1, i + 2} so that Ti and Ti+1 share the edge having vertices labeled
i + 1 and i + 2. Note that this definition prohibits fans (consecutive triangles
all sharing a common vertex) containing more than 3 triangles, except for the
vertex labeled 1, which has four incident triangles on the chain.

The decomposition into chains is constructed by first selecting an edge e′ on
the outer face of some outerplanar topological embedding of G. The edge e′ is
incident with a unique triangle of G. Label each vertex of e′ with 0, and label
the third vertex of the triangle with 1. There is now a unique maximal chain Ce′

in G containing this labeled triangle. The edges of Ce′ can be partitioned into
two sets: Se′ and Le′ where Se′ consists of edges of Ce′ whose vertex labels differ
by 1 and Le′ consists of all edges of Ce′ whose vertex labels differ by 2, along
with e′.

Removing the edges of Se′ from G produces a set of 2-connected components
in 1-1 correspondence with the edges of Le′ : Each component contains exactly
one element of Le′ which lies on its outer face. For each edge e ∈ Le′ , let Ge be
the component of G−Se′ containing e. We can then recursively decompose each
Ge by choosing the (unique) maximal chain Ce in Ge containing the one triangle
(if any) of Ge that is incident with e. We call the set of chains so constructed
a chain decomposition of G. A chain decomposition produces a decomposition
of the edges of G into sets L and S, where L is the union of the edges in each
Le and S is the union of all of the edges in each Se. Note that there is a single
chain for each edge in L, and that the collection of chains produced naturally
form a tree: The root of the tree is the chain Ce′ and its children are the chains
{Ce : e ∈ Le′}; the chain decomposition is entirely determined by the choice of
external edge e′.

The drawing algorithm proceeds by first drawing the root chain Ce′ of the
chain decomposition tree of G and then recursively drawing the chain decompo-
sition trees of each Ge : e ∈ Le′ . The algorithm depends on a specific method
for drawing a single chain. To describe it, we need a few definitions. First, given
a line segment s in the plane and a direction (unit vector) d not parallel to s,
denote by S(s,d) the half-infinite strip bounded by s and the two infinite rays in
direction d that have their sources at the endpoints of s. Finally, given a chain C,
the edges of C ∩ L are called external edges of C; note that each external edge
is incident to exactly one triangle of C.

Lemma 1. Given a chain C with n vertices, an external edge e of C, a segment s
of length 1 in the plane, and a direction d such that the (smaller) angle between s
and d is θ < θ0 = arccos(1/4) ≈ 75.5◦, there exists a planar straight-line drawing
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of C such that: (i) the drawing is completely contained within the strip S(s,d);
(ii) no external edge e′ of C is parallel to d, and the strips S(e′,d) are all empty;
(iii) each external edge has length 1 and all other edges have lengths greater than
1/2; (iv) each external edge forms an angle less than θ0 with d. Moreover, such
a drawing can be computed in O(n)-time in the real RAM model.

Proof. Let T0 be the triangle of C containing e. T0 is either adjacent to zero,
one, or two triangles of C. We handle these three cases in turn. If T0 is the only
triangle in C, then we simply draw T0 in S(s,d) as an isosceles triangle with e
drawn as s and with its third vertex drawn so that its two edges have length l,
where 1

2 < l < 1.
Assume now that T0 is adjacent to a triangle T1 of C. Denote the vertices

of C as follows: T0 = {v−
0 , v+

0 v1}, where e = {v−
0 , v+

0 } and v−
0 is not incident

with T1. The vertex of T1 not in T0 is denoted by v2, and, subsequently, the
vertex of each Ti not in Ti−1 is denoted by vi+1. We draw T0 as previously, but
with more careful positioning of v1. To determine where to position v1, we draw
edge {v+

0 , v2} of T1 as a unit-length segment in direction d. As long as v1 is
positioned within S(s,d) but outside of the disks of radius 1

2 centered at v−
0 , v+

0 ,
and v2, the edges from each of these vertices to v1 will have length greater than 1

2

(see top half of Fig. 1). By placing v1 close to e, the edges {v1, v
−
0 } and {v1, v

+
0 }

will have lengths less than 1. Also, since ∠v2v
+
0 v1 < θ0, edge {v1, v2} will have

length less than 1.
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Fig. 1. Drawing a chain

Assuming that T0, . . . , Ti−1 have been drawn for some i > 1, Ti is drawn by
positioning vi+1 one unit distant from vi−1 in direction d. The result is that
each Ti is congruent to T1 and so the edge-length ratio of C is less than 2.
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At this point, all of the unit-length segments, except for e, lie on the two rays
in direction d emanating from v+

0 and v1. By rotating these rays a very small
amount towards one another, we can preserve the lengths of the unit-length
segments while ensuring that all of the remaining segments have lengths in the
range (12 , 1). See the top of Fig. 1.

Finally, suppose that T0 has two adjacent triangles. Starting with T0, label
the other triangles in C so that the labels of adjacent triangles differ by 1. Thus,
for example, T0 is adjacent to T1 and T−1. The vertices in the Ti, i ≥ 0 will be
labeled as in the previous case: the unique vertex in Ti not in Ti−1 is labeled
vi+1. The vertices in the Ti, i < 0 will be similarly labeled: the unique vertex in
Ti not in Ti+1 is labeled vi.

Draw each Ti, i > 0 as in the previous case. Now draw the Ti, i < 0 in a
similar fashion: Place vertex vi one unit distant from vi+2 in direction d. Then,
as above, all of the unit length edges of the triangles Ti, i < 0 will lie on the two
rays in direction d emanating from v1 and v−

0 , and these two rays can be rotated
slightly towards each other while maintaining the length of the unit-length edges
and ensuring that the other edges still have lengths in the range (12 , 1). See the
bottom of Fig. 1. This can clearly be done so that all external edges form angles
less than θ0 with d.

However, we need to ensure that v1 can be placed so that both triangle T1

and triangle T−1 can simultaneously satisfy the required edge-length conditions:
Namely, that edges {v−

0 , v+
0 }, {v1, v−1}, and {v+

0 , v2} are all unit-length, while
edges {v1, v2}, {v+

0 , v1}, {v1, v
−
0 }, and {v−

0 , v−1} all have lengths in the range
( 12 , 1). However, it is relatively simple to show that v1 can always be successfully
placed if the (smaller) angle between s and d is less than θ0 = arccos(1/4).
[The angle θ0 is the angle opposite an edge of length 2 in an isosceles triangle
having side lengths 2, 2, and 1.] Finally, the computation of the locations of the
vertices can each be computed in constant time in the real RAM model, giving
a run-time linear in the size of the chain. ��

We are now ready to prove the following lemma. For a planar straight-line
drawing Γ , we denote with ρ(Γ ) the ratio of a longest to a shortest edge in Γ .

Lemma 2. A maximal outerplanar graph G with n vertices admits a planar
straight-line drawing Γ with ρ(Γ ) < 2 that can be computed in O(n) time assum-
ing the real RAM model of computation.

Proof. We call the drawing computed as in Lemma 1 a U-strip drawing of C and
adopt the same notation as in Lemma 1. Recall that in a chain decomposition of
a graph, the external edges of the chains are exactly the edges of L. A drawing
of G is computed as follows.

1. Compute a chain decomposition tree for G; let Ce′ be the root of the tree.
2. Select a line segment s of length 1 in the plane and an initial direction d not

parallel to s such that ∠sd < θ0.
3. Apply Lemma 1 to compute a U-strip drawing of Ce′ .
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4. Each edge e ∈ Le′ is drawn as a segment se of length 1, not parallel to d,
that forms an angle with d that is less than θ0, so draw the subtree of Ce′

rooted at Ce in the empty strip S(se,d).

The result is an outerplanar straight-line drawing in which all edges of L
(long edges) have length 1 while all edges in S (short edges) have length strictly
greater than 1

2 . If we assume that the input is provided to the algorithm in the
form of a doubly-connected edge list [12], then a chain decomposition tree for
G can be computed in linear time. Also, since by Lemma 1 each chain can be
drawn in time proportional to its length, the algorithm runs in O(n) time in the
real RAM model. ��

The following lemma can be proved by means of a packing argument and
elementary geometry.

Lemma 3. For any ε > 0 there exists a maximal outerplanar graph whose
planar edge length ration is greater than 2 − ε.

We conclude the section by observing that Lemmas 2 and 3 imply Theorem 1.

3 Additional Remarks and Open Problems

The upper and the lower bound of Theorem 1 suggest some questions that we
find worth investigating. One question is whether better bounds on the planar
edge-length ratio can be established for subfamilies of outerplanar graphs (for
example, it is easy to show that trees have unit-length drawings). A second ques-
tion is whether an edge length variance bounded by a constant can be guaranteed
for drawings of outerplanar graphs where not all vertices lie in a common face.
By a variant of the approach used to prove Lemma 2 and by using some simple
geometric observations, the following results can be proved.

Theorem 2. The planar edge-length ratio of a bipartite outerplanar graph is 1.

The plane edge-length ratio of a planar embedding G of a graph G is the
minimum edge-length ratio taken over all embedding-preserving planar straight-
line drawings of G.

Theorem 3. For any given k ≥ 1, there exists an embedded outerplanar graph
whose plane edge-length ratio is at least k.

We conclude this paper by listing some open questions that we find interesting
to study: (i) Study the edge-length ratio of triangle-free outerplanar graphs. For
example, it is not hard to see that if all faces of an outerplanar graph have five
vertices, a unit edge length drawing may not exist; however, the planar edge
length ratio for this family of graphs could be smaller than the one established
in Theorem 1. (ii) Extend the result of Theorem 1 to families of non-outerplanar
graphs. For example it would be interesting to study whether the planar edge-
length ratio of 2-trees is bounded by a constant. (iii) Study the complexity of
deciding whether an outerplanar graph admits a straight-line drawing where the
ratio of the longest to the shortest edge is within a given constant. This problem
is interesting also in the special case that we want all edges to be unit length.
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