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Abstract. SPARX is a family of ARX-based block ciphers proposed at
ASIACRYPT 2016. This family was designed with the aim of provid-
ing provable security against single-characteristic linear and differential
cryptanalysis. SPARX-128/128 and SPARX-128/256 are two members
of this family which operate on data blocks of length 128 bits and keys
of length 128 and 256 bits, respectively. In this work, we propose a zero-
correlation distinguisher that covers 5 steps (20 rounds) for both variants
of SPARX-128. Then, using specific linear masks at its output and uti-
lizing some properties of the employed linear layer and S-box, we extend
this distinguisher to 5.25 steps (21 rounds).

By exploiting some properties of the key schedule, we extend the 20-
round distinguisher by 4 rounds to present a 24-round multidimensional
zero-correlation attack against SPARX-128/256, i.e., 6 steps out of 10
steps. The 24-round attack is then extended to a 25-round (6.25 out of
10 steps) zero-correlation attack against SPARX-128/256 with the full
codebook by using the developed 21-round distinguisher. In addition, we
extend the 21-round distinguisher by one round to launch a 22-round
multidimensional zero-correlation attack against SPARX-128/128, i.e.,
5.5 steps out of 8 steps.

Keywords: Block ciphers · Cryptanalysis
Multidimensional zero-correlation · SPARX

1 Introduction

With the aim of developing block ciphers with provable security against single-
characteristic linear and differential cryptanalysis, Dinu et al. [7] proposed a
new ARX-based family of block ciphers at ASIACRYPT 2016. They achieved
this goal by proposing a new strategy, namely, the long trail strategy, which is
different from the well-studied wide trail strategy [6] that is used by many S-box
based block ciphers. The long trail strategy encourages the use of a rather weak
but large S-boxes such as ARX-based S-boxes along with a very light linear
transformation layer. Adopting this strategy in the SPARX family allowed the
designers to prove the security of the cipher against single-characteristic linear
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and differential cryptanalysis by bounding the maximum linear and differential
probabilities for any number of rounds.

SPARX-128/128 and SPARX-128/256 are two members of the SPARX fam-
ily which employ a data block of length 128 bits using 128 and 256 key bits,
respectively. The only known attacks against these two variants were developed
by the designers. These attacks were found using integral cryptanalysis based
on Todo's division property [11] and cover 22 and 24 rounds of SPARX-128/128
and SPARX-128/256, respectively, in the chosen plaintext attack model.

Zero-correlation [4] is one of the relatively new techniques that is used to ana-
lyze symmetric-key primitives, where the attacker utilizes a linear approximation
of probability exactly 1/2 over rm rounds to act as a distinguisher. Then, this
distinguisher can be utilized in a key recovery attack such that the keys which
lead to this distinguisher are excluded. This technique proves its success against
many of the recently proposed block ciphers as exemplified by the work done
in [4,10,12–14].

In this paper, we evaluate the security of SPARX-128 in the known plain-
text attack model using the zero-correlation cryptanalysis. First, we present a
20-round zero-correlation distinguisher. Then, we use a specific linear mask at
the output of this 20-round distinguisher and exploit some properties of the
employed linear layer and S-box to add one more round and create a 21-round
zero-correlation distinguisher. To turn these distinguishers into key recovery
attacks, we take advantage of the property of the S-box that permits the exis-
tence of a two-round linear approximation that holds with probability 1. Then,
by exploiting the key schedule relations, we place this deterministic two-round
linear approximation in a position that enables us to extend the 20-round dis-
tinguisher by 4 complete rounds, i.e., including the linear layer, to launch a
24-round key recovery attack against SPARX-128/256 using multidimensional
zero-correlation attack. This 24-round attack is, then, extended by one more
round using the 21-round distinguisher to launch a 25-round zero-correlation
attack against SPARX-128/256 using the full codebook. In addition, we extend
the 21-round distinguisher to launch a 22-round attack against SPARX-128/128.

The remainder of the paper is organized as follows. In Sect. 2, the nota-
tions used throughout the paper and the specifications of SPARX-128/128 and
SPARX-128/256 are presented. Section 3 presents a brief introduction about
zero-correlation and multidimensional zero-correlation attacks. In Sect. 4, we
present our distinguisher for SPARX-128/128 and SPARX-128/256. Afterwards,
in Sect. 5, we provide a detailed description of our multidimensional zero-
correlation attacks against SPARX-128/128 and SPARX-128/256, and finally
we conclude the paper in Sect. 6.

2 Description of SPARX-128/128 and SPARX-128/256

The following notations are used throughout the paper:

– K: The master key.
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– ki: The ith 16-bit of the key state, where 0 ≤ i ≤ 7 for SPARX-128/128, and
0 ≤ i ≤ 15 for SPARX-128/256.

– kj
i : The ith 16-bit of the key state after applying the key schedule permutation

j times, where 0 ≤ i ≤ 7, 0 ≤ j ≤ 32 for SPARX-128/128, and 0 ≤ i ≤ 15,
0 ≤ j ≤ 20 for SPARX-128/256.

– Ki: The ith 32-bit of the key state, where 0 ≤ i ≤ 3 for SPARX-128/128, and
0 ≤ i ≤ 7 for SPARX-128/256.

– Kj
i : The ith 32-bit of the key state after applying the key schedule permuta-

tion j times, where 0 ≤ i ≤ 3, 0 ≤ j ≤ 32 for SPARX-128/128, and 0 ≤ i ≤ 7,
0 ≤ j ≤ 20 for SPARX-128/256.

– RK(a,i): The 32-bit round key used at branch a of round i where 0 ≤ i ≤ 32
(resp. 0 ≤ i ≤ 40) for SPARX-128/128 (resp. SPARX-128/256), and 0 ≤ a ≤
3, with a = 0 corresponding to the left branch.

– X(a,i) (Y(a,i)): The left (right) 16-bit input at branch a of round i where
0 ≤ i ≤ 32 (resp. 0 ≤ i ≤ 40) for SPARX-128/128 (resp. SPARX-128/256),
0 ≤ a ≤ 3, with a = 0 corresponding to the left branch, and the LSBs of both
X(a,i) and Y(a,i) start from the right.

– X(a,i)[i, j, · · · , k]: The i, j, · · · , k bits of X(a,i).
– X(a,i)[i : j]: The bits from i to j of X(a,i), where i ≤ j.
– w: The number of 32-bit words, i.e., w = 4 for a 128-bit block and w = 8 for

a 256-bit master key.
– R4: The iteration of 4 rounds of SPECKEY [2,3] with their corresponding

key additions.
– Lw: Linear mixing layer used in SPARX with w-word block size. Thus, L4 rep-

resents the linear mixing layer used in SPARX-128/128 and SPARX-128/256.
– �: Addition mod 216.
– ⊕: Bitwise XOR.
– ≪ q (≫ q): Rotation of a word by q bits to the left (right).
– ‖: Concatenation of bits.

2.1 Specifications of SPARX-128/128 and SPARX-128/256

SPARX [7,8] is a family of ARX-based Substitution-Permutation Network (SPN)
block ciphers. It follows the SPN design construction while using ARX-based S-
boxes instead of S-boxes based on look-up tables. The ARX-based S-boxes form a
specific category of S-boxes that rely solely on addition, rotation and XOR oper-
ations to provide both non-linearity and diffusion. The SPARX family adopts
the 32-bit SPECKEY ARX-based S-box (S), shown in Fig. 1, which resembles
one round of SPECK-32 [2,3] with only one difference, that is, the key is added
to the whole 32-bit state instead of just half the state as in SPECK-32.

For a given member of the SPARX family whose block size is n bits, the
plaintext is divided into w = n/32 words of 32 bits each. Then, the SPECKEY
S-box (S), is applied to w words in parallel, and iterated r times interleaved by
the addition of independent subkeys. Then, a linear mixing layer (Lw) is applied
to ensure diffusion between the words. As depicted in Fig. 1, the structure made
of a key addition followed by S is called a round while the structure made of r
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rounds followed by Lw is called a step. Thus, the ciphertext corresponding to
a given plaintext is generated by iterating such steps. The number of steps and
the number of rounds in each step depend on both the block size and the key
length of the cipher.

(w–1,i+r–1)

(w–1,i+r) (w–1,i+r)

(w–1,i)

(w–1,i) (w–1,i)

(0,i+r–1)

(0,i+r)

w

(0,i+r)

(0,i)

(0,i) (0,i)

Fig. 1. SPARX structure

SPARX-128/128 and SPARX-128/256 are two members of the SPARX family
which operate on 128-bit blocks using 128-bit and 256-bit keys, respectively. Both
variants use 4 rounds in each step and iterate over 8 and 10 steps, i.e., the total
number of rounds is 32 and 40, respectively. More precisely, in SPARX-128/128
and SPARX-128/256, 4 SPECKEY S-boxes (S) are iterated simultaneously for
4 times, while being interleaved by the addition of the round keys and then a
linear mixing layer (L4) is applied, as shown in Fig. 2 which also depicts the
structure of L4.

SPARX-128/128 key schedule. The 128-bit master key instantiates the key
state, denoted by k0

0‖k0
1‖k0

2‖k0
3‖k0

4‖k0
5‖k0

6‖k0
7. Then, the 4×32-bit round keys used

in branch number 0 of the first step are extracted. Afterwards, the permutation
illustrated in Fig. 3 is applied and then the 4 × 32-bit round keys used in branch
number 1 of the first step are extracted. The application of the permutation and
the extraction of the keys are interleaved until all the round keys encompassing
the post-whitening ones are generated. This means that the round keys of a given
branch in step j are generated first and then the key state is updated.

SPARX-128/256 key schedule. The 256-bit master key instantiates the key
state, denoted by k0

0‖k0
1‖k0

2‖k0
3‖k0

4‖k0
5‖k0

6‖k0
7‖k0

8‖k0
9 ‖k0

10‖k0
11‖k0

12‖k0
13‖k0

14‖k0
15.

First, the 4 × 32-bit round keys used in branch number 0 of the first step are
extracted. Then, the 4 × 32-bit round keys used in branch number 1 of the first
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Fig. 2. SPARX-128/128 and SPARX-128/256 step structure

Fig. 3. SPARX-128/128 key schedule permutation, where the counter r is initialized
to 0
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step are extracted. Afterwards, the permutation illustrated in Fig. 4 is applied
and then the 4 × 32-bit round keys used in branch number 2 and 3 of the first
step are extracted. The application of the permutation and the extraction of the
keys are interleaved until all the round keys encompassing the post-whitening
ones are generated.

Fig. 4. SPARX-128/256 key schedule permutation, where the counter r is initialized
to 0

3 Multidimensional Zero-Correlation Linear
Cryptanalysis

In the traditional linear cryptanalysis [9], the attacker tries to find a linear
relation between an input x and an output y of an n-bit block cipher function f
that has the following form:

Γx ◦ x ⊕ Γy ◦ y = 0,

where ◦ is a bitwise dot product operation and Γx (Γy) is the input (output)
linear mask. This linear relation has a probability p, and in this type of attack
it should be far from 1/2 or equivalently its correlation C = 2 × p − 1 is not
zero. The following lemmas are used to specify the propagation of linear masks
through the different operations (XOR, branch, and S-box) that are used in the
round function.

Lemma 1 (XOR operation [4,12]): Either the three linear masks at an XOR ⊕
are equal or the correlation over ⊕ is exactly zero.

Lemma 2 (Branching operation [4,12]): Either the three linear masks at a
branching point • sum up to 0 or the correlation over • is exactly zero.

Lemma 3 (S-box permutation [4,12]): Over an S-box S, if the input and output
masks are neither both zero nor both nonzero, the correlation over S is exactly
zero.
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Later on, Bogdanov and Rijmen [4] proposed a new technique called zero-
correlation cryptanalysis which, in contrast to the linear cryptanalysis, exploits
linear relations with correlation exactly zero to exclude wrong keys which lead
to this linear approximation. To remove the burden of the high data complex-
ity of the zero-correlation attack and the statistical independence for multiple
zero-correlation linear approximations, Bogdanov et al. [5] proposed the multi-
dimensional zero-correlation attack. In this technique, we have m different linear
approximations with zero-correlation, where all the l = 2m − 1 non-zero linear
approximations involved in the spanned linear space of these m linear approxi-
mations should have zero-correlation. The zero-correlation linear approximation
over rm rounds can act as a distinguisher, then the attacker can prepend/append
additional rounds called analysis rounds. The attack proceeds by gathering N
plaintext/ciphertext pairs and creating an array of counters V [z], where |z| = m
bits, and initializing it to zero. Then, for each plaintext/ciphertext pair and key
guess, the attacker computes the corresponding bits needed to apply the m lin-
ear approximations to compute z and increments the corresponding counter by
one. Afterwards, the attacker computes the statistic T [5]:

T =
2m−1∑

z=0

(V [z] − N2−m)2

N2−m(1 − 2−m)
=

N2m

(1 − 2−m)

2m−1∑

z=0

(
V [z]
N

− 1
2m

)2

. (1)

The right key has T that follows χ2-distribution with mean μ0 = l 2
n−N
2n−1 , and

variance σ2
0 = 2l( 2

n−N
2n−1 )2, while the statistic for the wrong key guess follows χ2-

distribution with mean μ1 = l and variance σ2
1 = 2l [5]. The number of known

plaintexts required by the attack can be estimated as follows [5]:

N =
2n(Z1−γ + Z1−ζ)√

l/2 − Z1−ζ

, (2)

where γ (resp. ζ) denotes the probability to incorrectly discard the right key
(resp. the probability to incorrectly accept a random key as the right key) and
Zp = φ−1(p) (0 < p < 1), φ is the cumulative function of the standard nor-
mal distribution. According to the required γ and ζ probabilities, the decision
threshold is set to τ = μ0 + σ0Z1−γ = μ1 − σ1Z1−ζ .

4 Zero-Correlation Distinguisher of SPARX-128/128
and SPARX-128/256

In this section, we present a 20-round zero-correlation distinguisher for SPARX-
128/128 and SPARX-128/256, which will be exploited later in our attacks against
22 rounds (5.5 steps out of 8) of SPARX-128/128 and 24, 25 rounds (6, 6.25 steps
out of 10) of SPARX-128/256. As depicted in Fig. 5, this distinguisher begins
with only branch 0 containing a linear mask α0 at round i. Then, by propagating
this linear mask 2 steps forward, and by utilizing Lemmas 1 and 2, we have linear
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masks 0 and α4 applied on X(1,i+8)Y(1,i+8) and X(3,i+8)Y(3,i+8), respectively.
From the other side, at round i + 20, branch 0 has a linear mask β0, branch 1
has no linear mask, and branch 2 and 3 have linear masks β1 and β2, respectively.
The linear masks β1 and β2 are chosen such that L4(β1, β2) = (β0, 0). This choice
enables us to pass one step backward with only one word having a linear mask β3

at branch 2. Then, following Lemmas 1 and 2, we can propagate the linear masks
backward for one additional step and a linear layer to end with branch 1 and
3 having a non-zero linear mask β6 and a zero linear mask before applying the
inverse of R4 to obtain X(1,i+8)Y(1,i+8) and X(3,i+8)Y(3,i+8), respectively. Here,
R4 can be considered as a one big S-box, and hence, from Lemma 3, this linear
approximation has a zero-correlation.

5 Multidimensional Zero-Correlation Cryptanalysis
of SPARX-128/128 and SPARX-128/256

The following observations, which stem from the structure of SPARX-128/128
and SPARX-128/256, are exploited in our attacks.

Observation 1. As depicted in Fig. 6a, there is a 2-round linear approximation
that holds with probability 1 (0x0080 0x4001 → 0x0004 0x0004).

Observation 2. As illustrated in Fig. 6b, the linear mask 0ββ0, where 0 and β
denote 0x0000 and 16-bit non-zero linear mask, respectively, propagates through
the linear layer L4 as ββ00, i.e., L4(0ββ0) = ββ00.

Observation 3. From Observation 2 and the specification of the S-box, the
20-round distinguisher can be extended to 21-round distinguisher, as shown in
Fig. 6c.

5.1 24-Round Multidimensional Zero-Correlation Attack
on SPARX-128/256

In this attack, and in order to maximize the number of attacked rounds, we have
chosen to place the 20-round distinguisher at the bottom, and add 4 analysis
rounds at the top to launch a 24-round attack against SPARX-128/256. Taking
into account the key schedule relations, the top 4 analysis rounds involve all
the master key bits, and in order to be able to extend 4 rounds above the
distinguisher, we utilize Observation 1. In particular, we choose a specific linear
mask at branch 0 at the beginning of our 20-round zero-correlation distinguisher.
This specific linear mask, after propagating it backward through the linear layer
L4, enables us to bypass 2 rounds of branch 0 with probability 1 by exploiting
Observation 1 and thus have an extended distinguisher (the dotted one in Fig. 7).
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Fig. 5. A 20-round zero-correlation distinguisher of SPARX-128/128 and SPARX-
128/256, where αi, βj are 32-bit non-zero linear masks and 0 denotes 0x0000 0x0000
linear mask
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Fig. 6. Illustrations of Observations 1, 2 and 3.
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Fig. 7. A 24-round multidimensional zero-correlation linear cryptanalysis of SPARX-
128/256, where 0 and β denotes 0x0000 and 16-bit non-zero linear mask, respectively

Key Recovery. Here, we chose β = 0x0abc, where a, b, c are 4-bit non-zero lin-
ear masks. Then, the attack proceeds by gathering enough plaintext/ciphertext
pairs. Afterwards, we guess the round keys involved in the analysis rounds to
estimate the statistic T . However, the complexity of the attack following this
strategy exceeds the complexity of exhaustive search. Therefore, we use the par-
tial compression technique in order to reduce the time complexity of the attack
as follows:

Step 1. Allocate an array of counters N1[X1] and initialize it to zeros, where
X1 = X(0,0)Y(0,0)||X(1,0)Y(1,0) ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 : 11] ⊕
Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X1| = 108 bits. Then, from the gathered
plaintext/ciphertext pairs compute X1 and increment the corresponding counter.
Since all the non-zero 16-bit linear masks in the ciphertext equal β = 0x0abc,
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then, we can store only (X(0,24)[0 : 11]⊕Y(0,24)[0 : 11]⊕Y(2,24)[0 : 11]⊕X(3,24)[0 :
11]) instead of storing each one separately to apply the linear mask β.

Step 2. Allocate an array of counters N2[X2] and initialize it to zeros, where
X2 = X(0,0)Y(0,0)||X(1,3)[0, 1, 7 : 15]Y(1,3)[0 : 10] ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕
Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X2| = 98 bits. Then, guess
K4,K5,K6 and partially encrypt X1 to compute X2 and add the corresponding
counter N1[X1] to N2[X2].

Step 3. Allocate an array of counters N3[X3] and initialize it to zeros, where
X3 = X(0,0)Y(0,0)||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 :

11]⊕Y(2,24)[0 : 11]⊕X(3,24)[0 : 11]), i.e., |X3| = 79 bits. Then, guess 22 bits of K7

(K7[0 : 10, 16, 17, 23 : 31] ≡ k14[0, 1, 7 : 15], k15[0 : 10]) and partially encrypt X2

to compute X3 and add the corresponding counter N2[X2] to N3[X3]. Since the
linear mask on X ′

(1,3)Y
′
(1,3) is 0x0404 0x0004, i.e., we need to compute only 3 bits

of X ′
(1,3)Y

′
(1,3), and we need only to know 22 bits of X(1,3)[0, 1, 7 : 15]Y(1,3)[0 : 10]

and 22 bits of K7 to compute this linear mask.

Step 4. Allocate an array of counters N4[X4] and initialize it to zeros,
where X4 = X(0,0)Y(0,0)||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X(2,3)[0, 1, 7 : 15]Y(2,3)[0 : 10]||

(X(0,24)[0 : 11] ⊕ Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X4| = 69
bits. Then, guess the remaining 10 bits of K7 and partially encrypt X3 to com-
pute X4 and add the corresponding counter N3[X3] to N4[X4].

Step 5. Allocate an array of counters N5[X5] and initialize it to zeros, where
X5 = X(0,0)Y(0,0)||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X ′

(2,3)[10]||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 :
11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X5| = 48 bits. Then, guess 22 bits of
R(K0) (R(K0)[0 : 10, 16, 17, 23 : 31]) and partially encrypt X4 to compute X5

and add the corresponding counter N4[X4] to N5[X5].

Step 6. Allocate an array of counters N6[X6] and initialize it to zeros, where
X6 = X(0,1)[0 : 5, 7 : 15]Y(0,1)[0 : 14]||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X ′

(2,3)[10]||(X(0,24)[0 :
11] ⊕ Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X6| = 46 bits. Then,
guess the remaining 10 bits of R(K0) and partially encrypt X5 to compute X6

and add the corresponding counter N5[X5] to N6[X6].

Step 7. Allocate an array of counters N7[X7] and initialize it to zeros, where
X7 = X(0,2)[7]Y(0,2)[0, 14]||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X ′

(2,3)[10]||(X(0,24)[0 : 11] ⊕
Y(0,24) [0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X7| = 19 bits. Then,
guess 30 bits of K1 (k2[0 : 5, 7 : 15], k3[0 : 14]) and partially encrypt X6 to
compute X7 and add the corresponding counter N6[X6] to N7[X7].

The steps of the key recovery phase are summarized in Table 1, where the
second column gives the keys to be guessed in each step. The third column
presents the saved state in each step after the partial encryption, the fourth
column is the counter size for each obtained state in the corresponding step,
and the fifth column quantifies the time complexity of each step measured in
24-round encryption by considering the number of S-box accesses.
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Table 1. Key recovery process of the attack on 24-round SPARX-128/256

Step Guessed keys Obtained state Size Time complexity

1 a X1 108 b

2 K4, K5, K6 X2 98 2108 × 23×32 × 3

24 × 4
≈ 2199

3 K7[0 : 10, 16, 17, 23 : 31] X3 79 298 × 296+22 × 1

24 × 4
≈ 2209.4

4 K7[11 : 15, 18 : 22] X4 69 279 × 2118+10 × 3

24 × 4
≈ 2202

5 R(K0)[0 : 10, 16, 17, 23 : 31] X5 48 269 × 2128+22 × 1

24 × 4
≈ 2212.4

6 R(K0)[11 : 15, 18 : 22] X6 46 248 × 2150+10 × 1

24 × 4
≈ 2201.4

7 K1[0 : 14, 16 : 21, 23 : 31] X7 19 246 × 2160+30 × 1

24 × 4
≈ 2229.4

a: No additional key guesses needed, b: Negligible complexity

After Step 7, we have guessed 190 key bits (gK) from the master key and
evaluated X7, that contains all the 19 bits involved in computing the zero-
correlation masks. Therefore, to recover the master key, the following steps are
performed:

1. Allocate an array of counters V [z], where |z| = 12 bits.
2. For 219 values of X7

(a) Evaluate all 12 basis zero-correlation masks on X7 and calculate z.
(b) Update the counter V [z] by V [z] = V [z] + N7[X7].

3. For each guessed key gK, compute TgK =
N × 212

1 − 2−12

212−1∑

z=0

(
V [z]
N

− 1
212

)2

.

4. If Tk < τ , then the guessed values of gK are key candidates.
5. Exhaustively search all the remaining key candidates with 266 values for the

66 bits of the key that are not retrieved by the above steps of the attack using
2 plaintext/ciphertext pairs.

Attack complexity. Since the beginning of the distinguisher has a specific
linear mask and the end of the distinguisher has a variable 12-bit linear mask
β, then m = 12, and hence l = 212 − 1. Here, we set γ = 2−2.7 and ζ = 2−30

and hence we have z1−γ ≈ 1 and z1−ζ ≈ 6. According to Eq. (2), the data
complexity is about 2125.5 known plaintexts. The total time complexity of the
attack encompasses the time complexity of two phases. The first is the time
required to reduce the key search space which can be computed from Table 1.
The second is the time required to retrieve the whole master key by exhaustively
searching the remaining 2190 × 2−30 = 2160 key candidates with the 266 key bits
not involved in the attack using 2 plaintext/ciphertext pairs. Therefore, the
total time complexity of the attack is 2229.4 + 2 × 2160 × 266 ≈ 2229.65 24-round
encryptions.

25-round Zero-Correlation Attack on SPARX-128/256. The above
attack can be extended one more round to launch a key recovery attack against
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25-round of SPARX-128/256 with the full codebook. This extra round can be
obtained by selecting the linear masks at the end of the distinguisher as in
Observation 3 to convert the 20-round distinguisher to 21-round distinguisher.
However, at this time we will use only one zero-correlation linear approximation.
Therefore, we require the full codebook. The time complexity of the attack is
dominated by Step 7, and it will be 2227.4 instead of 2229.4 because we store only
10 bits instead of 12 bits at the end of the distinguisher.

5.2 22-Round Multidimensional Zero-Correlation Attack
on SPARX-128/128

As depicted in Fig. 8, in this attack we use the 21-round zero-correlation dis-
tinguisher obtained by utilizing Observation 3. Then, we append an additional
round at the bottom of the distinguisher. In the previous attack, the analysis
rounds were placed above the distinguisher, therefore, the relation of the round
keys to the master key was straightforward and we use the master key relations
in the attack from the beginning. However, in this attack, we place the analysis
round at the bottom of the distinguisher, and hence the relation of the round
keys to the master key is not trivial. Therefore, we will perform the attack on
the round keys. Then, we will explain how to recover the master key from the
recovered round keys. In order to balance the time complexity and the data
complexity, we choose α0 having linear masks in the first 30-bit only.

Fig. 8. A 22-round multidimensional zero-correlation linear cryptanalysis of SPARX-
128/128
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Key Recovery. Similar to the previous attack, we first gather N plaintext/
ciphertext pairs, and then proceed as follows:

Step 1. Allocate an array of counters N1[X1] and initialize it to zeros, where
X1 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,22)[0 : 4, 11]
Y(2,22)[2 : 4, 11]||X(3,22)[0 : 13]Y(3,22)[2 : 13], i.e., |X1| = 92 bits. Then, from
the N plaintext/ciphertext pairs compute X1 and increment the corresponding
counter.

Step 2. Allocate an array of counters N2[X2] and initialize it to zeros, where
X2 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,21)[9]Y(2,21)[9]
||X(3,22)[0 : 13]Y(3,22)[2 : 13], i.e., |X2| = 84 bits. Then, guess RK(2,22)[2 :
4, 11, 16 : 20, 27] and partially decrypt X1 to compute X2 and add the corre-
sponding counter N1[X1] to N2[X2].

Step 3. Allocate an array of counters N3[X3] and initialize it to zeros, where
X3 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,21)[9]Y(2,21)[9]
||X(3,21)[0, 2]Y(3,21)[2], i.e., |X3| = 61 bits. Then, guess RK(3,22)[2 : 13, 16 : 29]
and partially decrypt X2 to compute X3 and add the corresponding counter
N2[X2] to N3[X3].

Step 4. Allocate an array of counters N4[X4] and initialize it to zeros, where
X4 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,21)[0, 2, 9]Y(0,21)[2, 9] ||X(2,21)[9]Y(2,21)[9]
||X(3,21)[0, 2]Y(3,21)[2], i.e., |X4| = 40 bits. Then, guess RK(0,22)[2 : 13, 16 : 29]
and partially decrypt X3 to compute X4 and add the corresponding counter
N3[X3] to N4[X4].

To determine the surviving round key candidates, we proceed as in the previ-
ous attack in Sect. 5.1 with m = 30, and hence |z| = 30 bits. Moreover, instead of
using X7, we use X4. The number of surviving round key candidates is 262×2−ζ .
To retrieve the master key, we will, first, retrieve the 128-bit key after applying
the key permutation 20 times, i.e., K20

0 ||K20
1 ||K20

2 ||K20
3 and, afterwards, we just

revert the key schedule permutation 20 times to retrieve the master key. We have
retrieved RK(0,22)[2 : 13, 16 : 29] which allows us to deduce K20

2 [2 : 13, 16 : 29],
see Fig. 9. Retrieving the remaining 102 bits of K20

0 ||K20
1 ||K20

2 ||K20
3 can be done

as follows:

1. We guess K20
0 ,K20

3 and the remaining 6 bits of K20
2 to compute RK(1,21),

RK(1,23), RK(2,21), RK(2,22). Hence in total we have 262−ζ+32+32+6−10=122−ζ

remaining key candidates for K20
0 ,K20

2 ,K20
3 , RK(3,22)[2 : 13, 16 :

29], RK(1,21), RK(1,23), RK(2,21), because we have 10-bit filter on RK(2,22)[2 :
4, 11, 16 : 20, 27].

2. We guess the remaining 6 bits of RK(3,22) to compute RK(2,20), RK(1,22),K
20
1 .

Therefore, in total we have 2122−ζ+6 key candidates for K20
0 ,K20

1 ,K20
2 ,K20

3 .
3. We apply the inverse of the key permutation 20 times to retrieve 2122−ζ+6

key candidates for K, i.e., the master key.
4. We test the remaining key candidates using one plaintext/ciphertext pairs to

identify the correct key.
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Attack complexity. Here, we set m = 30 (and hence l = 230 − 1), γ = 2−2.7,
and ζ = 2−26. Thus z1−γ ≈ 1 and z1−ζ ≈ 5.54. The data complexity is 2116.2

known plaintexts, which can be computed from Eq. (2). In this case, the total
time complexity of the attack is determined by the time complexity of three
stages. The first is the time required to reduce the key search space which is
dominated by Step 4 and equals 261 × 210+26+26 × 1

22×4 ≈ 2116.54. The second is
the time required to retrieve the whole master key and equals 262−26+32+32+6 ×

3
22×4 + 2122−26+6 × 2

22×4 + 2122−26+6 × 20×2
22×4 + 2102 ≈ 2103. The third is the time

required by the data collection phase which is equal to 2116.2. Therefore, the time
complexity of the attack is 2116.54 +2103 +2116.2 ≈ 2117.38 22-round encryptions.

Remark: It is worth noting that the above zero-correlation attacks are also
applicable to 15 rounds of SPARX-64/128 using the zero-correlation distin-
guisher shown in Fig. 10 (see also [1]). The details of this attack are omitted
from this version of the paper due to space limitations.

6 Conclusion

In this paper, we presented 20 and 21-round zero-correlation distinguishers that
are used to launch key recovery attacks against 24, 25 rounds (6, 6.25 out of
10 steps) of SPARX-128/256 and 22 rounds (5.5 out of 8 steps) of SPARX-
128/128. To the best of our knowledge these are the first third party attacks
against SPARX-128/128 and SPARX-128/256.
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A Key Schedule Relations for SPARX-128/128

Fig. 9. Key secluded relations of SPARX-128/128
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B Zero-Correlation Distinguisher for SPARX-64/128

Fig. 10. A 12-round zero-correlation distinguisher of SPARX-64/128, where αi, βj are
32-bit non-zero linear masks and 0 denotes 0x0000 0x0000 linear mask
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