
Chapter 7
Aquatic Habitat Modeling in Running
Waters

Andreas Melcher, Christoph Hauer, and Bernhard Zeiringer

7.1 Introduction

The understanding behind managing and conserving the environment, including
water resources, has an important role in worldwide development strategy. The high
priority given to reestablishing and maintaining good ecological status is reflected in
multiple national legislations in Europe as well as in the EU Water Framework
Directive (WFD). However, despite these emerging institutional protections, water
withdrawal and, among other economic uses, continue to claim large fractions of the
goods and services provided by aquatic ecosystems in the world’s river basins.
Consequently, much research and experimentation is needed to reestablish the
ecological integrity of aquatic ecosystems, their habitats, and flow conditions.
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What Is Habitat?
Habitat is where aquatic organisms prefer to live or the living characteristics of a
river that aquatic organisms are using. Although habitat is fundamentally a descrip-
tion of what animals use and where animals are found, most ecologists assume that
habitat also is what animals need to survive and reproduce. Field experiments sensu
“habitat modeling” give the most reliable data what animals need, and ecologists
regularly engage in discussions about best available concepts, scales, and whether
our habitat studies are properly designed and interpreted. However, in this chapter
we assume that habitat is the part of a river that fish or benthic invertebrates and their
life stages prefer for a successful survival and reproduction.

Habitat modeling can contribute to meeting the ongoing challenge of wisely
balancing demands for the environmental services between society and nature
(Bain 1995). This is especially so for those environmental services that sustain the
integrity of ecosystems, e.g., environmental flows (e-flow). Habitat modeling offers a
tool to apply e-flow concepts for science research and management policy. The
concept of e-flows is used to mitigate the impacts of altered flow regime, often by
assigning compensation flow releases to maintain ecological integrity and a good
ecological status (see Chap. 4).

Ideally, attempts to establish or maintain environmental flow regimes will take
into consideration the quantity, timing, duration, frequency, and quality of water
flows needed to maintain ecosystems and the services they sustain. Prescriptions to
reestablish ecologically suitable compensation flows can be based on hydrological
metrics, e.g., percentage of average flow and/or hydraulic habitat algorithms. The
latter link hydraulic descriptions of rivers with “preference” models of fish life stage
responses to microhabitat hydraulics (Linnansaari et al. 2012). There is a growing
consensus to combine these approaches, because hydrological metrics characterize
temporal variations in the aquatic environment but are poorly suited to analyze
spatial variations, whereas the opposite is true for hydraulic habitat models (e.g.,
Poff 2009; Poff and Zimmerman 2010). Furthermore, approaches have been pro-
posed to model the ecological effects of flow regime on population processes (e.g.,
growth and survival; Armstrong and Nislow 2012) and dynamics rather than time-
averaged population abundance (Shenton et al. 2012).

Hydrologically based methods are still the most widely used approaches interna-
tionally (Tharme 2003). This is probably due to their ease of use and low cost, since
such methods use only “stream real” or simulated flow data series. A naturally
variable regime of flow, rather than just a minimum low flow, is required to sustain
freshwater ecosystems (Poff et al. 1997; Bunn and Arthington 2002; Poff 2009), and
this understanding has contributed to the implementation of environmental flow
management on thousands of river kilometers worldwide (Lobb and Orth 1991;
Linnansaari et al. 2012).

The flow regime is regarded by many aquatic ecologists to be a key driver of
ecological processes that sustain the integrity of river ecosystems. Flow is a major
determinant of the parameters that constitute physical habitat in streams, which in
turn, is a major determinant of biotic composition. Consequently, flow dynamics
play an important role for aquatic organisms (see Chap. 4). Aquatic organisms have
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evolved life history strategies primarily in direct response to natural flow regimes
(Schmutz et al. 2000; Bunn and Arthington 2002). River discharge typically varies
significantly during the annual cycle, depending on climate and catchment condi-
tions. Aside from natural phenomena, long- and short-term flow fluctuations can be
altered by human activities. Therefore, flow/habitat relationships have to be
established for all relevant species and life stages in order to cover the entire
variability of responses to the natural flow.

7.2 Principles of Habitat Modeling

Habitat models allow one to assess the quality and quantity of habitat for a species
within the study area or a river reach and provide the basic information required for
environmental (flow) assessment. Aquatic habitat suitability models relate suitability
to individual maps that are divided into uniform, spatially discrete units, e.g., rasters.
These maps are digitally stored as raster-based layers, wherein each raster contains
data, such as abiotic topographic descriptors. Current methods assume that the
hydraulic measure is directly or indirectly related to habitat quantity for a target
species, almost exclusively fish (e.g., Bovee 1982; Reiser et al. 1989), or in some
instances the ecological function of the river (e.g., Gippel and Stewardson 1998).

All habitat modeling approaches depend on spatial scales and incorporate biolog-
ical data based on standardized sampling methods for ecological assessment. These
approaches use hydromorphological indicators for habitat assessment, which relies
on correlative relations between habitat suitability for biota and hydrological features
of river stretches on different scales (e.g., micro- or mesohabitat; Parasiewicz and
Walker 2007).

The primary components of the physical habitat in running waters are water
depth, velocity, substrate size, and cover, and most habitat models for aquatic
organisms are based on these parameters (e.g., IFIM; Bovee 1982). After Jowett
(2003) habitat modeling can be generally subdivided into two main categories:

1. Empirically based habitat suitability models are based on a description of the
abiotic environment that is subsequently linked to the biotic system of flora and
fauna that are described based on the concept of their available habitat. Univariate
or multivariate functions link abiotic characteristics to habitat suitability. Univar-
iate functions consider individual parameters, while multivariate analysis takes
into account the interaction of physical variables and determines species response
to cumulative effects of a number of environmental characteristics.

2. Process-based population or bioenergetic models describe biological processes
based on knowledge of species population dynamics and/or energy budgets for
feeding, growth, or other functions. These models can either be linked to the
results of a physical habitat model or be directly linked with data describing the
physiographic environment. Bioenergetic models are a special type of biological
process model where optimal fish or benthic invertebrate location is based on
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energy budgets. These models compute how much energy a fish uses as a
function of water velocity or turbulence and of food intake. Optimal locations
for indicator species are denoted by budget excesses of energy intake over energy
loss due to the current.

While a suite of different types in habitat simulation methods can be identified,
the general approach to evaluate effects of flow on habitat quantity is the same across
different habitat modeling methods. The objective is to establish a relationship
between river discharge and, typically, the amount of wetted perimeter and/or the
wetted usable area (WUA), and then use this relationship to identify a “critical
threshold.” Briefly, this means finding a discharge level below which a drastically
increasing amount of river bed becomes unsuitable for biota or even dry. A typical
application measures the response in hydraulic variables across a number of “repre-
sentative” cross sections of the river channel over a range of different discharges
(measured or simulated using a 1D hydrodynamic model).

In general, a number of state-of-the-art habitat models focusing at different scales
(micro, meso, and macro) with various implementing statistics and modeling tech-
niques are available for e-flow assessment. Mostly these are based on the principles
of PHABSIM (physical habitat simulation) technique which is used currently all
over the world (e.g., Fausch et al. 1988; Harby et al. 2004a, b).

The PHABSIM technique enables the quantitative prediction of suitable physical
microhabitat in a river reach for chosen species and life stages under different river
flow scenarios, similar to that are mesohabitat models (e.g., MesoHABSIM or MEM
(Mesohabitat Evaluation Model); Parasiewicz 2001 and Hauer et al. 2008). Other
alternative methods are available, but their predominant emphasis on hydrology does
not support a comprehensive assessment of both the hydrological and morphological
conditions (e.g., Hauer et al. 2011). A short overview of the implementation on
micro- and mesohabitat scale is given in Sect. 3.

Consequently, such indicator-based habitat model consists of several integrative
parts (Fig. 7.1) that are linked together:

1. Biotic habitat modeling: The aim is to model and assess the biological species
occurrence with their physical environment. This includes sampling and analyses
of habitat and the morphological characteristics: fish or benthic invertebrate
ecological assessment, determination of standardized habitat use, and habitat
preference curves for key indicator species and their live stages.

(a) Standardized biotic sampling of species abundance:

(i) Microscale: point abundance sampling (e.g., electrofishing, snorkeling)
(ii) Mesoscale: mesohabitat sampling (e.g., electrofishing)

(b) Hydromorphological parameter sampling across a range of discharges: water
depth and flow velocity, substrate size, embeddedness and stability, cross-
sectional geometry, slope, river type, topology, channel or bank stability,
sinuosity, width-depth ratio, presence of barriers, land-use activity, geology-
lithology, geomorphology, altitude, Froude number, etc.
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(c) The most important factors are flow (discharge), flow velocity, water depth,
substrate, and cover. Within each of these categorical parameters, several to
many classes (factors) are included.

2. Abiotic habitat modeling: Physical factors, or hydraulic modeling, provide infor-
mation of changes in the physical habitat as a function of discharge (hydraulic
model). The objective is to quantify changes of the physical environment in
relation to changes in flow or even morphological adjustments (natural or
man-made). This includes physical and spatial measurement (sampling) and
analyses of:

(a) Hydrologic characteristics: base flow, peak flow and duration, drought
events, inter-annual variation of flow, flood and drought regime, spatial
variation of discharge, longitudinal variation of cumulative water yield,
seasonal variability in runoff, mean and maximum monthly water tempera-
ture, drainage area, stream order, branching degree, and distribution.

Fig. 7.1 A conceptual example for aquatic habitat modeling in rivers illustrating the process and
main steps: (1) biotic and (2) abiotic habitat modeling which lead to (3) integrative habitat
assessment. The colors in (1) and (3) show the optimum (green), the useable (brown and yellow),
and not useable (red) water depth-based HSI (habitat suitability index) for a certain indicator species
(e.g., adult European grayling)
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(b) Hydraulic characteristics: local flow velocity, mean cross-sectional velocity,
water depths, shear stress, wetted perimeter, surface-subsurface lateral link-
age, and turbulence.

(c) Morphological characteristics: see biotic part.

3. Integrative habitat assessment: The aim is to merge biotic habitat assessment
with the abiotic flow and hydromorphological part and, as a management tool, to
determine an adapted and suitable environmental flow for aquatic organism. The
metrics are determined as reach-related averages, e.g., weighted useable area
(WUA) derived from biota-specific habitat preferences and hydraulic 1D or
2D/3D model simulations.

7.2.1 Biotic Habitat Modeling

For multiple reasons, fish and their life stages have proven to be one of the most
suitable impact indicators of human activities related to flow and habitat modifica-
tions. This is so, because fish populations are significantly affected by all human
impact types on rivers, especially by water withdrawals. Fish identification is rela-
tively easy and their taxonomy, ecological requirements, esp. for complex migration
patterns and life histories, are generally better known than for other taxa. The
longevity of many fish species enables assessments to be sensitive to disturbance
over relatively longtime scales. Finally, fish are valuable economic resources and are
of public concern. Using fish as indicators confers an easy and intuitive understanding
of cause-effect relationships to stakeholders beyond the scientific community. How-
ever, also other indicator groups such as macroinvertebrates or macrophytes might be
appropriate depending on the questions to be answered.

There are two common technical ways to build these models:

1. Literature review and expert opinion-based habitat suitability models.
2. Empirical and statistical techniques for estimating habitat suitability.

Literature Review and Expert Opinion-Based Habitat Suitability Models
A common habitat suitability modeling technique is based on literature review and
expert opinion and generally follows the ideas established in 1980 by the US Fish and
Wildlife Service publication “Habitat as a basis for Environmental Assessment.”
While literature-based models are subject to uncertainty and errors when transforming
literature-based habitat studies to a specific river, they are relatively easy to create,
because they do not require new collection of detailed field data and can be applied to
multiple study areas and allow rapid analyses and modeling designs.

The procedure assigns a weight to each factor (parameter) and a habitat suitability
score to each class within this factor. Suitability scores for all habitat factors are then
combined to form a single habitat suitability map with a suitability score for each
point on the sampling grid.
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Combining habitat factors, the two most common methods of combining factors
are arithmetic mean and geometric mean models. Further details on these models can
be found in the Standards for Development of HSI Models section of the Habitat
Evaluation Procedures Handbook.

Empirical and Statistical Techniques for Estimating Habitat Suitability
Sampling design

If presence-absence or species occurrence data are available in a study area, then
empirical statistical models can be created by relating the species occurrence data to
habitat factors. Sampling is the prerequisite for any related impact assessment and
therefore takes a crucially important role for any modeling considerations. Gener-
ally, a distinction between (i) qualitative and (ii) quantitative sampling methods can
be made. Depending on the scope or aim of a specific project and/or research
hypothesis, it can be desirable to quantify the exact number of individuals, e.g.,
population number or density, in a certain area, or just to gain knowledge of the
occurring species and their relative abundances (Bozeck and Rahel 1992). The main
advantage of qualitative fishing is the reduced effort compared to that required for
quantitative population estimates. In order to achieve the best possible results,
several fish sampling methods can be applied and combined such that they are
aligned to the methods selected for habitat modeling and e-flow assessments:

Fish data, obtained by electrofishing, can be used to assess ecological impacts and
the sufficiency of e-flows. Standardized electric fishing procedures are described in
detail in the European CEN Directive on Water Analysis—Fishing with Electricity
(EN 14011; CEN 2003) for rivers. Fishing procedures and equipment differ
depending upon the water depth and wetted width of the sampling site. Point
abundance sampling by electrofishing (PASE) is a frequently used sampling method
to define fish habitat; however, size selectivity and fish escapement patterns might be
of concern (e.g., Persat and Copp 1988; Brosse et al. 1999).

Snorkeling is a prime method for underwater observation and study of fish in
flowing waters. Snorkel surveys are widely used to monitor fish populations in
streams and to estimate both relative and total abundance (Slaney and Martin
1987). Snorkeling can also be used to assess fish distribution, presence/absence
surveys, species assemblages (i.e., diversity), some stock characteristics (e.g., fish
length estimation), and habitat use. Snorkeling gear is worn by biologists who,
individually or in small teams, survey fish abundance, distribution, size, and habitat
use while slowly working in (generally) an upstream direction. This technique is
most commonly used to survey juvenile salmonid populations but can also be used
to assess other species groups. Snorkel survey programs have been designed and
implemented so as to standardize procedures for underwater techniques to survey
fish species in streams (Thurow 1994; Greenberg et al. 1996; O’Neal 2007).

Visual observation is an appropriate method to conduct daily surveys of fish
species’ presence, number of individuals, and habitat size, e.g., in their spawning
habitat. Very clear water and shallow habitats are required to count spawning
individuals by visual observation. Habitat features, i.e., flow velocity, water depth,
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shading, cover, flow protection, type of structure, substrate, and embeddedness, are
recorded at spawning grounds.

As an example, Melcher and Schmutz (2010) monitored spawning habitats of
1250 nase (Chondrostoma nasus) in the river Pielach, Lower Austria. Spawning
took place in April and fish spawned in shoals on shallow gravel bars that are easy to
identify from the river bank. A grid of equally spaced points was laid over the
spawning area (grid size 1 m2; see Fig. 7.2). Additionally, representative sites were
sampled with different morphological characteristics within the study area to
describe the entire available habitat. Furthermore, point measurements were taken
interspersed at 2 m intervals along transects, resulting in hundreds of microhabitat
measurements as graphically explained in Fig. 7.2.
Statistical techniques

In general statistical techniques such as generalized linear or generalized additive
models (e.g., logistic or Poisson regression), artificial neural networks, classification
and regression trees (CARTs), and genetic algorithms can all be used to create a map
of a species probability of occurrence at any point of interest (e.g., standardized
sampling grid) in a river.

With these models, data observed at each site is typically extracted from a
“habitat database” and assembled by occurrence hierarchy; analyzed with statistics

Fig. 7.2 Description of a sampling design on microhabitat scale, using transects to measure
hydromorphological parameters at each habitat where fish have been observed (grey dots) and
remaining habitat with no fish habitat observed (white dots) (after Schneider et al. 2008 andMelcher
et al. 2012)
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packages such as R, SPSS, or SAS; and then fed back into the database to create a
table and map storing each probability of occurrence of a certain species.

While empirical models are probably more accurate than rule-based or literature-
review based models, they require gathering a good set of field observations for
every species and life stage in the linkage area, which can require a considerable
amount of resources.

All habitat approaches have a fundamental, sometimes untested, assumption that,
e.g., fish species make decisions about how to move along a river using the same
rules they use to select habitat. It is reasonable to assume that a species prefers to
move through areas that provide food, sufficient water, cover, and reproductive
opportunities. But it is important to admit that we never know for sure, e.g., if
reproductive individuals were trapped in a river reach by dams and their presence
implies that they breed there. Only a small fraction of papers on movement describe
the type of movement we are most interested in, namely, why, how, and when
animals move between patches of suitable and unsuitable habitat.
Univariate suitability functions

Biological habitat models describe deterministic relations that link biological
responses to physical habitat. The models interpret the species presence or abundance
in areas with particular characteristics (e.g., depth, velocity) as the measure of the
habitat’s suitability for any given species. Originally each characteristic was analyzed
individually, and algorithms selected a priori were used to account for this informa-
tion. In these univariate suitability functions, the suitability of a habitat is a function of
one variable characterizing one physical characteristic of the habitat. Usually, the
function gets values between 0 and 1, so that for the least suitable conditions the
function has the value 0, and at the most suitable conditions the value 1 (Fig. 7.1).

Three different types of habitat suitability indices are distinguished after Bovee
(1986):

Category I indices are based on information other than field observations made
specifically for the purpose of suitability index development. They can be derived
from life history studies in the literature or from professional judgment. This latter
case may involve round table discussions, the Delphi technique (which overcomes
some disadvantages of traditional committee meetings), or hybrid techniques such as
“habitat recognition,” where the experts are taken to a stream and asked to assess the
suitability of various habitats.

Category II indices use data collected specifically for habitat studies, based on
frequency analysis of the actual habitat conditions used by different species and life
stages in a stream. Location of target species may be by one of a number of
methods—direct observation (from the bank, snorkeling, or scuba) video, telemetry,
trapping/physical capture, or electric fishing. Location of target species is accompa-
nied by measurement of the relevant physical habitat variables at the point of
observation.

Category III data combine a category II frequency analysis with additional
information on the availability of habitat combinations in the sampling reaches. It
has been suggested that this methodology can correct for bias caused by habitat
availability in the source stream(s) and thus make indices more generic. It is clear
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that calculation of preference cannot take into account habitats that are not present in
a stream and that occupancy/non-occupancy of low-availability habitat may signif-
icantly alter calculated preference. However, so long as care is taken not to undertake
surveys on rivers with low physical diversity, calculation of preference provides the
best way of removing the complicating problem of differing habitat availability
between sites.

Univariate preference curves can be derived using a number of ratio formula or
preference indices. The simplest is a ratio where preference (P) ¼ use (U)/availabil-
ity (A). The preference functions can be delimited to take account of time of day,
seasonal, life history, and activity factors. When a physical habitat is described by
more than one parameter, a combination of several preference curves has to be made.
Several combinatory techniques can be chosen here, for example, to use the mini-
mum value of each preference outcome or to use a mean or sum of all parameters or
more elaborated statistical methods (see below).
Multidimensional statistical analyses for biological modeling

Numerous habitat modeling studies have been undertaken over time in North
America and Europe, first mainly for salmonids (e.g., Northcote 1984; Shirvell 1989;
Wollebaek et al. 2008; Moir and Pasternack 2010) but later for non-salmonids also
(e.g., Melcher and Schmutz 2010). Predominantly these studies applied univariate
habitat use and preference curves. In order to assess anthropogenic alterations on
riverine systems, most attention was focused on morphological habitat attributes.

It was recognized that functional processes in riverine environments depend on
the interactions of many factors, such as flow velocity and/or riparian vegetation
(Melcher and Schmutz 2010). As a result, a more sophisticated analytical toolset is
required to quantify the biological consequences of impacted multi-metric environ-
ments and to assess fish habitat improvements in river activities. Multidimensional
analyses are needed to better identify and understand habitat requirements (Melcher
et al. 2012). Until now parametric methods such as classical variance, regression, or
discriminant function analyses (Ahmadi-Nedushan et al. 2006) have been the main
statistical methods used for habitat modeling. Due to their specific statistical pre-
sumptions and requirements, their use is frequently limited in comparison to non-
parametric methods (e.g., CHAID tree).

Logistic regression is a multiple regression model used in habitat modeling in the
way that the probability of occurrence is regressed against a number of potential
habitat characteristics. It requires field observations of habitat characteristics avail-
able and utilized by indicator species. Habitat choice is described by the probability
of a specific choice occurring along a habitat gradient. Using the stepwise procedure,
all significant parameters to describe the habitat are listed (Melcher et al. 2012). The
result can be a map that shows the probability of fish occurrence for each location,
each area, or each computational grid cell. The probability of occurrence can be
converted to an HSI (habitat suitability index score).

Classification trees, often referred to as decision trees, predict the value of a
discrete dependent variable with a finite set of values (called classes) from the values
of a set of independent variables (called attributes), which may be either continuous
or discrete (Breiman et al. 1984; Quinlan 1986). Data describing a real system,
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represented in the form of a table, can be used to “learn” or automatically construct a
decision tree. Decision trees thus constitute a multivariate statistical method of
exploration and data analysis by classification. This approach can be applied to
predict the presence/absence of fish species from habitat characteristics described by
a set of independent variables. The habitat modeling CHAID tree method describes
specific fish habitat on microhabitat to reach scales. The method allows one to
highlight the importance of and interactions among hydromorphological parameters,
e.g., flow velocity or substrate for typical fish habitats (Melcher et al. 2012).
Fuzzy rule-based preference functions

Another approach to evaluate habitat quality is fuzzy rule-based modeling (Jorde
et al. 2001; Schneider et al. 2001). Fuzzy modeling allows working with imprecise
or “fuzzy” information. This comes with the significant advantage that expert
knowledge readily available from experienced fish biologists and supported by
local investigations (electrofishing, observation) can easily be transferred into pref-
erence data sets by setting up checklists. These lists or so-called fuzzy rule systems
(e.g., CASiMiR (computer- aided simulation model for instream flow and riparian),
http://www.casimir-software.de) offer a range of possible combinations of relevant
physical criteria and let experts define if habitat quality is good or low.

7.2.2 Abiotic Habitat Modeling

All habitat modeling techniques require some information about hydraulic charac-
teristics. The most commonly used method is the “wetted perimeter method” that
predicts wetted area of a cross section as a function of discharge at a location (one
point) in the river (Tharme 2003). Hydraulic factors may come directly from
measurements or from hydraulic models and hydraulic assessment methods (e.g.,
Harby et al. 2004a, b).

Direct measurements of hydraulic factors: By sampling several times over a
range of flows, it is possible to construct an empirical relationship between physical
conditions and discharge. Habitat suitability’s are calculated for measured flow rates,
and habitat suitability’s for different discharges are derived by interpolating from the
measured range of flow data. Such a method does not require the investigator to
accept any underlying requirements or assumptions of a particular hydraulic model-
ing technique. The predictability of this model is limited to the range of measured
discharges.

Hydraulic rating methods, which are also known as habitat retention or hydraulic
geometry methods (Tharme 2003), are based on a relationship between some
hydraulic parameters of a river (usually wetted perimeter or depth) and discharge
(e.g., Jowett 1993, 1997). Leopold and Maddock (1953) described simple power
functions that can be used in describing changes in hydraulic variables as a function
of discharge. The constants and the exponents in these equations should be empir-
ically developed for each river or region, as the general form of river channels is
variable (Linnansaari et al. 2012).
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An alternative approach is to use statistically based models of river hydraulics.
While empirical models of variation in broad morphometric channel variables have
been in existence for many years, it is only recently that these statistically based
techniques have been applied to model habitat hydraulics at the reach or
“mesohabitat” scale. It has been suggested that at the reach scale, statistical hydraulic
models can provide estimates of the frequency distribution of hydraulic variables,
when given simple inputs such as mean river velocity, depth, and width (Lamouroux
et al. 1995, 1999). Statistical techniques have shown that consistent patterns of such
distributions appear among different streams. Based on power laws or multiple
measurements, both depth-discharge and width-discharge relationships can be
obtained, linking discharge to existing hydraulic distribution patterns. This method
requires a wide range of input data from different streams in various catchment areas.
Once a “library” of occurring patterns is established, the effort necessary for
obtaining depth/width-discharge relations is relatively low. It should be also noted
that current models are most suited to rivers with relative natural morphology. Their
value lies in their ability to analyze broad trends in habitat hydraulics, rather than the
specific description of a particular reach (Linnansaari et al. 2012).

Additionally, hydrodynamic-numerical models have been used in habitat model-
ing for many years. Hydrodynamic-numerical modeling strongly relies on using a
range of river stretches with catchment typical hydromorphological characteristics
(hydrology, bed substratum, bed structures, degree of braiding, sinuosity of the river
course, mean bed width, and bed slope). As a result, a set of model equations enables
the simulation of fish habitat conditions in river stretches as a function of flow and
morphology. The habitat suitability of selected river sections is assessed mainly in
terms of the needs of the life stages of important indicator fish species.

Flow calculations based on the conservation of mass, momentum, and energy
provide the foundations of hydrodynamic-numerical modeling. These calculations
can be generalized as nonlinear, partial differential equations, e.g., Navier–Stokes,
which can be solved in the general case only by approximation with numerical
methods. Navier–Stokes equations include no simplifications. That means, if no
errors are introduced by the numerical solution, complex flow phenomena can even
be correctly calculated to the last detail.

The Navier–Stokes and Reynolds equations can be simplified in various ways,
namely, by reducing the dimensionality or through neglect or simplification of terms
of output equations. Especially for habitat modeling (e-flow studies), most applica-
tions allow a dimension to be neglected only if the flow components in the
corresponding direction are negligible (e.g., cross distribution of flow velocity).

In computational fluid dynamics, high-resolution techniques are applicable, e.g.,
direct numerical solutions (DNS) (Lin and Liu 1998), Reynolds-averagedNavier–Stokes
(RANS) (Sinha et al. 1998), large eddy simulation (LES) models (Wu 2004), and
smoothed particle hydrodynamics (Monaghan and Kos 1999). Those numerical codes
can be used for environmental flow assessments, such as detailed studies on the impacts
of turbulence phenomena on macroinvertebrates. For reach-scale environmental flow
assessments, however, computational time and the required modeling boundaries make
this kind of analysis mostly impracticable.
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According to the computed resolution of flow velocity, three-dimensional,
two-dimensional, and one-dimensional hydrodynamic-numerical models can be
applied for hydraulic and environmental flow studies. The simplest form of numer-
ical modeling is the one-dimensional modelling approach with the assumption that
there is no variability of the flow velocity in the vertical and lateral direction in the
cross section.

These simplifying assumptions of a one-dimensional model represent often a
limit to the applicability of such ecohydraulic studies. Local differences in flow
velocity (especially in cross-sectional distribution) cannot be determined with the
assumptions of one-dimensional, shallow water equations. To apply simplifications
to the 2D-shallow water equations requires two assumptions: (i) the velocities in the
x and y directions are taken into account and (ii) the speeds are averaged over the
water depth. Two- and three-dimensional models are predictive models in a sense
that they also require calibration and validation. An important new development in
two- and three-dimensional modeling is the capacity of using a nested grid, i.e.,
different spatial resolutions in the same model application. This allows for using fine
grids in ecologically important areas, while coarser grids can be used in areas that do
not require such resolution (Olsen 2000).

Two-dimensional and three-dimensional hydraulic models apply the principles of
conservation of mass and momentum on a spatial, computational grid. Two-dimensional
horizontal models use depth-averaged velocity, where three-dimensional models have
computational layers in the vertical dimension. These models also include empirical or
stochastic representation of water turbulence. The model schematization is based on
detailed topographic input from the study area in combination with data on bed
roughness and boundary conditions for water level and discharge. Velocity and water
level measurements are usually used for validation.

A key aspect in numerical (habitat) modeling is the modeler’s own considerations
of simplifications and assumptions concerning the physics involved. The (habitat)
modeler has to decide which numerical approach fits best according to the require-
ments of the project to describe the abiotic environment. If the near-bottom velocity
needs to be addressed (e.g., benthic habitats), a three-dimensional code would be
required. If the cross section’s variability is important to characterize river morpho-
logical characteristics on the meso-unit (mesohabitat scale), then depth-averaged
two-dimensional modeling should be selected. For aspects of minimum flow depths
in a longitudinal view of the river, the one-dimensional model could deliver the
required information for various discharges (e.g., residual flow studies), just to name
some aspects of needs for a decision. Here, expert knowledge of this decision-
making process is a mandatory in pre-project steps.

7.2.3 Integrative Habitat Assessment

Once the (hydraulic) model has been calibrated and the species-habitat relationships
have been established, the two separate components need to be combined into a
composite flow-habitat relationship (sometimes referred to as habitat-discharge
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rating curves). Usually this is done by applying the weighted usable area (WUA)
(Bovee 1982) concept used in the PHABSIM family of fish habitat models. The
WUA is calculated as an aggregate of the product of a composite suitability index
(CSI, range 0.0–1.0). The CSI is calculated as a combination of the separate
suitability indices for every single physical parameter. The suitability index for
each parameter is evaluated by linear interpolation from an appropriate preference
curve to be supplied separately. Velocities and depths are usually taken directly from
the hydrodynamic model, while substrate and cover derives from additional mapped
data. For quantitative assessment of habitat suitability as a function of flow rate,
hydraulic rating curves (flow vs. habitat relationship) for the different key species are
generated.

A specific WUA can only be seen as an index because perceived physical area is
multiplied by unit-less habitat suitability attributes (Payne 2003). These attributes
were originally termed “elective criteria” (Bovee and Cochnauer 1977) under the
assumption that species will elect to leave an area when conditions become unfa-
vorable. Electivity is variously expressed as probability of use (or nonuse), prefer-
ence, suitability, or utilization over the possible range of conditions. Electivity
indices range between 0 and 1, have no units, and are most commonly derived
from frequency analysis of field observations.

To combine multiple habitat factors into one aggregate habitat suitability model
assessment, first it is useful to assign weights to each factor that reflect their relative
importance. If a habitat factor is not important for a species, it is assigned a weight of 0%.

Weighting is one of the weakest parts of the models if lacking any underlying
theory or hard data. One theoretical issue, for example, is this: When the scores are
combined across factors, does the overall score still have the same biological inter-
pretation we established when scoring suitability for each factor? Therefore, habitat
assessment should be built on a model that uses weights based on empirical data.

Further criteria to consider are anthropogenic reductions of the mean flow
velocity in the cross section along the river stretch; anthropogenic migration obsta-
cles occurring in the natural fish habitat must be passable by fish all year long and
stream bed stabilization (river-bottom sills, bank dynamics, and local protections) in
context to open substrate und dynamics.

Physical habitat units on the mesoscale (hydromorphological units) are addressed
at an intermediate level between microhabitats and reach-scale habitat characteristics
and hence are most commonly termed as mesohabitats (Maddock 1999; see also case
studies River Ybbs and MEM below). Although, various hydromorphological stud-
ies have yet to find consistent numbers of distinctly mesohabitat types for the aquatic
environment (e.g., Bain and Knight 1996), variable descriptions of abiotic parame-
ters exist to determine the different habitats on the mesoscale and have served mainly
to distinguish between pool, riffle, and run habitats. For characterizing mesohabitats,
the Froude number, the water surface slope, the range of water depth and velocities,
and the bed material size have been used. Based on the importance of mesohabitats
for instream studies and river restoration, various parameters have been developed
and implemented as different modeling approaches for mesohabitat description and
quantification (e.g., Parasiewicz 2001; Le Coarer 2005; Hauer et al. 2009).
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7.3 Managing River Systems Through Habitat Assessment

The following sections describe examples of implementation of habitat modeling at
micro- and mesohabitat spatial scales.

7.3.1 Case Study on Microhabitat Scale: E-Flow Study
at River Ybbs, Austria

As part of an environmental flow study on the River Ybbs (Zeiringer et al. 2010), a
microhabitat modeling approach was carried out as an integrative assessment
method to identify ecologically reasonable minimum flows. For the appropriate
ecological evaluation of the current situation, quantitative fish surveys (after
Haunschmid et al. 2010) and hydromorphological measurements were carried out
along the residual flow stretch as well as in unaffected stretches further upstream of
the water abstraction inlet for the power plant (see Fig. 7.3). The fishing results
formed the basis for deficit analysis and habitat modeling. Within the residual flow
stretch, two sections were surveyed and mapped in order to enable numerical
modeling of flow. These sections constitute a basic requirement for evaluating the
habitat suitability depending on different flow rates. Further, the hydrological
conditions along the 30 km long river section were quantified using several water
level logger and stage-discharge relationships. Thus, precise residual flow along the
river section could be derived over long periods.

Fig. 7.3 Case study area and study sites are located at River Ybbs in Lower Austria. (WLL¼water
level logger, Ref ¼ reference/fully discharged river stretch, RF ¼ residual flow)
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For the habitat modeling approach, the habitat requirements of the key species in
this river section, e.g., brown trout (Salmo trutta) and European grayling (Thymallus
thymallus), for different age stages (0þ, 1þ, 2þ&gt;) were defined. This was done
using preference functions (univariate and multivariate, see Fig. 7.4, 2a, b, c) of the
indicator species for different seasons (summer and fall) derived from unaffected
river stretches further upstream (Fig. 7.3). Fish were observed via snorkeling in the
fully discharged sections (Thurow 1994; Greenberg et al. 1996), and the abiotic
characteristic (water depth, flow velocity, substrate, and cover) of used and available
habitat depended on species and life stage were measured.

The hydraulics were modeled using the software River2D, which is a
two-dimensional depth-averaged model of river hydrodynamics and can also be
used for fish habitat modeling (Steffler and Blackburn 2002). The habitat suitability
of the modeled river stretches was calculated by linking the physical (habitat
descriptive) parameters with the habitat requirements of selected indicator species.
The fish habitat component of River2D is based on the weighted usable area (WUA).
For the quantitative assessment of habitat suitability as a function of flow rate,
hydraulic rating curves (flow vs. habitat relationship) for the different key species
were generated (Fig. 7.4). This was then combined with a historical flow time series
to produce a physical habitat time series and hence a physical habitat duration curve
(Maddock 1999).

7.3.2 Example at Mesohabitat Scale: Mesohabitat Evaluation
Model (MEM)

The conceptual MEM model was developed and validated by Hauer et al. (2008,
2011) and allows evaluation of six different hydromorphological units (mesohabitats)
according to their abiotic characteristics. Three abiotic parameters (flow velocity,
water depth, and bottom shear stress) were incorporated into the MEM analysis. For
practical purposes, the MEM concept was implemented using a Java software
application, which enables MEM evaluation based on one of three different
two-dimensional (CCHE2D, River2D, Hydro_AS-2D) and two different three-
dimensional models (RSim-3D, SSIIM) (Tritthart et al. 2008).

Recently, the MEM approach was successfully applied for the evaluation of
various anthropogenic pressures and the habitat quality assessment of restored
river sites in Austria. For example, hydropeaking impact studies (unsteady dynamics
in mesohabitat patterns) are significant recent applications. Here, the MEM results
were used as a fundamental basis for the discussion of future mitigation measure
design (Hauer et al. 2013). Moreover, the MEM concept was used to evaluate the
habitat quality of larger river systems like the Drava (Drau) river or the Danube
(Fig. 7.5). Here, the distribution of mesohabitats could be linked to the presence of
fish guilds, which enables habitat evaluation not only for single fish species, but for
groups with similar preferences for the aquatic environment. Using the fish guild
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concept, the model evaluates habitat suitability for spawning, juveniles, subadult,
and adult life stages of rheophilic, indifferent, and stagnophilic fish species (see for
details: Hauer et al. 2011, 2014).

Fig. 7.4 Concept of a case study on microhabitat scale, which combines abiotic and biotic
information (after Maddock 1999). The overall physical habitat simulation shows the integration
of (1) hydraulic measurement and modeling and (2) biotic habitat suitability criteria to define the
(3) flow versus habitat relationship, which is combined with (4) flow time series to produce
(5) habitat time series (example of WUA for brown trout older than 2 years), whereas examples
for brown trout life stages habitat use are given in 2a for water depth, in 2b for flow velocity, and in
2c as a CHAID tree method selecting specific fish habitat preferences
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