
Quantum Key-Recovery on Full AEZ

Xavier Bonnetain1,2(B)

1 Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris, France
2 Inria, Paris, France

xavier.bonnetain@inria.fr

Abstract. AEZ is an authenticated encryption algorithm, submitted to
the CAESAR competition. It has been selected for the third round of the
competition. While some classical analysis on the algorithm have been
published, the cost of these attacks is beyond the security claimed by the
designers.

In this paper, we show that all the versions of AEZ are completely
broken against a quantum adversary. For this, we propose a generali-
sation of Simon’s algorithm for quantum period finding that allows to
build efficient attacks.

Keywords: CAESAR competition · Symmetric cryptanalysis
Quantum cryptanalysis · Authenticated encryption · AEZ
Simon’s algorithm

1 Introduction

Post-quantum cryptography studies the weaknesses of cryptographic systems
against quantum adversaries. The consequences of a quantum computer would be
catastrophic in cryptography. Indeed, due to Shor’s algorithm [17], most widely
used cryptographic primitives would be completely broken. The situation is dif-
ferent in symmetric cryptography. We know since 1996 that Grover’s algorithm
[9] gives a quadratic speedup on exhaustive search, which lead to the common
belief that doubling the key length would be enough to attain a suitable level
of security against quantum computers. The work on dedicated cryptanalysis is
much more recent, with many results [2,11,13] showing that we need to study
further the implications of quantum computation in symmetric cryptography.

Authenticated encryption aims at providing both secrecy and authenticity. It
can be achieved by a classical symmetric primitive in a specific mode of operation
(OCB, GCM) [14,16], or with a dedicated primitive. The CAESAR competition,
launched in 2014, aims to standardise a portfolio of authenticated encryption
algorithms. It has been quite successful in driving the community to work on
this subject, with more than 50 submissions, and many cryptanalytic results on
these submissions, like for instance [5,6]. AEZ [10] is one of these proposals, still
in the competition in the 3rd round of the selection process. The candidate AEZ
has been tweaked several times to counter some proposed analysis [6,8]. The
current version is AEZ version 5, denoted AEZv5. AEZ claims to be a robust
authenticated encryption scheme, being secure even in nonce misuse scenarios.
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 394–406, 2018.
https://doi.org/10.1007/978-3-319-72565-9_20

Quantum Key-Recovery on Full AEZ 395

The designers however limited their security claims to 244 blocks of data used
with the same key. This unusually small limit renders the attacks from [6,8]
inapplicable, and their security claims remain unaffected. The published analysis
consider only a classical adversary. In this paper, we study the resistance against
quantum adversaries.

There has been some previous work on authenticated encryption in a quan-
tum setting, for instance SPHINCS, by Berstein et al. [3]. Kaplan et al. [11]
showed some existential forgeries in OCB, GCM and many CAESAR candi-
dates(including AEZ). Soukharev et al. have proposed a security model for
authenticated encryption against quantum adversaries [19], where the challenges
are classical, but the adversary can make queries in quantum superposition to an
encryption (or decryption, if available) oracle, with a classical chosen random-
ness. Our attacks performs in this model, where the chosen queries are quantum,
except for the nonce, which should be classical (it can be chosen or known, this
has no impact on our quantum attacks).

This is a strong model, as the attacker has not only quantum computa-
tion capabilities, but can perform quantum queries to an oracle that computes
a classical function f : that is, from an arbitrary superposition

∑ |x〉 |0〉, get∑ |x〉 |f(x)〉. It has the advantage of encompassing any other, more constrained,
model, and if a primitive is safe in this model, it is safe in the others. Moreover,
it may become plausible. We can for example think of white-box cryptography:
if you have access to a program that computes a function, you can implement it
on a quantum computer. Finally, this model is non-trivial: it is possible to build
constructions secure in this model.

In this paper, we show how the key-recovery of [6] can be dramatically accel-
erated in a quantum setting to break AEZv4. We also show of to adapt the
attack for a key-recovery of AEZv5 and a universal forgery with AEZ10. All
these attacks use quantum period finding and have a cost in data of around 210

blocks, which is far below the 244 limit claimed by the designers.
From a quantum algorithmic’s point of view, we propose a more powerful

and precise analysis than the one in [11]. We also show how to take advantage
of a quantum multiple period finding, that allows to reduce even more the data
complexity in some cases. The results are summarised in Table 1.

Table 1. Summary of the attacks on AEZ since version 3

Version Data, time, memory
complexity (blocks)

model Type Ref

AEZv3 266.6 Classical Key Recovery [8]

AEZv4 266.5 Classical Key recovery [6]

AEZv4 210 Classical Existential forgery [4]

All � 29 Quantum query Existential forgery [11]

AEZv4 211.4 Quantum query Key recovery Sect. 5.1

AEZv5 211.1 Quantum query Key recovery Sect. 5.2

AEZ10 29.6 Quantum query Universal forgery Sect. 5.3

396 X. Bonnetain

2 Preliminaries

In this section, we describe the primitive we’re attacking and our main cryptan-
alytic tool, Simon’s algorithm.

2.1 Description of AEZ

AEZ [10] (Fig. 1) is a tweakable block cipher for authenticated encryption, and
its components have been tweaked in the different versions of the algorithm. It
uses a master key K of 384 bits, decomposed in 3 subkeys (I, J , L) of 128 bits
each. AEZ has at its core a tweakable function Ei,j

K used in the intermediate func-
tion AEZ-hash (Fig. 2). The user calls the external function Encrypt, that calls,
depending on the message length, AEZ-prf, AEZ-tiny or AEZ-core. AEZ-tiny
and AEZ-core are symmetric ciphers, AEZ-tiny is used for messages of less than
32 bytes (one block), AEZ-core is used for longer messages. AEZ-prf is a pseudo-
random function (PRF) called when the message is empty that takes some asso-
ciated data and a length τ in argument, and that outputs a tag of the desired
length that can be used to authentify the associated data. Our attacks will use
AEZ-prf, and its components are described below. We also need AEZ-core for
a part of the attack against AEZ version 4, but as its description is more com-
plex and the attack uses the same principles, we refer to [6] for a description of
AEZ-core.

Ei,j
K

AEZ-hash

AEZ-prf
AEZ-tiny

AEZ-core

PRF Encryption

Encrypt

Fig. 1. High-level view of the components of AEZ

Associated Data. The associated data is seen as a bidimensional vector of
128-bit blocks. An example for 7 blocks can be represented as:

A1
1

A1
2

A1
3A

2
3A

3
3

A1
4A

2
4

that we note (A1
1, A

1
2, (A

1
3, A

2
3, A

3
3), (A

1
4, A

2
4)).

Quantum Key-Recovery on Full AEZ 397

The associated data can contain any number of lines, and each line can have
any length. In practice, we have two constraints. The first line A1 contains the
output length τ of the PRF, in bits. As we’ll only have output lengths smaller
than 2128 bits, the first line will only contain one block. The second line contains
the nonce N . The specification recommends a nonce smaller than 128 bits, which
also limits this line to one block. However, as this is only a recommendation, we
can also study what happens if we allow longer nonces.

Finite Field. AEZ uses a multiplication in F2128 , seen as F2[X]/(X128 + X7 +
X2 +X +1). As we are in a field, we can invert any non-zero number. Moreover,
knowing the polynomial, we can do it efficiently.

Core Function. The core of the algorithm is the function Ei,j
K , which is a

permutation on 128 bits. It is concretely a tweaked version of 4 or 10 rounds
of AES [7] (AES4 and AES10). The exact function depends on the version of the
algorithm and the values of i and j. These versions of AES don’t use the normal
key schedule but one of the subkeys (I, J, L) at each round.

Table 2 shows the value of Ei,j
K in AEZv4, depending on the parameters i and

j, with αj = 23+�(j−1)/8� + ((j − 1) mod 8) and βi = 2i−3. The multiplication
is done in the finite field.

Table 2. Ei,j
K in AEZv4

i j Ei,j
K (X)

−1 N AES10(X ⊕ jJ)

0 N AES4(X ⊕ jI)

1 N AES4(X ⊕ αjI)

2 N AES4(X ⊕ αjI)a

≥ 3 0 AES4(X ⊕ βiL) ⊕ βiL

≥ 3 ≥ 1 AES4(X ⊕ βiL ⊕ αjJ) ⊕ βiL ⊕ αjJ
a This AES doesn’t uses the same keys as the others

The function is simpler in AEZv5:

– E−1,j
K (X) = AES10(X ⊕ jL)

– Ei,j
K (X) = AES4(X ⊕ iJ ⊕ 2�j/8�I ⊕ (j mod 8)L)

Since version 2, AEZ also proposes an alternative algorithm named AEZ10
where the master key K has 128 bits and is directly used as an AES key, I =
AESK(0), J = AESK(1) and Ei,j

K = AESK(X ⊕ jI ⊕ iJ).

398 X. Bonnetain

A1
1 = τ

E3,1
K

A1
2 = N

E4,1
K

A1
3

E5,1
K

A2
3

E5,2
K

. . . Aj
i

Ei+2,j
K

Δ

Fig. 2. AEZ-hash scheme

AEZ-hash. This function takes as input the associated data A and the key K
and outputs 128 bits.

AEZ-hash(K,A) = Δ =
⊕

i,j

Ei+2,j
K (Aj

i) in both v4 and v5.

AEZ-prf. This function is a PRF of arbitrary output length which can be used
to authentify the associated data. It takes as input an output length τ , some
associated data A and the key K, and outputs τ bits.

It computes Δ = AEZ-hash(K,A), and outputs the first τ bits of the sequence
E−1,3

K (Δ), E−1,3
K (Δ ⊕ 1), E−1,3

K (Δ ⊕ 2) . . . The most interesting property of this
function is that its value (for τ fixed) depends only on the value of AEZ-hash,
and in particular, that a collision in AEZ-hash implies a collision in AEZ-prf.

Encrypt. This function takes as input the key K, the associated data A
and a variable-length message M . For empty messages, it is a direct call to
AEZ-prf(K,A, τ).

2.2 Simon’s Algorithm

Simon’s algorithm [18] aims at solving the following problem:

Simon’s problem. Given a function f : {0, 1}n → {0, 1}n and the promise that
there exists s ∈ {0, 1}n such that for all (x, y) ∈ ({0, 1}n)2, f(x) = f(y) ⇔
x ⊕ y ∈ {0, s}, find s.

We say that f has the period s. We have a 2-to-1 function such that for each
output, the xor of the 2 preimages is always the same value, and we want to
find this value. Classically, we can solve this problem by searching for collisions,
in time Ω

(
2n/2

)
. In our quantum model, where we allow quantum queries to

the function, Simon’s algorithm solves that problem in O(n) quantum queries
and time, using the circuit in Fig. 3. It also needs a polynomial-time classical
post-processing, that we will neglect. We have access to the oracle Of : |x〉 |y〉 �→
|x〉 |f(x) ⊕ y〉. We also use the Hadamard transform H⊗n : |x〉 �→ ∑

y(−1)x·y |y〉,
with · the inner product in {0, 1}n, and some measurements.

Quantum Key-Recovery on Full AEZ 399

|0〉

|0〉

H⊗n

Of (x, y) =
(x, y ⊕ f(x))

H⊗n

�→ f(x0)

�→ x

Fig. 3. Simon’s algorithm quantum circuit

This circuits has five steps:

1. Starting with 2 n-qbits registers |0〉 |0〉, we apply the Hadamard transform on
the first register, which gives us the superposition

∑

x∈{0,1}n

|x〉 |0〉

2. With the oracle, we get the quantum superposition of all input-outputs
through f : ∑

x∈{0,1}n

|x〉 |f(x)〉

3. We measure the second register. This gives us an f(x0) for an unknown x0,
and collapses the first register to the compatible preimages, that are, thanks
to the promise

|x0〉 + |x0 ⊕ s〉
4. We then reapply the Hadamard transform to the first register, which becomes

∑

x∈{0,1}n

(−1)x0·x (1 + (−1)x·s) |x〉

5. We measure that register. Any x such that x · s = 1 has a null amplitude,
and we can’t measure it. Therefore, we’ll measure a random value satisfying
x · s = 0.

One application of this circuit gives us a random vector orthogonal to s. We
can retrieve the hyperplane orthogonal to s with n−1 independent equations in
O(n) queries, and then retrieve s.

3 Extending Simon’s Algorithm

In this section, we’ll study what happens in the circuit in various interesting
situations that occur in the applications we have considered.
s is 0 [18]. The behaviour is slightly different if s = 0 (f is injective): we have
only one element at step 3, and we measure a random value at step five, wich
means we’ll get n independent values in O(n) queries. This case was already
treated by Simon in his original paper.

400 X. Bonnetain

More Preimages [11]. If f fulfils f(x) = f(x ⊕ s) for all x, but can also verify
f(x) = f(y) for different values, that is, f can have more than 2 preimages by
image, the routine still works and gives us a vector orthogonal to the secret, but
we won’t get a uniform distribution. This problem has been addressed in [11],
Theorem 1, where they bound the error probability of the algorithm, depending
on the probability of occurence of a given parasite period, that is, with

p0 = max
t/∈{0,s}

Pr[f(x) = f(x ⊕ t)],

we get an error probability with cn queries of at most
(

2
(

1 + p0
2

)c)n

.

Taking the log in base 2, with pe the error bound, we get

n(1 + c(log(p0 + 1) − 1)) = log(pe).

We can rewrite it as

cn =
1

log
(

2
p0+1

) (n − log(pe)).

This allows us to compute directly the needed number of queries for a given
success probability. We see that pe diminishes exponentially with the number of
queries. For our numerical applications, we can be very conservative for p0 and
take 1/8. As this shows an unwanted differential property, this bound is unlikely
to be tight for our applications, which are xors of 4 AES rounds. With such a
p0, we get cn = 1.2(n− log(pe)). For our numerical applications, we’ll consider a
pe such that the total success probability of the attack is greater than one half.

Multiple Periods [21]. If f satisfies f(x) = f(x ⊕ s) for multiple values of s,
the routine will spawn some vectors orthogonal to all the periods. We will then
be able to recover the vector space generated by these periods [21]. If we have n
bits and s independent periods, it is equivalent to Simon’s problem with n−s+1
bits (the post-processing is a bit different, as we get a vector space instead of
a value). In the most degenerate case, if f is constant, we can only measure 0
(this can also be detected in a few classical queries).

Different Functions [11]. The original problem requires an oracle identical for
each query. However, as one query gives one equation, we don’t need to have the
same oracle call for each query, as long as the hidden periods are the same in
all the functions. This will allow us to apply our cryptanalysis with a different
nonce at each oracle call. This was used in some of the applications in [11].

Quantum Key-Recovery on Full AEZ 401

4 Previous Classical Attack

Chaigneau and Gilbert presented at FSE’17 a key-recovery attack on AEZv4
[6]. The attacker can query the functions of AEZ with a fixed unknown key,
and chosen authenticated data and plaintexts. The attack is done in two parts:
first, they apply 3 independent birthday sub-attacks that retrieve one of the 3
subkeys, and next they perform a diffential attack that retrieves the 2 remaining
subkeys once one is known. The first part needs a quantity of data at the birthday
bound (264 blocks), wich is beyond the security claimed by AEZs designers, who
limited the data to 244 blocks for a given key. We’ll describe here only that part,
as it is sufficient to perform efficient quantum attacks. Moreover, the second part
doesn’t gain much in a quantum setting, and would lead to less efficient attacks.

For each of the 3 attacks, they seek for a collision in a specific function
we construct with some functions of AEZ, and such a collision, with a high
probability, will give them a subkey if they xor the colliding inputs. The functions
are described in Table 3. The functions fI and fJ need a fixed nonce N for each
input, but not fL, as for this function the queried nonce depends on the input
value.

Table 3. Collision functions in [6]

subkey function property

I fI(x) = lastblock(AEZ-core(K, (τ, N), (0, x, 0, x, 0))) fI(x) = fI(x ⊕ I)

J fJ(x) = AEZ-prf(K, (τ, N, (x, x)), τ) fJ(x) = fJ(x ⊕ J)

L fL(x) = AEZ-prf(K, (τ, x, x), τ) fL(x) = fL(x ⊕ 6L)

For example, for fL, the value of AEZ-hash(K, (τ, x, x)) is Δ = E3,1
K (τ) ⊕

E4,1
K (x) ⊕ E5,1

K (x), which gives us, when we expand:

Δ = E3,1
K (τ) ⊕ AES4(x ⊕ 2L ⊕ 8J) ⊕ AES4(x ⊕ 4L ⊕ 8J).

For x′ = x ⊕ 6L, we get

Δ = E3,1
K (τ) ⊕ AES4(x ⊕ 6L ⊕ 2L ⊕ 8J) ⊕ AES4(x ⊕ 6L ⊕ 4L ⊕ 8J).

As we are in F2128 , it reduces to

Δ = E3,1
K (τ) ⊕ AES4(x ⊕ 4L ⊕ 8J) ⊕ AES4(x ⊕ 2L ⊕ 8J).

Hence, we get the same Δ (which implies the same value of fL(x)) if x⊕x′ =
6L, that is, fL(x) = fL(x ⊕ 6L). We have similar properties for fJ and fI :
fJ(x) = fJ (x ⊕ J) and fI(x) = fI(x ⊕ I).

Then, for fL (and similarly for fI and fJ), the attack is:

– Query fL(x) for 264 different values of x.
– Search for a collision fL(x) = fL(x′)
– With high probability, x ⊕ x′ = 6L.

We’ll see how to use these properties to dramatically accelerate this attack
in a quantum setting in the next section.

402 X. Bonnetain

5 Quantum Cryptanalysis of AEZ

In this section, we’ll show how to use Simon’s algorithm to efficiently recover
the subkeys in AEZv4, AEZv5 and AEZ10. We’ve chosen to restrain ourselves
to a classical known nonce for each quantum query.

All these attacks make use of a function f , of the form f(x) = a ⊕ g(x ⊕
b) ⊕ g(x ⊕ b ⊕ s), with g a xor of AES4 with various inputs. Simon’s algorithm
will retrieve efficiently s, except if s = 0. In this case, f is a constant function,
and the corresponding key is weak, as such a property can easily be detected
classically. However, the proportion of such weak keys, which corresponds to the
subkeys I, J, L (or some multiples of the subkeys) being linearly dependent, is
too small to be exploited (this occurs with a probability of around 2−125 for
one f).

5.1 AEZv4

We can directly use the functions of [6], described in Table 3, in Simon’s algo-
rithm. There is however a slight difference for fI , as the period is not on the full
AEZ-core but only on the last block. We can construct an oracle of fI from an
oracle of AEZ-core by uncomputing and taking only the last block. With this
method, one query to fI costs two queries to AEZ-core. For each case, we query
functions of n = 128 bits. In order to get a success probability of 0.5, we need
80% of success for each subkey, which is attained in 157 queries. The total query
complexity of the attack is 628 = 29.3. We use respectively 2, 3 and 2 × 6 block
of data for each query. We need 2669 = 211.4 � 244 blocks of data.

The complete attack is:

– For k ∈ {I, J, L}:
• Query 157 times Simon’s routine with fk.
• Solve classically the boolean equation system to get the period of fk.
• If this period was a multiple of k, invert to retrieve k.

In the original attack, fI and fJ needed a nonce reuse. This is not the case
with the quantum attack, as the different functions have the same hidden period.
The only constraint for the nonce is to be non-entangled with the input value.
For fL, we need to perform a quantum query with a nonce superposition. If
we want to disallow this, we can still use f ′

L = AEZ-prf(K, (τ,N, x, x), τ), which
satisfies f ′

L(x) = f ′
L(x⊕12L). This has the same query complexity, but a slightly

larger data complexity (211.5).
But we can go even further, if we look at

fJL(x) = AEZ-prf(K, (τ,N, (x, x), (x, x)), τ).

The associated Δ is

A⊕AES4(x⊕4L⊕8J)⊕AES4(x⊕4L⊕9J)⊕AES4(x⊕8L⊕8J)⊕AES4(x⊕8L⊕9J).

Quantum Key-Recovery on Full AEZ 403

This function has a hidden period of J and 12L (and also J ⊕ 12L). As seen in
Sect. 3, this means we can retrieve the vector space 〈J, 12L〉 with this function.
J and 12L need to be independent for the function to be non-constant. In that
case, we can retrieve the value of J and L with an exhaustive (classical) research,
as it has only 6 possibilities (for example by checking for collisions in fJ and
fL). This diminishes even more the query complexity to 471 = 28.9, using the
same number of block of quantum data. We then need to identify J and L. We
can do an exhaustive search, in one classical query and 6 tests (we only need to
test pairs of linearly independent vectors of the subspace we retrieved), or check
for collisions, in 6 classical queries (one for a reference, 3 to try to collide with
the reference on the first subkey, 2 to try to collide on the second).

We can also use these multiple periods in the classical attack: we use fJL for
our collisions, but as one query of this function has the same data complexity
as the queries of fJ and fL, it won’t change much on the overall complexity.

5.2 AEZv5

The functions in Table 4 allow to perform the same attack on AEZv5, with a
quantum query complexity of 28.9, and a data complexity of 2464 = 211.3 blocks.

Table 4. Collision functions for AEZv5

subkey function Period

I fI(x) = AEZ-prf(K, (τ, N, (x, A, B, C, D, E, F, G, x), τ) 6I

J fJ(x) = AEZ-prf(K, (τ, N, x, x), τ) 3J

L fL(x) = AEZ-prf(K, (τ, N, (x, x)), τ) 3L

We can even be more efficient in queries and recover the vector space
〈6I, 3J, 3L〉 in one go, with the function

fIJL(x) = AEZ-prf(K, (τ,N, (x, x,A,B,C,D,E, F, x, x),
(x, x,A′, B′, C ′,D′, E′, F ′, x, x)), τ).

Here, any non-x value in argument can be anything as long as it is not entangled
with x. This f has the 3 periods of fI , fJ and fL, and allows us to recover the
vector space in 155 = 27.3 queries, and a data complexity of 3255 = 211.7 blocks.
Once we know the vector space, we can use one classical query and check the
7 × 6 × 4 = 168 possible triplets, or check for collisions in the classical version of
fI , fJ and fK , which can be done in 1 + 7 + 6 + 4 = 18 classical queries.

Using the same principle, we can also define and use fIJ , fJL or fIL, which
all have comparable complexities,

fIL(x) = AEZ-prf(K, (τ,N, (x, x,B,C,D,E, F,G, x, x), τ)

and fJ(x) giving the best data complexity of 211.1 blocks.

404 X. Bonnetain

5.3 AEZ10

The core function is even simpler in this variant: Ei,j
K (X) = AES(X ⊕ iJ ⊕ jI).

Hence, we can do the attack with the functions in Table 5. With two functions,
we can recover I and J in 312 quantum queries and 936 quantum blocks of data.
If we choose to get the vector space spawned by I and J , we only need 155
queries and 775 blocks of data. In this case, we don’t get a full key recovery, but
the knowledge of the tweaks I and J allows to make forgeries for any non-empty
authenticated data.

Table 5. Collision functions for AEZ10

subkey function period

I fI(x) = AEZ-prf(K, (τ, N, (x, x)), τ) 3I

J fJ(x) = AEZ-prf(K, (τ, N, x, x), τ) 3J

I, J fIJ(x) = AEZ-prf(K, (τ, N, (x, x), (x, x)), τ) 3I, 3J, 3I ⊕ 3J

5.4 Variants of the Attack

We can gain one block per query if we allow the nonce to be in quantum super-
position and if the nonce can be more than 128 bits (which is not recommended,
but isn’t forbidden by the specification). Indeed, this would allow to suppress
the nonce line in the associated data in each of the queried functions. The new
functions would have a hidden period for some other multiples of the subkeys.

The attack from Chaigneau and Gilbert [6] can also be applied to all the
versions we have considered here classically, and the cost will be at the birthday
bound (264 queries, for around 266 blocks of data, depending on the amount of
associated data in the functions). If we want to gain in data complexity, we can
reuse the second part of the attack in [6]. Once the subkey I is known, we can
get J and L by attacking 3 rounds of AES (we can probably also make use of
the knowledge of J or L, but this would need another dedicated analysis).

5.5 Thwarting the Attack

There are different ways to counter this specific attack. As Simon’s algorithm
uses a specific structure, the simplest solution would be to change the way offsets
are used, from a xor with the data to another operation (see [1]). However, if
this is still a commutative group operation, the algorithm would be vulnerable
to some other quantum algorithms like Kuperberg’s algorithm [12], and it may
not lead to a satisfactory level of security.

A more conservative approach would be to change a bit the way the associated
data is processed. We can currently see it as 4 rounds of an AES with a custom
key schedule, with the first round key that depends on the position of the block,
the other ones being fixed. If the variable key is one of the inner AES keys

Quantum Key-Recovery on Full AEZ 405

(or if there are variable keys on multiple rounds), this quantum attack would
not work. This could however lead to some kind of related-key attacks on this
4-round AES, and it would require a dedicated analysis to ensure it does not
lead to some other classical attacks.

Moreover, these changes would prevent the quantum exponential gain of
Simon’s algorithm, but the collision analysis from Chaigneau and Gilbert [6]
would remain.

6 Conclusion

We’ve shown that all the versions of AEZ are deeply broken in the quantum
superposition model. This is an example of an exponential speedup of a classical
attack on a real primitive, that went from costly to almost-free. We’ve also
presented a way to exploit multiple hidden periods in order to reduce the number
of quantum oracle calls, and provide more flexibility in the attack, and discussed
how to avoid these kinds of attacks.

Acknowledgements. The author would like to thank Colin Chaigneau and Henri
Gilbert for helpful discussions on AEZ, and Maŕıa Naya-Plasencia and André
Schrottenloher for their detailed comments on the early versions of this paper.

References

1. Alagic, G., Russell, A.: Quantum-Secure Symmetric-Key Cryptography Based on
Hidden Shifts. CoRR abs/1610.01187 (2016)

2. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the
CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) [20],
pp. 44–63

3. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R.,
Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) [15],
pp. 368–397

4. Bonnetain, X., Derbez, P., Duval, S., Jean, J., Leurent, G., Minaud, B., Suder, V.:
An easy attack on AEZ. FSE 2017 rump session, March 2017

5. Chaigneau, C., Fuhr, T., Gilbert, H., Jean, J., Reinhard, J.R.: Cryptanalysis of
NORX v2.0. IACR Trans. Symmetric Cryptol. 2017(1), 156–174 (2017)

6. Chaigneau, C., Gilbert, H.: Is AEZ v4.1 sufficiently resilient against key-recovery
attacks? IACR Trans. Symmetric Cryptol. 1(1), 114–133 (2016)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

8. Fuhr, T., Leurent, G., Suder, V.: Collision Attacks Against CAESAR Candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
510–532. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 21

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) STOC. pp. 212–219. ACM (1996)

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-662-48800-3_21

406 X. Bonnetain

10. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) [15], pp. 15–44

11. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

12. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

13. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: 2012 International Symposium on Information Theory and its Applications
(ISITA), pp. 312–316, October 2012

14. McGrew, D.A.: Galois counter mode. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, 2nd edn, pp. 506–508. Springer, New
york (2011). https://doi.org/10.1007/978-1-4419-5906-5 451

15. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015, Part II. LNCS, vol. 9057.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6

16. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) CCS 2001, Proceedings of the 8th ACM Conference on Computer and Com-
munications Security, Philadelphia, Pennsylvania, USA, November 6–8, 2001. pp.
196–205. ACM (2001)

17. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

18. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

19. Soukharev, V., Jao, D., Seshadri, S.: Post-Quantum Security Models for Authen-
ticated Encryption. In: Takagi, T. (ed.) [20], pp. 64–78

20. Takagi, T. (ed.): PQCrypto 2016. LNCS, vol. 9606. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29360-8

21. Yang, L., Li, H.W.: Investigating the linear structure of Boolean functions based
on Simon’s period-finding quantum algorithm. CoRR abs/1306.2008 (2013)

https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-1-4419-5906-5_451
https://doi.org/10.1007/978-3-662-46803-6
https://doi.org/10.1007/978-3-319-29360-8
https://doi.org/10.1007/978-3-319-29360-8

	Quantum Key-Recovery on Full AEZ
	1 Introduction
	2 Preliminaries
	2.1 Description of AEZ
	2.2 Simon's Algorithm

	3 Extending Simon's Algorithm
	4 Previous Classical Attack
	5 Quantum Cryptanalysis of AEZ
	5.1 AEZv4
	5.2 AEZv5
	5.3 AEZ10
	5.4 Variants of the Attack
	5.5 Thwarting the Attack

	6 Conclusion
	References

