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Abstract. Let G be a graph embedded in the plane and let A be an
arrangement of pseudolines intersecting the drawing of G. An aligned
drawing of G and A is a planar polyline drawing Γ of G with an arrange-
ment A of lines so that Γ and A are homeomorphic to G and A. We show
that if A is stretchable and every edge e either entirely lies on a pseudo-
line or intersects at most one pseudoline, then G and A have a straight-
line aligned drawing. In order to prove these results, we strengthen the
result of Da Lozzo et al. [5], and prove that a planar graph G and a
single pseudoline L have an aligned drawing with a prescribed convex
drawing of the outer face. We also study the more general version of the
problem where only a set of vertices is given and we need to determine
whether they can be collinear. We show that the problem is NP-hard
but fixed-parameter tractable.

1 Introduction

Two fundamental primitives for highlighting structural properties of a graph in
a drawing are alignment of vertices such that they are collinear and geometri-
cally separating unrelated graph parts, e.g., separating them by a straight line.
Not surprisingly, both these techniques have been previously considered from a
theoretical point of view in the case of planar straight-line drawings.

Da Lozzo et al. [5] study the problem of producing a planar straight-line
drawing of a given embedded graph G = (V,E), i.e., G has a fixed combinatorial
embedding and a fixed outer face, such that a given set S ⊆ V of vertices is
collinear. It is clear that if such a drawing exists, then the line containing the
vertices in S is a simple curve starting and ending at infinity that for each edge
e of G either fully contains e or intersects e in at most one point, which may
be an endpoint. We call such a curve a pseudoline with respect to G. Da Lozzo
et al. [5] show that this is a full characterization of the alignment problem,
i.e., a straight-line drawing where the vertices in S are collinear exists if and

Work was partially supported by grant WA 654/21-1 of the German Research Foun-
dation (DFG).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-73915-1_1



4 T. Mchedlidze et al.

(a) (b) (c)

Fig. 1. Aligned Drawing (b) of a 2-aligned planar graph (a). The pseudolines R and
B and the corresponding lines in the drawing are drawn red and blue, respectively. (c)
A non-stretchable arrangement of 9 pseudolines, which can be seen as a stretchable
arrangement of 8 pseudolines (grey) and an edge (black solid).

only if there exists a pseudoline L with respect to G that contains the vertices in
S. However testing whether such a pseudoline exists is an open problem, which
we consider in this paper.

Likewise, for the problem of separation, Biedl et al. [1] considered so-called
HH-drawings, where given an embedded graph G = (V,E) and a partition
V = A∪̇B, one seeks a planar drawing of G in which A and B can be separated
by a line. Again, it turns out that such a drawing exists if and only if there exists
a pseudoline L with respect to G such that the vertices in A and B are separated
by L in the sense that they are in different halfplanes. Cano et al. [2] extend the
result to planar straight-line drawings with a given star-shaped outer face.

In particular, the results of Da Lozzo et al. [5] show that given a pseudoline
L with respect to G one can always find a planar straight-line drawing of G such
that the vertices on L are collinear and the vertices contained in the halfplanes
defined by L are separated by a line L. In other words, a topological configuration
consisting of a planar graph G and a pseudoline with respect to G can always
be stretched. In this paper we initiate the study of this stretchability problem
with more than one given pseudoline.

More formally, a pair (G,A) is a k-aligned graph if G = (V,E) is a planar
embedded graph and A = {L1, . . . ,Lk} is an arrangement of (pairwise intersect-
ing) pseudolines with respect to G. If the number k of curves is clear from the
context, we drop it from the notation and simply speak of aligned graphs. For
1-aligned graphs we write (G,L) instead of (G, {L}). Let A = {L1, . . . , Lk} be
a line arrangement and Γ be planar drawing of G. A tuple (Γ,A) is an aligned
drawing of (G,A) if and only if the following properties hold; refer to Fig. 1(a-b).
(i) The arrangement of A is homeomorphic to the arrangement of A (i.e., A is
stretchable), (ii) Γ is homeomorphic to the planar embedding of G, (iii) each line
Li intersects in Γ the same vertices and edges as Li in G, and it does so in the
same order. We focus on straight-line aligned drawings. For brevity, unless stated
otherwise, the term aligned drawing refers to a straight-line drawing throughout
this paper.

Note that the stretchability of A is a necessary condition for the existence of
an aligned drawing. Since testing stretchability is NP-hard [14,15], we assume
that a geometric realization A of A is provided. However, line arrangements
of size up to 8 are always stretchable [10] and only starting from 9 lines
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non-stretchable arrangements exist; see the Pappus configuration [11] in
Fig. 1(c). It is conceivable that in practical applications, e.g., stemming from
user interactions, the number of lines to stretch is small. The same configuration
illustrates an example of an 8-aligned graph with a single edge that does not
have an aligned drawing.

The aligned drawing convention generalizes the problems studied by
Da Lozzo et al. and Biedl et al. who concentrated on the case of a single line.
We study a natural extension of their setting and ask for alignment on general
line arrangements.

In addition to the strongly related work mentioned above, there are sev-
eral other works that are related to the alignment of vertices in drawings.
Dujmović [6] shows that every n-vertex planar graph G = (V,E) has a pla-
nar straight-line drawing such that Ω(

√
n) vertices are aligned, and Da Lozzo

et al. [5] show that in planar treewidth-3 graphs, one can align Θ(n) vertices
and that in treewidth-k graphs one can align Ω(k2) vertices. Chaplik et al. [3]
study the problem of drawing planar graphs such that all edges can be covered
by k lines. They show that it is NP-hard to decide whether such a drawing
exists. Deciding whether there exists a drawing where all vertices lie on k lines
is open [4]. Drawings of graphs on n lines where a mapping between the vertices
and the lines is provided have been studied by Dujmović et al. [7,8].

Contribution & Outline. First we study the topological setting where we are
given a planar graph G and set S of vertices to align in Sect. 3. We show that
the problem is NP-hard but fixed-parameter tractable (FPT) with respect to |S|.
Afterwards in Sect. 4 we consider the geometric setting where we seek an aligned
drawing of an aligned graph. In Sect. 4.2, we strengthen the result of Da Lozzo
et al. and Biedl et al. and show that there exists a 1-aligned drawing of G with a
given convex drawing of the outer face. In Sect. 4.3 we consider k-aligned graphs
with a stretchable pseudoline arrangement, where every edge e either entirely
lies on a pseudoline or intersects with at most one pseudoline, which can either
be in the interior or an endpoint of e. We utilize the previous result to prove that
every such k-aligned graph has an aligned drawing, for any value of k. The proofs
of statements marked with (�) can be found in the full version on arXiv [12].

2 Preliminaries

Let A be a pseudoline arrangement of a set of k pseudolines L1, . . . ,Lk and
(G,A) be an aligned graph. The set of cells in A is denoted by cells(A). A cell
is empty if it does not contain a vertex of G. Removing from a pseudoline its
intersections with other pseudolines gives a set of its pseudosegments.

Let G = (V,E) be a planar embedded graph with a vertex set V and an edge
set E. We call v ∈ V interior if v does not lie on the boundary of the outer
face of G. An edge e ∈ E is interior if e does not lie entirely on the boundary
of the outer face of G. An interior edge is a chord if it connects two vertices on
the outer face. A point p of an edge e is an interior point of e if p is not an
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(1, 0,⊥) (1, 0, 0) (2, 1, 0)

Fig. 2. Examples for the alignment complexity of an aligned graph.

endpoint of e. A triangulation is a planar embedded graph whose inner faces are
all triangles and whose outer face is bounded by a simple cycle. A triangulation
of a graph G is a triangulation that contains G as a subgraph. For a graph G
and an edge e of G, not being an edge of a separating triangle, the graph G/e is
obtained from G by contracting e and merging the resulting multiple edges and
removing self-loops. A k-wheel is a wheel graph Wk with k vertices on the outer
face and one interior vertex. Let Γ be a drawing of G and let C be a cycle in G.
We denote with Γ [C] the drawing of C in Γ . A k-aligned triangulation of (G,A)
is a k-aligned graph (GT ,A) with GT being a triangulation of G.

A vertex is Li-aligned (or simply aligned to Li) if it lies on the pseudoline Li.
A vertex that is not aligned is free. An edge e is Li-aligned (or simply aligned) if it
completely lies on Li. Let Ealigned be the set of all aligned edges. An intersection
vertex lies on the intersection of two pseudolines Li and Lj . An edge is i-anchored
(i = 0, 1, 2) if i of its endpoints are aligned to distinct curves. Let Ei be the set
of i-anchored edges; note that, the set of edges is the disjoint union E0 ·∪E1 ·∪E2.
A 0-anchored, 0-crossed, non-aligned edge is also called free. An edge e is (at
most) l-crossed if (at most) l distinct pseudolines intersect e in its interior. A
non-empty edge set A ⊂ E is l-crossed if l is the smallest number such that
every edge in A is at most l-crossed.

The alignment complexity of an aligned graph G in a way describes how “com-
plex” the relationship between the graph G and the line arrangement L1, . . . ,Lk

is and formally is defined as a triple (l0, l1, l2) , where li, i = 0, 1, 2, describes the
“complexity of i-anchored edges”, i.e. it indicates that Ei is at most li-crossed
or has to be empty, if li = ⊥. For example, an aligned graph where every vertex
is aligned and every edge has at most l interior intersections has the alignment
complexity (⊥,⊥, l). For further examples, see Fig. 2.

3 Complexity and Fixed-Parameter Tractability

In this section we deal with the topological setting where we are given a planar
embedded graph G = (V,E) and a subset S ⊂ V to be collinear. According
to Da Lozzo et al. [5], this is equivalent to the existence of a pseudoline L(S)
with respect to G passing exactly through the vertices in S. We refer to this
problem as pseudoline existence problem. Using techniques similar to Fößmeier
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and Kaufmann [9], we can show that the pseudoline existence problem is NP-
hard; see full version [12]. In the following, we show that the pseudoline existence
problem is FPT with respect to |S|. In the first step deal with biconnected
planar embedded graphs only. Additionally to the set of vertices S we require the
pseudoline to pass through a set of faces F . This trick allows us to combine two
independent pseudolines of two biconnected components of a planar embedded
graph. Thus, let additionally G be biconnected and F be a subset of faces of G.
Notice that in case that the vertices of S are not independent, they can only form
a linear forest, i.e., a set of paths, as otherwise there is no pseudoline through the
vertices S with respect to G. Let G� be the dual graph of G (see Fig. 3.a) and
let S′ ⊆ S be the subset of vertices that form end-points of the paths induced
by S. We denote by f a face of G and by f� its dual vertex. An extended dual
G�

e(S, F ) is the graph obtained from G� by the following steps. We omit the
parameters (S, F ) if they are clear from the context.

Step 1: For each path induced by S that contains exactly one edge, subdivide
the edge by a vertex and add it to S,

Step 2: Place the vertices of S into the corresponding faces of G� and the edges
induced by them (red vertices and edges in Fig. 3(a)).

Step 3: Connect the vertices of S′ to all vertices of the dual face they lie in
(red dashed edges in Fig. 3(a)).

Step 4: For each vertex v ∈ S remove the edges dual to the primal edges
incident to v.

Step 5: Remove all the dual vertices that have in degree zero or one; see
Fig. 3(b).

Step 6: Replace each vertex f� of G� with a clique of the size equal the degree of
f�, each vertex v of this clique corresponds to an edge e∗ incident to a vertex
f�, thus we call it a clique vertex corresponding to e� and denote by cl(f, e�).
For each edge of G�

e that has survived, we connect the two corresponding to
it clique vertices.

Step 7: Recall that F is a set of faces of G. Assume we would like our pseudo-
line to pass through the faces of F . To check for existence of such a pseudoline
we further augment the graph G�

e as follows. For each f ∈ F , additionally
to the clique that is built on face vertices cl(f, e�

1) . . . cl(f, e�
a), correspond-

ing to the edges incident to the dual vertex f , we add a star with a new
center vertex cent(f) that has cl(f, e�

1) . . . cl(f, e�
a) as leaves. Finally, we set

cent(F ) = {cent(f) | f ∈ F}.

Lemma 1 (�). Let G = (V,E) be a biconnected planar embedded graph, let
S ⊂ V be a set of vertices that induce a linear forest and let F be a set of faces
of G. There exist an aligned graph (G,L), where L passes through all vertices of
S and faces F if and only if there exists a simple cycle C in the extended dual
G�

e(S, F ) through the vertices of S ∪ cent(F ).
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Fig. 3. A fragment of a graph G (black) and of G�
e(S, F ) (gray and red) (a) after Step 3,

(b) after Step 6.

We utilize the following theorem.

Theorem 1 (Wahlström [16]). Given a graph G = (V,E) and a subset
S ⊂ V , it can be tested in O(2|S|poly(n)) time whether a simple cycle through
the vertices in S exists. In affirmative the cycle can be reported within the same
asymptotic time.

Theorem 1 together with Lemma 1 gives a O(2|S|poly(n)) time algorithm to
solve the pseudoline construction problem for the case of biconnected graphs.
We next sketch how this can be extended to general planar graphs.

Lemma 2 (�). Let G = (V,E) be a planar embedded graph, S ⊂ V and c be a
cut vertex of G separating G into subgraphs G1 = (V1, E1) and G2 = (V2, E2).
Let S1 = S ∩ V1 	= ∅ and S2 = S ∩ V2 \ {c} 	= ∅. Let f be the face of G1 where
G2 lies. There exists an aligned graph (G,L(S)) if and only if there exist aligned
graphs (G1,L(S1)) and (G2,L(S2)), such that L(S1) passes through face f .

Utilizing Lemma 2, we can recursively decompose a graph into biconnected
components, check for the pseudoline existence by applying Lemma 1 and
Theorem 1 and glue the pseudolines if they exist. This implies the following:

Theorem 2 (�). Given a planar embedded graph G = (V,E) and a subset S ⊂
V , it can be tested in O(4|S|poly(n)) time whether an aligned graph (G,L(S))
exists.

4 Drawing Aligned Graphs

We show that every aligned graph where each edge either entirely lies on a
pseudoline or is intersected by at most one pseudoline, i.e., alignment complexity
(1, 0,⊥), has an aligned drawing. For 1-aligned graphs we show the stronger
statement that every 1-aligned graph has an aligned drawing with a given aligned
convex drawing of the outer face. We first present our proof strategy and then
deal with 1- and k-aligned graphs.



Aligned Drawings of Planar Graphs 9

v

x y

(b) (c)
qi

vux

y

u

w

v

(d)

v

w

x

y
qi

(e)(a)

cl1 cl2 cl1

u

x

v

Fig. 4. Steps for triangulating aligned graphs (black) with 1-crossed edges (green).

4.1 Proof Strategy

Our general strategy for proving the existence of aligned drawings of an aligned
graph (G,A) is as follows. First, we show that we can triangulate (G,A) by
adding vertices and edges without invalidating its properties. We can thus
assume that our aligned graph (G,A) is an aligned triangulation. Second we
show that, unless G is a specific graph (e.g., a k-wheel or a triangle), it contains
a specific type of edge, namely an edge that is contained in a pseudoline, or an
edge that is not intersected by any of the pseudolines. Third, we exploit the exis-
tence of such an edge to inductively prove the existence of an aligned drawing
of (G,A). Depending on whether the edge is contained in a separating triangle
or not, we either decompose along that triangle or contract the edge. In both
cases the problem reduces to smaller instances that are almost independent. In
order to combine solutions, it is, however, crucial to use the same arrangement
of lines A for both of them.

In the following we introduce the necessary tools used for all three steps on
k-aligned graphs of alignment complexity (1, 0,⊥). Recall, that for this class (i)
every free edge is at most 1-crossed, (ii) every 1-anchored edge has no intersec-
tions, and (iii) there is no edge with its endpoints on two pseudolines. Lemma3
shows that every aligned graph has an aligned triangulation with almost the
same alignment complexity. If G contains a separating triangle, Lemma 4 shows
that (G,A) admits an aligned drawing if both split components have an aligned
drawing. Finally, with Lemma5 we obtain a drawing of (G,A) from a drawing of
the aligned graph (G/e,A) where one special edge e is contracted. For simplic-
ity we assume the input graph to be 2-connected, general graphs allow similar
techniques.

Lemma 3 (�). Let (G,A) be a biconnected k-aligned graph of alignment com-
plexity (2, 0, 0). There exists a k-aligned triangulation (GT = (VT , ET ),A) of
(G,A) whose size is O(k4n). Each edge in ET \ E(G) is at most 1-crossed and
0-anchored, or 0-crossed and 1-anchored.

Proof sketch. To triangulate (G,A), we exhaustively apply each of the following
steps.
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1. If f is a non-triangular face whose boundary contains a 2-crossed edge uv,
we build a triangle by inserting a vertex x in the intermediate cell, as shown
in Fig. 4(a). This step ensures that every edge of a non-triangular face is at
most 1-crossed.

2. If f is a non-triangular face whose interior contains the intersection I of a set
of pseudolines, we place a vertex v on I and connect v to two disjoint vertices
on f with two simple paths, where every vertex of the path, which is not an
endpoint, is free; compare Fig. 4(b).

3. If f is a non-triangular face with an aligned edge e = uv we can split f
into two faces f ′ and f ′′ (as shown in Fig. 4(c)) such that f ′ contains e on
its boundary. Then we can triangulate f ′ with 1-crossed edges. A similar
approach works for aligned vertices; see Fig. 4(d).

4. If f is a non-triangular face whose interior contains a pseudosegment S, then
we find two edges vw, xy as shown in Fig. 4(e) and we can triangulate by
inserting a vertex on S and 1-crossed edges.

5. If none of the cases above applies, then no non-triangular face contains a
pseudosegment. Thus all remaining non-triangular faces can be triangulated
with free edges. ��
In order to simplify the constructions we augment the input graph with an

additional cycle in the outer face, so that no two pseudolines intersect in the outer
face. More formally, let A be an arrangement of pseudolines L1,L2, . . . ,Lk. Let
U1, U2, . . . , Ut ∈ cells(A) be the set of unbounded cells in the arrangement of A
such that Ui, Ui+1 are adjacent cells with Ut+1 = U1. For k > 1, a k-aligned graph
is proper (i) if the boundary of the outer face is a 0-anchored 1-crossed cycle of
length t such that every unbounded region Ui contains exactly one vertex of the
cycle, and (ii) every aligned edge in (G,A) is 0-crossed. Observe that for every
k-aligned graph (G,A) there is proper k-aligned triangulation (G′,A) containing
G as a minor.

The following two lemmas show that we can reduce the size of the aligned
graph and obtain a drawing by merging two drawings or by unpacking an edge.

Lemma 4 (�). Let (G,A) be a k-aligned triangulation. Let T be a separating
triangle splitting G into subgraphs Gin, Gout so that Gin ∩ Gout = T and Gout

contains the outer face of G. Then, (i) (Gout,A) and (Gin,A) are k-aligned
triangulations, and (ii) (G,A) has an aligned drawing if and only if there exists a
common line arrangement A such that (Gout,A) has an aligned drawing (Γout, A)
and (Gin,A) has an aligned drawing (Γin, A) with the outer face drawn as Γout[T ].

Lemma 5 (�). Let (G,A) be a k-aligned triangulation of alignment complexity
(1, 0,⊥) and let e be a 0-anchored aligned edge or a free edge of G that is not an
edge of a separating triangle. Then (G/e,A) is a k-aligned triangulation of align-
ment complexity (1, 0,⊥). Further, (G,A) has an aligned drawing if (G/e,A) has
an aligned drawing.

Proof sketch. Since u and v either both lie in the same cell or both in the interior
of a pseudosegment, (G/e,A) is an aligned triangulation.
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Fig. 5. Consistent transformation from
a red vertex (a) to a gray vertex (b).

Fig. 6. All possible variations of ver-
tices and edges in Lemma 7.

Let c be the vertex in G/e obtained by contracting e = uv and let f be
the face obtained by removing the vertex c from the aligned drawing (Γ ′, A) of
(G/e,A). We place u at the position of c. This leaves a unique face f ′ to place
v in. Since G/e is a triangulation, f ′ is star-shaped. Thus we can either place v
close to u within its cell or on its line. ��

4.2 One Pseudoline

We show that every 1-aligned graph (G,R) has an aligned drawing (Γ,R), where
R is a single pseudoline and R the corresponding straight-line.

Lemma 6. Let (G,R) be a 1-aligned triangulation with k vertices on the outer
face without a chord. If G is neither a triangle nor a k-wheel, then (G,R) con-
tains an interior aligned or an interior free edge.

Proof. We first prove two useful claims.

Claim 1. Consider the order in which R intersects the vertices and edges of G.
If vertices u and v are consecutive on R, then the edge uv is aligned.

Observe that the edge uv can be inserted into G without creating cross-
ings. Since G is a triangulation, it therefore contains uv, and, further, since no
1-crossed edge can have both its endpoints on R, it follows that indeed uv is
aligned. This proves the claim.

Claim 2. Let (G,R) be an aligned triangulation without aligned edges and let x
be an interior free vertex of G, then x is incident to a free edge.

Assume for a contradiction that all neighbors of x lie either on R or on the
other side of R. First, we slightly modify R to a curve R′ that does not contain
any vertices. Assume v is an aligned vertex; see Fig. 5. Since there are no aligned
edges, R enters v from a face f incident to v and leaves it to a different face f ′

incident to v. We then reroute R from f to f ′ locally around v. If v is incident
to x, we choose the rerouting such that it crosses the edge vx.

Notice that if e is intersected by R in its endpoints, then R′ either does not
intersect it, or intersects it in an interior point. Moreover, e cannot be intersected
by R′ twice as in such case R would pass through both its endpoints. Therefore
(G,R′) is an aligned graph without any aligned vertices. Now, since G is a
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triangulation, R′ is a simple cycle in the dual G� of G, and hence corresponds
to a cut C of G. Let H denote the connected component of G − C that contains
x and note that all edges of H are free. By the assumption and the construction
of R′, x is the only vertex in H. Thus, R′ intersects only the faces incident to x
which are interior. This contradicts the assumption that R′ passes through the
outer face of G. This finishes the proof of the claim.

We now prove the lemma. Assume that G is neither a triangle nor a k-wheel.
Thus, G contains at least two interior vertices. If one of both vertices is free, we
find a free edge by Claim 2. Otherwise, there is no free internal vertex, therefore
the only edge which can intersect R is a chord of G. Since G does not contain any
chord, there is a pair of aligned vertices consecutive along R. Thus by Claim 1
the instance (G,R) has an aligned edge. ��
Theorem 3 (�). Let (G,R) be an aligned graph and let (ΓO, R) be a convex
aligned drawing of the aligned outer face (O,R) of G. There exists an aligned
drawing (Γ,R) of (G,R) with the same line R and the outer face drawn as ΓO.

Proof sketch. Given an arbitrary aligned graph (G,R), we first triangulate it
using Lemma 3. As long as it has a free or an aligned edge e we do the follow-
ing. If e is contained in a separating triangle, we decompose the graph using
Lemma 4. Otherwise we simply contract e (Lemma 5). If no such edge exists,
(G,R) is either a triangle or a k-wheel (Lemma 6) and has an obvious straight-
line aligned drawing. We obtain an aligned drawing of (G,R) by reversing the
sequence contraction (Lemma 5) and decompositions along the separating trian-
gles (Lemma 4). ��

4.3 Alignment Complexity (1, 0,⊥)

Let (G,A) be a k-aligned graph of alignment complexity (1, 0,⊥), i.e., every
edge has at most one interior intersection and 2-anchored edges are forbidden.
In this section, we prove that every such k-aligned graph has an aligned drawing.
Figure 6 illustrates the statement of the following lemma.

Lemma 7. Let (G,A) be a proper k-aligned triangulation of alignment com-
plexity (1, 0,⊥) that does neither contain an interior free edge, nor a 0-anchored
aligned edge, nor a separating triangle. Then (i) every intersection contains a
vertex, (ii) every cell of the pseudoline arrangement contains exactly one free
vertex, (iii) every pseudosegment is either covered by two aligned edges or inter-
sected by an edge.

Proof. The statement follows trivially from the following sequence of claims. We
refer to an aligned vertex that is not an intersection vertex as a flexible aligned
vertex.
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Fig. 7. Illustrations for the proof Lemma 7

Claim 1. Every pseudosegment alternately intersects flexible aligned vertices and
edges.

Let S be a pseudosegment in the pseudoline arrangement A. As in the proof
of Lemma 6 one can argue that if two vertices occur consecutively along S, then
we find an aligned edge. Assume that S intersects two edges e1, e2 consecutively
as depicted in Fig. 7(a). Since G is a triangulation, it follows that e1 and e2 share
an endpoint v. Every 1-crossed edge in G is 0-anchored, thus all endpoints of e1
and e2 must be free. Further e1 and e2 are consecutive in the circular order of
edges around v as otherwise we would either find an intersection with S between
e1 and e2 or a free edge. Thus, e1 and e2 bound a face and are 1-crossed, hence
their endpoints distinct from v are in the same cell and connected by an edge e,
which is thus free. In a proper graph, the edges on the outer face are 1-crossed,
thus, e is an interior edge, contradicting our assumptions.

Claim 2. Every cell contains at least one free vertex.
Observe that every triangle T containing the intersection of two pseudolines

has at least one l-crossed edge, with l ≥ 2. Since by definition (G,A) does not
contain 2-anchored aligned edges, T cannot contain an empty cell in its interior.
Further, since G is proper, the outer face of G contains the intersection of every
pair of pseudolines in its interior. Thus, since G is triangulated every cell con-
tains at least one vertex.

Claim 3. Every cell contains at most one free vertex.
The following proof is similar to Claim 2 in the proof of Lemma6. Let C be

a cell and assume for the sake of a contradiction that C contains more than one
vertex in the interior; see Fig. 7(b). These vertices are connected by edges to
adjacent cells. If C contains a vertex v on its boundary, we reroute the corre-
sponding pseudolines close to v such that v is now outside of C; refer to Fig. 7(c).
Let C′ be the resulting cell, it represents a cut in the graph with two components
A and B, where C′ contains B in its interior. It is not difficult to see that the
modified pseudolines are still pseudolines with respect to G. Since (G,A) nei-
ther contains l-anchored edges nor l-crossed edges, l ≥ 2, every edge of (G,A′)
intersects the boundary of C′ at most once. Hence, B is connected and since it
contains at least two vertices it also contains at least one free edge, contradicting
our initial assumption.



14 T. Mchedlidze et al.

Claim 4. Every flexible aligned vertex is incident to two 1-anchored aligned edges.
Let v be a vertex lying in the interior of a pseudosegment S. Let u and w be

the anchored vertices incident to S. Further, let x and y be the vertices in the
interior of the two cells incident to S. Our instance (G,A) is triangulated and
every edge is at most 1-crossed. Thus, the vertices u, x, w, y build a quadrangle
containing v in its interior. Since G does not contain a separating triangles,
it cannot contain the edge xy. Moreover, S contains exactly v in its interior,
otherwise we would find a free aligned edge. Finally, since (G,A) is an aligned
triangulation, the vertex v is connected to all four vertices and, thus incident to
two 1-anchored aligned edges.

Since (G,A) is an aligned triangulation, Property (iii) immediately follows
from Claims 3 and 4. ��
Lemma 8. Let (G,A) be a proper k-aligned triangulation of alignment com-
plexity (1, 0,⊥) that does neither contain an interior free edge, nor a 0-anchored
aligned edge, nor a separating triangle. Let A be a line arrangement homeo-
morphic to the pseudoline arrangement A. Then (G,A) has an aligned drawing
(Γ,A).

Proof. We obtain a drawing (Γ,A) by placing a free vertex in its cell, an aligned
vertex on its pseudosegment and an intersection vertex on its intersection.
According to Lemma 7 every cell and every intersection contains exactly one
vertex and each pseudosegment is either crossed by an edge or it is covered by
two aligned edges. Observe that the union of two adjacent cells of the arrange-
ment A is convex. Thus, this drawing of G has an homeomorphic embedding to
(G,A) and every edge intersects in (Γ,A) the line L ∈ A corresponding to the
pseudoline L ∈ A in (G,A) ��

The following theorem can be proven along the same lines as Theorem 3.

Theorem 4 (�). Every k-aligned graph (G,A) of alignment complexity (1, 0,⊥)
with a stretchable pseudoline arrangement A has an aligned drawing.

5 Conclusion

In this paper we showed that if A is stretchable, then every k-aligned graph
(G,A) of alignment complexity (1, 0,⊥) has a straight-line aligned drawing. As
an intermediate result we showed that a 1-aligned graph (G,R) has an aligned
drawing with a fixed convex drawing of the outer face. We showed that the less
restricted version of this problem, where we are only given a set of vertices to
be aligned, is NP-hard but fixed-parameter tractable.

The case of more general alignment complexities is widely open. Our tech-
niques imply the existence of one-bend aligned drawings of general 2-aligned
graphs [13]. However, the existence of straight-line aligned drawings is unknown
even if in addition to 1-crossed edges, we only allow 2-anchored edges, i.e., in the
case of alignment complexity (1, 0, 0). In particular, there exist 2-aligned graphs
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that neither contain a free edge nor an aligned edge but their size is unbounded in
the size of the arrangement; see full version [12]. It seems that further reductions
are necessary to arrive at a base case that can easily be drawn. This motivates
the following questions.

(1) What are all the combinations of line numbers k and alignment complexities
C such that for every k-aligned graph (G,A) of alignment complexity C
there exists a straight-line aligned drawing provided A is stretchable?

(2) Given a k-aligned graph (G,A) and a line arrangement A homeomorphic to
A, what is the complexity of deciding whether (G,A) admits a straight-line
aligned drawing (Γ,A)?
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