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Abstract. We study two variants of the well-known orthogonal drawing
model: (i) the smooth orthogonal, and (ii) the octilinear. Both models
form an extension of the orthogonal, by supporting one additional type
of edge segments (circular arcs and diagonal segments, respectively).

For planar graphs of max-degree 4, we analyze relationships between
the graph classes that can be drawn bendless in the two models and we
also prove NP-hardness for a restricted version of the bendless drawing
problem for both models. For planar graphs of higher degree, we present
an algorithm that produces bi-monotone smooth orthogonal drawings
with at most two segments per edge, which also guarantees a linear
number of edges with exactly one segment.

1 Introduction

Orthogonal graph drawing is an intensively studied and well established
model for drawing graphs. As a result, several efficient algorithms providing
good aesthetics and good readability have been proposed over the years, see
e.g., [8,18,29,35]. In such drawings, each vertex corresponds to a point on the
Euclidean plane and each edge is drawn as a sequence of axis-aligned line seg-
ments; see Fig. 1.

Several research directions build upon this successful model. We focus on two
models that have recently received attention: (i) the smooth orthogonal [5], in
which every edge is a sequence of axis-aligned segments and circular arc seg-
ments with common axis-aligned tangents (i.e., quarter, half or three-quarter
arc segments), and (ii) the octilinear [3], in which every edge is a sequence of
axis-aligned and diagonal (at ±45◦) segments.

Observe that both models extend the orthogonal by allowing one more type
of edge-segments. The former was introduced with the aim of combining the
artistic appeal of Lombardi drawings [13,15] with the clarity of the orthogonal
drawings. The latter, on the other hand, is primarily motivated by metro-map
and map schematization applications (see, e.g., [25,31,32,34]). Note that in the
orthogonal and in the smooth orthogonal models, each edge may enter a vertex
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(a) (b) (c) (d)

Fig. 1. Different drawings of a planar graph of max-degree 4: (a) straight-line,
(b) orthogonal 3-drawing, (c) octilinear 2-drawing, and (d) smooth orthogonal 2-
drawing.

using one out of four available (axis-aligned) directions, called ports. Thus both
models support graphs of max-degree 4. In the octilinear model, each vertex has
eight available ports and therefore one can draw graphs of max-degree 8.

For readability purposes, usually in such drawings one seeks to minimize
the edge complexity [11,27], i.e., the maximum number of segments used for
representing any edge. Also, when the input is a planar graph, one seeks for a
corresponding planar drawing. Note that drawings with edge complexity 1 are
also called bendless. We refer to drawings with edge complexity k as k-drawings;
thus, by definition, orthogonal k-drawings have at most k − 1 bends per edge.

Known results. There exists a plethora of results for each of the aforementioned
models; here we list existing results for drawings with low edge complexity.

– All planar graphs of max-degree 4, except for the octahedron, admit orthog-
onal 3-drawings; the octahedron is orthogonal 4-drawable [8,29]. Minimizing
the number of bends over all embeddings of a planar graph of max-degree 4
is NP-hard [22]. For a given planar embedding, however, finding a planar
orthogonal drawing with minimum number of bends can be done in polyno-
mial time by an approach, called topology-shape-metrics [35], that is based
on min-cost flow computations and works in three phases. Initially, a planar
embedding is computed if not specified by the input. In the next phase, the
angles and the bends of the drawing are computed, yielding an orthogonal
representation. In the last phase, the actual coordinates for the vertices and
bends are computed.

– All planar graphs of max-degree 4 (including the octahedron) admit smooth
orthogonal 2-drawings. Note that not all planar graphs of max-degree 4 allow
for bendless smooth orthogonal drawings [5], and that such drawings may
require exponential area [1]. Bendless smooth orthogonal drawings are pos-
sible only for subclasses, e.g., for planar graphs of max-degree 3 [4] and for
outerplanar graphs of max-degree 4 [1]. It is worth mentioning that the com-
plexity of the problem, whether a planar graph of max-degree 4 admits a
bendless smooth orthogonal drawing, has not been settled (it is conjectured
to be NP-hard [1]).

– All planar graphs of max-degree 8 admit octilinear 3-drawings [28], while pla-
nar graphs of max-degree 4 or 5 allow for octilinear 2-drawings [3]. Bendless
octilinear drawings are always possible for planar graphs of max-degree 3 [23].
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Note that deciding whether an embedded planar graph of max-degree 8
admits a bendless octilinear drawing is NP-hard [31]. It is not, however,
known whether this negative result applies for planar graphs of max-degree 4
or whether these graphs allow for a decision algorithm (in fact, there exist
planar graphs of max-degree 4 that do not admit bendless octilinear draw-
ings [6]).

Our contribution. Motivated by the fact that usually one can “easily” convert
an octilinear drawing of a planar graph of max-degree 4 to a corresponding
smooth orthogonal one (e.g., by replacing diagonal edge segments with quarter
circular arc segments; see Figs. 1c and d for an example), and vice versa, we
study in Sect. 2 inclusion-relationships between the graph-classes that admit such
drawings. In Sect. 3, we show that it is NP-hard to decide whether an embedded
planar graph of max-degree 4 admits a bendless smooth orthogonal or a bendless
octilinear drawing, in the case where the angles between any two edges incident
to a common vertex and the shapes of all edges are specified as part of the
input (e.g., as in the last step of the topology-shape-metrics approach [35]). Our
proof is a step towards settling the complexities of both decision problems in
their general form. Inspired from the Kandinsky model (see, e.g., [7,10,18]) for
drawing planar graphs of arbitrary degree in an orthogonal style, we present
in Sect. 4 two drawing algorithms that yield bi-monotone smooth orthogonal
drawings of good quality. The first yields drawings of smaller area, which can
also be transformed to octilinear with bends at 135◦. The second yields larger
drawings but guarantees that at most 2n−5 edges are drawn with two segments.
We conclude in Sect. 5 with open problems.

Preliminaries. For graph theoretic notions refer to [24]. For definitions on planar
graphs, we point the reader to [11,27]. We also assume familiarity with standard
graph drawing techniques, such as the canonical ordering [19,26] and the shift-
method by de Fraysseix et al. [19]; see [2] for more details.

2 Relationships Between Graph Classes

In this section, we consider relationships between the classes of graphs that admit
smooth orthogonal k-drawings and octilinear k-drawings, k ≥ 1, denoted as SCk

and 8Ck, respectively. Our findings are also summarized in Fig. 2.

8C3 = max-degree 8 planar [3]

8C2

SC2 = max-degree 4 planar
8C1

caterpillarsSC1

Octahedron

Thm.1

[6]

Thm.2

Thm.3 degree 8

[5,6]

Fig. 2. Different inclusion-relationships: For k ≥ 1, SCk and 8Ck correspond to the
classes of graphs admitting smooth orthogonal and octilinear k-drawings, respectively.
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(b) An octilinear 1-drawing

Fig. 3. Illustrations for the proof of Theorem 1.

By definition, SC1 ⊆ SC2 and 8C1 ⊆ 8C2 ⊆ 8C3 hold. Since each pla-
nar graph of max-degree 8 admits an octilinear 3-drawing [28], class 8C3 coin-
cides with the class of planar graphs of max-degree 8. Similarly, class SC2 coin-
cides with the class of planar graph of max-degree 4, as these graphs admit
smooth orthogonal 2-drawings [1]. This also implies that SC2 ⊆ 8C2, since each
planar graph of max-degree 4 admits an octilinear 2-drawing [3]. The relation-
ship 8C2 �= 8C3 follows from [3], where it was proven that there exist planar
graphs of max-degree 6 that do not admit octilinear 2-drawings. The relation-
ship SC2 �= 8C2 follows from [6], where it was shown that there exist planar
graphs of max-degree 5 that admit octilinear 2-drawings and no octilinear 1-
drawings, and the fact that planar graphs of max-degree 5 cannot be drawn in
the smooth orthogonal model. The octahedron graph admits neither a bendless
smooth orthogonal drawing [5] nor a bendless octilinear drawing [6]. However,
since it is of max-degree 4, it admits 2-drawings in both models [1,3]. Hence, it
belongs to 8C2 ∩ SC2 \ (8C1 ∪ SC1). To prove that 8C1 \ SC2 �= ∅, observe that
a caterpillar whose spine vertices are of degree 8 clearly admits an octilinear
1-drawing, however, due to its degree it does not admit a smooth orthogonal.

To complete the discussion of the relationships of Fig. 2, we have to show that
SC1 and 8C1 are incomparable. This is the most interesting part of our proof, as
usually one can “easily” convert a bendless octilinear drawing of a planar graph
of max-degree 4 to a corresponding bendless smooth orthogonal one (e.g., by
replacing diagonal segments with quarter circular arcs), and vice versa; see, e.g.,
Figs. 1c and d. Since the endpoints of each edge of a bendless smooth orthogonal
or octilinear drawing are along a line with slope 0, 1, −1 or ∞, such conversions
are in principle possible. Two difficulties that might arise are to preserve pla-
narity and to guarantee that no two edges enter a vertex using the same port.
Clearly, however, there exist infinitely many (even 4-regular) planar graphs that
admit both drawings in both models; see Fig. 3 and [2] for more details.

Theorem 1. There is an infinitely large family of 4-regular planar graphs that
admit both bendless smooth orthogonal and bendless octilinear drawings.

In the next two theorems we show that SC1 and 8C1 are incomparable.
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Fig. 4. Illustrations for the proof of Theorem 2.

Theorem 2. There is an infinitely large family of 4-regular planar graphs that
admit bendless smooth orthogonal drawings but no bendless octilinear drawings.

Proof. Consider the planar graph C of Fig. 4a, which is drawn bendless smooth
orthogonal. We claim that C admits no bendless octilinear drawing. If one sub-
stitutes its degree-2 vertex (denoted by c in Fig. 4a) by an edge connecting its
two neighbors, then the resulting graph is triconnected, which admits an unique
embedding (up to the choice of its outerface; see Figs. 4a and b). Now, observe
that the outerface of any octilinear drawing of graph C (if any) has length at
most 5 (Constraint 1). In addition, each vertex of this outerface (except for c,
which is of degree 2) must have two ports pointing in the interior of this drawing,
because every vertex of C is of degree 4 except for c. This implies that the angle
formed by any two consecutive edges of this outerface is at most 225◦, except
for the pair of edges incident to c (Constraint 2). But if we want to satisfy both
constraints, then at least one edge of this outerface must be drawn with a bend;
see Fig. 4c. Hence, graph C does not admit a bendless octilinear drawing.

Based on graph C, for each k ∈ N0 we construct a 4-regular planar graph Gk

consisting of k + 2 biconnected components C1, . . . , Ck+2 arranged in a chain;
see Fig. 4d for the case k = 1. Clearly, Gk admits a bendless smooth orthogonal
drawing for any k. Since the end-components of the chain (i.e., C1 and Ck+2) are
isomorphic to C, Gk does not admit a bendless octilinear drawing for any k. 
�
Theorem 3. There is an infinitely large family of 4-regular planar graphs that
admit bendless octilinear drawings but no bendless smooth orthogonal drawings.

Proof (sketch). Consider the planar graph B of Fig. 5a, which is drawn bendless
octilinear. Graph B has two separation pairs (i.e., {t1, t2} and {p1, p2} in Fig. 5a).

Based on graph B, for each k ∈ N0 we construct a 4-regular planar graph
Gk consisting of 2k + 4 copies of B arranged in a cycle; see Fig. 5b where each
copy of B is drawn as a gray-shaded parallelogram. By construction, Gk admits
a bendless octilinear drawing for any k. By planarity at least one copy of graph
B must be embedded with the outerface of Fig. 5a. However, if we require the
outerface of B to be the one of Fig. 5a, then all possible planar embeddings of B
are isomorphic to the one of Fig. 5a. We exploit this property in [2] to show that B
does not admit a bendless smooth orthogonal drawing with this outerface. The
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Fig. 5. Illustrations for the proof of Theorem 3.

detailed proof is based on an exhaustive consideration of all bendless smooth
orthogonal drawings of subgraphs of B, which we incrementally augment by
adding more vertices to them. Thus, for any k, graph Gk does not admit a
bendless smooth orthogonal drawing. 
�

3 NP-hardness Results

In this section, we study the complexity of the bendless smooth orthogonal and
octilinear drawing problems. As a first step towards addressing the complexity
of both problems for planar graphs of max-degree 4 in general, here we make an
additional assumption. We assume that the input, apart from an embedding, also
specifies a smooth orthogonal or an octilinear representation, which are defined
analogously to the orthogonal ones: (i) the angles between consecutive edges
incident to a common vertex in the cyclic order around it (given by the planar
embedding) are specified, and (ii) the shape of each edge (e.g., straight-line, or
quarter-circular arc) is also specified. In other words, we assume that our input is
analogous to the one of the last step of the topology-shape-metrics approach [35].

Theorem 4. Given a planar graph G of max-degree 4 and a smooth orthogonal
representation R, it is NP-hard to decide whether G admits a bendless smooth
orthogonal drawing preserving R.

Proof. Our reduction is from the well-known 3-SAT problem [21]. Given a for-
mula ϕ in conjunctive normal form, we construct a graph Gϕ and a smooth
orthogonal representation Rϕ, such that Gϕ admits a bendless smooth orthog-
onal drawing Γϕ preserving Rϕ if and only if ϕ is satisfiable; see also Fig. 6.

The main ideas of our construction are: (i) specific straight-line edges in Γϕ

transport information encoded in their length, (ii) rectangular faces of Γϕ prop-
agate the edge length of one side to its opposite, and (iii) for a face composed of
two straight-line edges and a quarter circle arc, the straight-line edges are of same
length, which allows us to change the direction in which the information “flows”.
Variable gadget. For each variable x of ϕ, we introduce a gadget; see Figs. 7a and
b. The bold-drawn quarter circle arc ensures that the sum of the edge lengths to
its left is the same as the sum of the edge lengths to its bottom (refer to the edges
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Fig. 7. In Figures (a) and (b) the variable gadget is illustrated. In Figures (c) and (d)
the parity gadget is illustrated; gray-colored arrows show the information “flow”.

with gray endvertices). As “input” the gadget gets three edges of unit length �(u).
This ensures that �(x) + �(x) = 3 · �(u) holds for the “output literals” x and x,
where �(x) and �(x) denote the lengths of two edges representing x and x.

To introduce our concept, assume that the lengths of all straight-line edges
are integral and at least 1. If we could require �(u) = 1, then �(x), �(x) ∈ {1, 2}.
This would allow us to encode the assignment x = true with �(x) = 2 and
�(x) = 1, and the assignment x = false with �(x) = 1 and �(x) = 2. However, if
we cannot avoid, e.g., that �(u) = 2, then the variable gadget would not prevent
us from setting �(x) = �(x) = 3, which means that x and x are “half-true”. We
solve this issue by the so-called parity gadget, that allows us to relax the integral
constraint and to ensure that �(x), �(x) ∈ {�(u)+ε, 2�(u)−ε}, for 0 < ε << �(u).
Parity gadget. For each variable x of ϕ, Gϕ has a gadget (see Figs. 7c and d),
which results in overlaps in Γϕ, if the values of �(x) and �(x) do not differ
significantly. The central part of this gadget is a “vertical gap” of width 3 · �(u)
(shaded in gray in Figs. 7c and d) with two blocks of vertices (triangular- and
square-shaped in Figs. 7c and d) pointing inside the gap. Each block defines two
square-shaped faces and three faces of length 3, each formed by two straight-line
edges and a quarter circle arc. Depending on the choice of �(x) and �(x), one
of the blocks may be located above the other. If �(x) ≈ �(x), however, we can
observe that the two blocks are not far enough apart from each other, which
leads to overlaps. Using elementary geometry, we prove in [2] that overlaps can
be avoided if and only if |�(x)− �(x)| >

√
3/2 · �(u) ≈ 0.866 · �(u), which implies:

that �(x), �(x) ∈ (0, 1.067 · �(u)] ∪ [1.933 · �(u), 3), i.e., ε < 0.067 · �(u).
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Fig. 8. Different gadgets; gray-colored arrows show the information “flow”.

Clause gadget. For each clause of ϕ with literals a, b and c, we introduce a gad-
get, which is illustrated in Fig. 8a. The bold-drawn quarter circle arc of Fig. 8a
compares two sums of information. From the righthand side, four edges of unit
length “enter” the arc. Observe that there is also a free edge (marked with an
asterisk in Fig. 8a), which also contributes to the sum but can be stretched inde-
pendently of any other edge. Hence, the sum of edge lengths on the righthand
side of this arc is >4 ·�(u). The three literals “enter” at the bottom; the sum here
is �(a) + �(b) + �(c). Combining both, we obtain that �(a) + �(b) + �(c) > 4 · �(u)
must hold. This implies that not all a, b and c can be false, since in this case
�(a) + �(b) + �(c) = 3 · (�(u) + ε) < 4 · �(u).
Auxiliary gadgets. The crossing gadget just consists of a rectangle and is used to
allow two flows of information to cross each other; see Fig. 8b. The copy gadget
takes an information and creates three copies of this information; see Fig. 8c.
This is because both quarter circular arcs of the copy gadget must have the
same radius in the presence of the half circular arc of the copy gadget. Finally,
the unit length gadget is a single edge, which we assume to be of length �(u).

We now describe our construction; see Fig. 6: Gϕ contains one unit length
gadget, which is copied several times using the copy gadget (the number of
copies depends linearly on the number of variables ν and clauses μ of ϕ). For
each variable of ϕ, Gϕ has a variable gadget and a parity gadget, each of which
is connected to different copies of the unit length gadget. For each clause of ϕ,
Gϕ has a clause gadget, which has four connections to different copies of the unit
length gadget. We compute Rϕ as follows. We place the variable gadget of each
variable x above and to the left of its parity gadget and we connect the output
literals of the variable gadget of x with its parity gadget through a copy gadget.
We place the variable and the parity gadgets of the i-th variable below and to
the right of the corresponding ones of the (i − 1)-th variable. We place each
clause gadget to the right of the sketch constructed so far, so that the gadget of
the i-th clause is to the right of the (i − 1)-th clause. This allows us to connect
copies of the output literals of the variable gadget of each variable with the clause
gadgets that contain it, so that all possible crossings (which are resolved using
the crossing gadget) appear above the clause gadgets. More precisely, if a clause
contains a literal of the i-th variable, we have a crossing with the literals of all
variables with indices (i + 1) to ν. Hence, for each clause we add O(ν) crossing
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and three copy gadgets. Note that all copy gadgets of the unit length gadget lie
below all variable, parity, and clause gadgets. The obtained representation Rϕ

conforms with the one of Fig. 6. The construction can be done in O(νμ) time.
To complete the proof, assume that Gϕ admits a bendless smooth orthogonal

drawing Γϕ preserving Rϕ. For each variable x of ϕ, we set x to true if and
only if �(x) ≥ 1.933 · �(u). Since for each clause (a ∨ b ∨ c) of ϕ we have that
�(a)+�(b)+�(c) > 4·�(u), at least one of a, b and c must be true. Hence, ϕ admits
a truth assignment. For the opposite direction, based on a truth assignment of
ϕ, we can set, e.g., �(x) = 1.95 and �(x) = 1.05 for each variable x, assuming
that �(u) = 1. Then, arranging the variable and the clause gadgets of Gϕ as in
Fig. 6 yields a bendless smooth orthogonal drawing Γϕ preserving Rϕ. 
�
Remark 1. The special case of our problem, in which circular arcs are not
present, is known as HV-rectilinear planarity testing [30]. As opposed to our
problem, HV-rectilinear planarity testing is polynomial-time solvable in the fixed
embedding setting [14] (and becomes NP-hard in the variable embedding set-
ting [12]).

Theorem 5. Given a planar graph G of max-degree 4 and an octilinear rep-
resentation R, it is NP-hard to decide whether G admits a bendless octilinear
drawing preserving R.

Proof (sketch). Except for the parity gadget, we can adjust to the octilinear
model simply by replacing arcs with diagonal segments; for details see [2]. In
this case the parity gadget guarantees |�(x) − �(x)| > 5/6 · �(u) ≈ 0.833 · �(u),
which implies that ε < 0.084 · �(u). 
�

4 Bi-monotone Drawings

In this section, we study variants of the Kandinsky drawing model [7,10,18],
which forms an extension of the orthogonal model to graphs of degree greater
than 4. In this model, the vertices are represented as squares, placed on a coarse
grid, with multiple edges attached to each side of them aligned on a finer grid.

The Kandinsky model allows for natural extensions to both smooth orthog-
onal and octilinear models. We are aware of only one preliminary result in
this direction: A linear time drawing algorithm is presented in [5] for the pro-
duction of smooth orthogonal 2-drawings for planar graphs of arbitrary degree
in quadratic area, in which all vertices are on a line � and the edges are drawn
either as half circles (above or below �), or as two consecutive half circles one
above and one below � (i.e., the latter ones are of complexity 2, but they are at
most n − 2).

For an input maximal planar graph G (of arbitrary degree), our goal is to con-
struct a smooth orthogonal (or an octilinear) 2-drawing for G with the following
aesthetic benefits over the aforementioned drawing algorithm: (i) the vertices are
distributed evenly over the drawing area, and (ii) each edge is bi-monotone [20],
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Fig. 9. Illustration of the contour condition (left) and the placement of vk (right).

i.e., xy-monotone. We achieve our goal at the cost of slightly more edges drawn
with complexity 2 or at the cost of increased drawing area (but still polynomial).

Our first approach is a modification of the shift-method [19]. Based on a
canonical order π = (v1, . . . , vn) of G, we construct a planar smooth orthogonal
2-drawing Γ of G in the Kandinsky model, as follows. We place v1, v2 and v3 at
(0, 0), (2, 0) and (1, 1). Hence, we can draw (v1, v2) as a horizontal segment, and
each of (v1, v3) and (v2, v3) as a quarter circular arc. We also color (v1, v3) blue
and (v2, v3) green. For k = 4, . . . , n, assume that a smooth orthogonal 2-drawing
Γk−1 of the subgraph Gk−1 of G induced by v1, . . . , vk−1 has been constructed,
in which each edge of the outerface Ck−1 of Γk−1 is drawn as a quarter circular
arc, whose endvertices are on a line with slope ±1, except for edge (v1, v2), which
is drawn as a horizontal segment (called contour condition in the shift-method;
see Fig. 9). Each of v1, . . . , vk−1 is also associated with a so-called shift-set, which
for v1, v2 and v3 are singletons containing only themselves.

Let w1, . . . , wp be the vertices of Ck−1 from left to right in Γk−1, where
w1 = v1 and wp = v2. Let (w�, . . . , wr), 1 ≤ � < r ≤ p, be the neighbors of
vk from left to right along Ck−1 in Γk−1. As in the shift-method, our algorithm
first translates each vertex in ∪�

i=1S(wi) one unit to the left and each vertex in
∪p

i=rS(wi) one unit to the right, where S(v) is the shift-set of v ∈ V . During this
translation, (w�, w�+1) and (wr−1, wr) acquire a horizontal segment each (see
the bold edges of Fig. 9). We place vk at the intersection of line L� with slope
+1 through w� with line Lr with slope −1 through wr (dotted in Fig. 9) and
we set the shift-set of vk to {vk} ∪r−1

i=�+1 S(wi), as in the shift-method. We draw
each of (w�, vk) and (vk, wr) as a quarter circular arc. For i = � + 1, . . . , r − 1,
(wi, vk) has a vertical line-segment that starts from wi and ends either at L� or
Lr and a quarter circle arc from the end of the previous segment to vk. Hence,
the contour condition is satisfied. We color (w�, vk) blue, (vk, wr) green and the
remaining edges of vk red; see also [16,33]. Observe that each blue and green
edge consists of a quarter circular arc and a horizontal segment (that may have
zero length), while a red edge consists of a vertical segment and a quarter circular
arc (that may have zero radius). We are now ready to state our first theorem;
the analogous of Theorem 6 for the octilinear model is shown in [2].
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Theorem 6. A maximal planar n-vertex graph admits a bi-monotone planar
smooth orthogonal 2-drawing in the Kandinsky model, which requires O(n2) area
and can be computed in O(n) time.

Proof. Bi-monotonicity follows by construction. The time complexity follows
from [9]. Planarity is proven by induction. Drawing Γ3 is planar by construction.
Assuming that Γk−1 is planar, we observe that no two edges incident to vk cross
in Γk. Also, these edges do not cross edges of Γk−1. Since the radii of the arcs of
the edges incident to vertices that are shifted remain unchanged and since edges
incident to vertices in the shift-sets retain their shape, drawing Γk is planar. 
�

We reduce the number of edges drawn with complexity 2 in two steps. (S.1)
We stretch the drawing horizontally (by employing appropriate vertical cuts; see,
e.g., [17]) to eliminate the vertical segments of all red edges with a circular arc
segment of non-zero radius. (S.2) We stretch the drawing vertically, to guarantee
that the edges of a spanning tree (i.e., n − 1) are drawn with complexity 1.

For Step 1, we assume that each blue and green edge has a horizontal segment
(that may be of zero length). Consider a red edge (u, v) with a vertical segment
of length δ and assume w.l.o.g. that u is to the right and above v. If we shift
u by δ units to the right, then (u, v) can be drawn as a quarter circular arc. If
the shift is by more than δ units, then a horizontal segment is needed. Since all
edges incident to u that are drawn below u enter u from its left or from its right
side, the shift of u cannot introduce crossings between them.

We eliminate the vertical segments of all red edges with a circular arc segment
of non-zero radius, as follows. As long as there exist such edges, we choose the
one, call it (u, v), whose vertical segment has the largest length δ, and assume
that u is to the right and above v. We eliminate the vertical segment of (u, v)
using a vertical cut L at x(u) − ε, for small ε > 0. Since L crosses several
edges, shifting all vertices to the right of L by δ to the right has the following
effects. By the choice of (u, v), the vertical segments of all red edges crossed by
L are eliminated; note that this may introduce new horizontal segments. The
horizontal segment of each blue and green edge crossed by L is elongated by δ.
Both imply that no edge crossings are introduced. Hence, by the termination of
our algorithm all edges with vertical segments are of complexity 1.

Step 1 ensures that the x-distance of adjacent vertices is at least as large
as their y-distance (unless they are connected by vertical edges). Based on this
property, in Step 2 we compute new y-coordinates for the vertices in the sequence
of the canonical ordering π, keeping their x-coordinates unchanged. First, we set
y(v1) = y(v2) = 0. For each k = 3, . . . , n, we set y(vk) = maxw∈{w�,...,wr}{y(w)+
max{Δx(vk, w), 1}}, where w�, . . . , wr are the neighbors of vk in Γk−1, i.e., vk

is placed above w�, . . . , wr in Γk−1, such that one of its edges (the one of the
maximum; call it (vk, w∗)) is drawn with complexity 1; as a quarter circle arc or
as a vertical edge depending on whether the x- distance of vk and w∗ is non-zero
or not. Since (vk, w∗) is the edge that must be stretched the most in order to
ensure that it is drawn with complexity 1, for all other edges incident to vk in
Gk, the y-distance of their endpoints is at least as large as their corresponding
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x-distance. Hence, they are drawn as vertical segments followed by quarter cir-
cular arcs (that may have zero radius). We are now ready to state our second
theorem.

Theorem 7. A maximal planar n-vertex graph admits a bi-monotone planar
smooth orthogonal 2-drawing with at least n − 1 edges with complexity 1 in the
Kandinsky model, which requires O(n4) area and can be computed in O(n2) time.

Proof (sketch). For k = 3, . . . , n, vertex vk is incident to an edge drawn with
complexity 1 in Step 2. Since (v1, v2) is drawn as a horizontal segment, at least
n−1 edges have complexity 1. Planarity is proven by induction; the main invari-
ant is that all edges on Ck \ {(v1, v2)} have a quarter circular arc and possibly
a vertical segment. Time and area requirements are shown in [2]. 
�

5 Conclusions

In this paper, we continued the study on smooth orthogonal and octilinear draw-
ings. Our NP-hardness proofs are a first step towards settling the complexity of
both drawing problems. We conjecture that the former is NP-hard, even in the
case where only the planar embedding is specified by the input. For the latter,
it is of interest to know if it remains NP-hard even for planar graphs of max-
degree 4 or if these graphs allow for a decision algorithm. Our drawing algorithms
guarantee bi-monotone 2-drawings with a certain number of complexity-1 edges
for maximal planar graphs. Improvements on this number or generalizations to
triconnected or simply connected planar graphs are of importance.
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